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with lifespan-regulating genes
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SUMMARY

Epigenetic aging clocks are computational models that use DNA methylation
sites to predict age. Since cheek swabs are non-invasive and painless, collecting
DNA from buccal tissue is highly desirable. Here, we review 11 existing clocks
that have been applied to buccal tissue. Two of these were exclusively trained
on adults and, while moderately accurate, have not been used to capture health-
relevant differences in epigenetic age. Using 130 common CpGs utilized by two
or more existing buccal clocks, we generate a proof-of-concept predictor in an
adult methylomic dataset. In addition to accurately estimating age (r = 0.95 and
mean absolute error = 3.88 years), this clock predicted that Down syndrome
subjects were significantly older relative to controls. A literature and database
review of CpG-associated genes identified numerous genes (e.g., CLOCK,
ELOVL2, and VGF) and molecules (e.g., alpha-linolenic acid, glycine, and spermi-
dine) reported to influence lifespan and/or age-related disease in model organ-
isms.

INTRODUCTION

A rich body of literature points to various biomarkers of aging that help distinguish between individuals of

the same chronological age and provide insights into how an individual is aging relative to a larger popu-

lation. For example, a recent analysis involving 405,981 participants in the UK BioBank found that leukocyte

telomere length positively correlated with self-reported walking pace (Dempsey et al., 2022). A separate

illustration is the protein GDF15, which dramatically increases with age in human plasma (Lehallier et al.,

2019). In a 20-year prospective study, levels of circulating GDF15 were measured in 4,143 subjects without

cardiovascular disease and found to be predictive of all-cause mortality (Bao et al., 2021). Classical clinical

markers can also be mined to provide insights into age-related health outcomes. For instance, elevated

levels of high-density lipoprotein-related and glycemic markers were respectively associated with protec-

tive and deleterious mortality effects in 12,098 individuals (Li et al., 2021). Non-molecular biomarkers also

have predictive utility, such as polypharmacy (Chen et al., 2021), grip strength (Pavasini et al., 2019), the

timed up and go test (Chun et al., 2021), and perceived age (Uotinen et al., 2005).

One rich resource for aging biomarkers is the methylome, which becomes substantially remodeled with

age (Johnson et al., 2012). Various research groups have usedmachine learningmodels to unbiasedly iden-

tify CpG sites whose methylation status can be quantified and combined into a predicted age score. Exem-

plar of this, Castle et al. utilized the elastic net regression algorithm to identify 286 DNAmethylation sites to

predict age in breast tissue with a Pearson correlation of 0.88 and a median absolute error of 4.2 years. Us-

ing this model, the authors found that epigenetic age was �seven years higher than chronological age in

tissue samples from breast tumors (Castle et al., 2020). This deviation between epigenetic age and chro-

nological age—termed Dage—can correlate with various age-related health outcomes, including

morbidity and mortality (Bell et al., 2019). Early-generation clocks—such as the Horvath 2013 (Horvath,

2013) and Hannum 2013 (Hannum et al., 2013) predictors—were trained to estimate chronological age.

By incorporating a more complex training regimen, subsequent methylomic models were generated

that were especially adept at predicting mortality and health outcomes (Belsky et al., 2022; Levine et al.,

2018; Lu et al., 2019). In the case of GrimAge, a composite biomarker was created based on epigenetic es-

timators of plasma proteins and smoking pack-years (Lu et al., 2019). A separate next-generation clock is

DNAm PhenoAge, which was trained to predict age calculated by distinct clinical markers (Levine et al.,
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2018). Another contemporary model called DunedinPACE was generated using information about longi-

tudinal variation in organ-system integrity (Belsky et al., 2022).

In addition to their diagnostic utility, aging clocks can be used as research tools for drug discovery. For

example, Janssens et al. created a transcriptomic aging clock and tested the ability of 1,309 different com-

pounds to influence predicted age in human cells. This approach identified a list of candidate drugs, a sub-

set of which was selected for in vivo testing in nematodes. The authors showed that the candidate com-

pounds valproic acid, LY-294002, rapamycin, monorden, and tanespimycin all extend lifespan in

Caenorhabditis elegans (Janssens et al., 2019). In a separate study, an accelerometer-based model called

MoveAge was applied in a large human cohort to demonstrate that the antihypertensive drug doxazosin

associates with age deceleration. When given to worms, doxazosin enhanced longevity and late-life

motility (McIntyre et al., 2021). A separate, in vitro epigenetic predictor called CellAgeClock was created

to estimate age in human primary cells. In addition to confirming the efficacy of known aging interventions

(e.g., rapamycin), the candidate drugs torin2 and Dactolisib lowered epigenetic age in vitro. When these

compounds were given to flies, they extended lifespan relative to controls (Lujan et al., 2020). Various in-

terventions, including the adoption of a Mediterranean diet, have also been reported to decrease pre-

dicted age in humans (Johnson et al., 2022).

The majority of epigenetic aging clocks were trained exclusively in blood or in multi-tissue datasets con-

taining blood samples (Simpson and Chandra, 2021). Although comparatively less common, more recent

work demonstrates that buccal tissue is also a viable sample type for age prediction in pediatric (McEwen

et al., 2020) and adult populations (Jung et al., 2019). Given the appeal of cheek swabs as a painless and

non-invasive collection method, we wanted to better understand the buccal epigenetic clock landscape

and compare the efficacy of disparate models. In doing so, we identify a set of 130 common CpGs utilized

by two or more different aging clocks (Figure 1A). Given that most of these CpGs were identified using an

unbiased machine learning model, this degree of overlap was unexpected. Using both bioinformatics and

machine learning, we use these CpGs to reveal age-related enrichment processes (Figure 1B) and generate

a proof-of-concept age prediction model (Figure 1C). Finally, we explore existing databases and literature

(Figure 1D) to suggest that a subset of clock CpGs as well as their associated genes represent molecules of

interest pertinent to longevity and age-related disease.

RESULTS

A common set of epigenetic clock CpGs

To begin, we performed a literature search to categorize methylomic models that have been used to pre-

dict age in human buccal tissue. In total, we identified 11 distinct epigenetic aging clocks (Table 1). The

number of CpG inputs used varied from 1 to 513 and the Pearson correlation ranged from 0.83 to 0.98.

Seven of these clocks were quite minimalistic and used 20 CpGs or less. Error metrics were reported as

either mean absolute error or median absolute error. The lowest mean and median absolute errors were

respectively 4.14 and 0.35 years. Conversely, the highest mean absolute error was 7.8 years and the largest

median absolute error was 6.9 years (Table 1). Both the Eipel 2016 (Eipel et al., 2016) and McEwen 2020

(McEwen et al., 2020) models employed cell-type correction. The best performing model was developed

byMcEwen et al., which was trained on 1,721 pediatric buccal samples spanning an age range of 0–20 years

(McEwen et al., 2020). Of the buccal models we identified (Table 1), only two exclusively focused on cheek

swabs derived from adults, namely the minimalistic Jung 2019 (Jung et al., 2019) and Schwender 2021

(Schwender et al., 2021) clocks. Involving a sample set spanning an age range of 18–74 years, the Jung

2019 clock had a Pearson correlation of 0.93 and a mean absolute error of 4.29 years. The sample age range

for the Schwender 2021 clock was narrower (21–69 years) and had a Pearson correlation of 0.88 and a mean

absolute error of 5.33 years.

For each model, we list the CpG inputs as well as any associated genes and accession IDs in Table S1. Tak-

ing an approach inspired by our previous proteomics work (Johnson et al., 2020), we compared all 11 CpG

lists to see if any of the inputs overlapped between different clocks (Figure 2). This comparison revealed a

total of 130 common CpGs (Table S2) that were used by two or more distinct age predictors. Although 105

of these were utilized by two different clocks and 21 emerged in three distinct models, only the following

four CpGs showed up four or more times: cg16867657 (ELOVL2), cg06144905 (PIPOX), cg09809672 (EDAR-

ADD), and cg17861230 (PDE4C). The DNA methylation sites cg16867657 (ELOVL2) and cg06144905

(PIPOX) were shared by four clocks, cg09809672 (EDARADD) occurred five times, and cg17861230
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(PDE4C) was utilized by six different models. The appearance of the ELOVL2-associated CpG cg16867657

is not surprising given that this DNA methylation site has been reported to undergo hypermethylation with

age across multiple tissue types (Slieker et al., 2018).

The majority of common CpGs were independently prioritized via elastic net regression in different methylo-

mic datasets (Figure 2 and Table S2). One possibility for the degree of overlap is that elastic net is selecting

CpGs that work well in combination for the task of epigenetic age prediction. While the Horvath 2013

clock was trained using CpGs shared between Illumina’s Infinium HumanMethylation27 and Infinium

HumanMethylation450 arrays, the Horvath 2018 and McEwen 2020 clocks used CpGs present on both the In-

finium HumanMethylation450 and Infinium MethylationEPIC arrays. The Levine 2018 clock focused on CpGs

shared by all three array platforms. Of the 130 common buccal CpGs, 128 were utilized by at least two of these

unbiased predictors. The directionality (i.e., hypermethylated or hypomethylated) of these 128 CpGs was

largely consistent, with 90 (70.31%) DNA methylation sites being reported to change in the same direction

across different studies (Table S2). Among these 90 consistent CpGs, 39 (43.33%) had a positive coefficient

(i.e., hypermethylated with age) and 51 (56.67%) had a negative coefficient (i.e., hypomethylated with age).

We hypothesize that the consistency of directionality was not higher due to the fact that these models have

been trained on different tissue sets. Both the Horvath 2013 and Horvath 2018 clocks were built using methyl-

ation information from multiple tissue sources, including buccal tissue. The McEwen 2020 model was exclu-

sively trained using buccal samples and the Levine 2018 predictor was initially trained on whole blood.

As an example of a CpG with consistent directionality, cg05442902 (P2RX6) exhibits age-dependent hypo-

methylation according to the Horvath 2013, Horvath 2018, and Levine 2018 clocks (Table S2). Interestingly,

Figure 1. Analytical workflow

(A) To begin, we performed a survey of the literature to identify 11 different epigenetic aging clocks that have been used

to predict age in human buccal tissue. By comparing the inputs of each model, we uncovered a set of 130 common CpGs

used by two or more different clocks.

(B) We utilized the unique gene IDs associated with the common CpGs to perform a network topology-based analysis and

identify significantly enriched processes in the Gene Ontology Biological Process (GO BP) database.

(C) Using publicly available methylomic data in the Gene Expression Omnibus database, we used multiple linear

regression in conjunction with the common CpGs to generate a proof-of-concept clock that can accurately predict age in

adult data.

(D) A literature and database analysis revealed that many of the genes connected to common CpGs have been reported

to influence lifespan and/or age-related disease in model organisms. Several molecules associated with common CpG

genes are also implicated in the DrugBank database, some of which have been previously reported to elongate lifespan in

animals.
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protein levels of P2RX6 significantly trend toward increased expression with age (q = 0.0019 and coeffi-

cient = 0.00044) in human plasma (Lehallier et al., 2019). Although most changes in DNA methylation do

not correlate with gene expression (Murphy et al., 2013), a subset of age-related methylomic alterations

strongly correspond with age-related changes in gene expression (Chatsirisupachai et al., 2021). Multi-

omics analyses are warranted to determine if the methylation status of these common CpG sites influences

gene and protein expression. Suggesting that such efforts are worthwhile, various CpG-related genes were

previously identified to change with age according to our prior systematic review of human proteomic

studies (Johnson et al., 2021), our previous aging meta-analysis of human transcriptomic studies (Shokhirev

and Johnson, 2021), and the Digital Aging Atlas database (Craig et al., 2015). The overlap between each

CpG-associated gene and these resources is provided in Table S2. It is also worth noting that the common

CpG cg13547237 is linked with the global transcription repressor DRAP1 (Kim et al., 1997).

Enrichment analysis implicates telomere maintenance and the adaptive immune system

Wewere curious to learn what biological processes were associated with these unique CpGs. To do this, we

performed a network topology-based analysis (Wang et al., 2017) using WebGestalt (Liao et al., 2019) and

filtered for enrichment results with a false discovery rate (FDR) < 0.05 in the Gene Ontology Biological Pro-

cess database (The Gene Ontology, 2019). Unlike a typical over-representation enrichment analysis, a

network topology-based enrichment analysis expands the number of inputs by identifying and including

interacting partners. This was done in the BioGRID database (Oughtred et al., 2021), which stores curated

information about protein, genetic, and chemical interactions.

The 14 significantly enriched results (Figure 3 and Table S3) highlight distinct themes of telomere mainte-

nance (‘‘telomere maintenance via telomerase’’, ‘‘RNA-dependent DNA biosynthetic process’’, and ‘‘telo-

mere maintenance via telomere lengthening’’) and the adaptive immune system (‘‘T cell costimulation’’ and

‘‘lymphocyte costimulation’’). Several results were pertinent to stimulus-induced responses (‘‘cellular

response to stimulus’’, ‘‘response to abiotic stimulus’’, and ‘‘response to stimulus’’), cell signaling (‘‘cell

communication’’, ‘‘signaling’’, and ‘‘cell-cell signaling’’), and regulation (‘‘regulation of biological quality’’,

‘‘negative regulation of multicellular organismal process’’, and ‘‘regulation of DNA-binding transcription

factor activity’’). Three processes were tied for having the lowest FDR value, namely ‘‘cellular response

to stimulus’’, ‘‘cell communication’’, and ‘‘regulation of biological quality’’. The telomere maintenance

and adaptive immune system themes respectively implicate the canonical aging hallmarks telomere attri-

tion and altered intercellular communication (Lopez-Otin et al., 2013). Interestingly, telomeres were also

incriminated in a recent transcriptomic comparison between immortal and mortal jellyfish (Pascual-Torner

et al., 2022).

Collating publicly available data to build a proof-of-concept aging clock

Looking at the 11 clocks listed in Table 1, two were built usingmulti-tissue datasets containing buccal tissue

(Horvath, 2013; Horvath et al., 2018) and one was initially trained on whole blood and subsequently applied

to buccal samples (Levine et al., 2018). Of the remaining eight, one focused exclusively on pediatric sub-

jects (McEwen et al., 2020), five included pediatric and adult samples (Alghanim et al., 2017; Becker

Table 1. Metrics for 11 epigenetic clocks that have been used to predict age in human buccal tissue

Sample Size Age Range (Years) # of CpG Inputs Correlation Error (Years) Reference

221 0–68 353 R = 0.83 Median error = 0.37 (Horvath, 2013)

55 1–85 3 R = 0.96 Mean error = 7.03 (Eipel et al., 2016)

91 6–73 2 R = 0.86 Mean error = 7.1 (Alghanim et al., 2017)

485 1–60 391 R = 0.88 Median error = 2 (Horvath et al., 2018)

Not reported Not reported 513 R = 0.88 Not reported (Levine et al., 2018)

148 18–74 5 R = 0.93 Mean error = 4.29 (Jung et al., 2019)

95 0–80 9 R = 0.87 Median error = 6.9 (Han et al., 2020)

1721 0–20 94 R = 0.98 Median error = 0.35 (McEwen et al., 2020)

142 0–89 1 R = 0.92 Mean error = 7.8 (Koop et al., 2021)

141 21–69 3 R = 0.88 Mean error = 5.33 (Schwender et al., 2021)

370 10–65 20 Not reported Mean error = 4.14 or 4.38 (Becker et al., 2022)

ll
OPEN ACCESS

4 iScience 25, 105304, November 18, 2022

iScience
Article



et al., 2022; Eipel et al., 2016; Han et al., 2020; Koop et al., 2021), and two focused exclusively on adult

samples (Jung et al., 2019; Schwender et al., 2021). The adult-specific buccal clocks exhibited moderate

accuracy and their ability to detect epigenetic age acceleration in association with specific conditions or

behaviors has not been tested. As such, the field is currently lacking validated models optimized for pre-

diction in adult buccal tissue.

Given that these common buccal CpGs were useful for multiple clocks, we hypothesized that they could be

used to accurately predict epigenetic age. To test this, we first searched for adult buccal methylomic data in

the Gene Expression Omnibus database (Clough and Barrett, 2016). Three HumanMethylation450 adult

buccal datasets with age information were identified (Table S4) containing a total of 390 samples, 300 of

which were not associated with a disease, condition, or tobacco-related behavior. Of these 300 samples,

255 were derived from females, 45 originated from males, and the age range was 25–60 years. A reported

race or ethnicity was not listed in association with 260 samples. In order to expand the age range and sam-

ple number, we incorporated 131 controls from a saliva dataset (Table S4). A principal component analysis

(PCA) shows that the combined methylation data exhibit distinct variance based on batch (Figure S1A),

which is to be expected given our inclusion of four different datasets. These 431 samples had an age range

of 25–88 years and included 312 females and 119 males. For the buccal and saliva datasets that reported

race or ethnicity, 65.5% were Caucasian, 27.5% were Hispanic, and 7% were African American. We justified

the merging of these datasets given that cellular content is similar between buccal tissue and saliva (Theda

et al., 2018). Furthermore, Jung et al. previously showed that an epigenetic predictor can be built which

predicts age in both tissue types (Jung et al., 2019). Lastly, various models have been constructed that

can measure epigenetic age in both saliva and cheek swab samples (Horvath, 2013; Horvath et al., 2018;

Levine et al., 2018).

Building and assessing the accuracy of a proof-of-concept aging clock

Using multiple linear regression, all 130 common CpGs, estimated cell type proportions (Figure S1B) as

additional features, and 10-fold cross-validation to repeatedly split samples into training and validation

sets, we find that age can be predicted with a Pearson correlation of 0.95 and a mean absolute error of

3.88 years (Figure 4A). While these accuracy metrics stand out as being relatively high (Table 1), we were

curious if other clocks could be designed that outperform our common CpG clock. As such, we used elastic

net regression to create a second proof-of-concept clock trained on the top 10,000 CpGs correlated with

age along with the predicted cell type proportions as features. The training automatically selected 335

CpGs optimal for age prediction, three of which—cg11896923 (PNMT), cg01820374 (LAG3), and

cg22809047 (RPL31)—overlapped with our common buccal CpGs. This minimal amount of overlap may

be due to our dataset only including adult samples as well as the pre-filtering for the top 10,000 age-corre-

lated CpGs prior to running the elastic net model. The unbiased clock exhibited comparable accuracy met-

rics, namely a Pearson correlation of 0.94 and a mean absolute error of 3.85 years (Figure 4B). For both

models, removing the saliva dataset markedly impacted accuracy metrics (Figure S2). Given that the

Figure 2. A set of common clock CpGs

Across 11 different epigenetic aging clocks used to predict age in human buccal tissue, a total of 130 common buccal CpGs were identified that were utilized

by two or more models. The bulk of overlap was seen between the Horvath 2013, Horvath 2018, Levine 2018, and McEwen 2020 models. Lighter colors

represent less overlap and darker colors represent more overlap. Gray boxes indicate the number of CpG inputs used by each clock.
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gene ELOVL2 is known to be hypermethylated with age (Slieker et al., 2018), we created a third clock that

uses multiple linear regression and the two common CpGs (cg16867657 and cg21572722) associated with

ELOVL2. While not as accurate, this minimalistic model is commendable with a Pearson correlation of 0.88

and a mean absolute error of 5.22 years (Figure S3). CpG lists as well as their associated coefficients, genes,

and accession IDs for all three clocks are provided in Table S5. An enrichment analysis for the elastic net

clock revealed prominent themes of programmed cell death and proteostasis (Figure S4 and Table S6).

Predicted age color-coded by estimated cell type is visualized in Figure S5.

The above-mentioned models included estimated cell types as separate features. However, it is also

possible to use predicted cell type information to modify coefficients associated with CpGs. To determine

which was optimal, we tried the latter approach for both the common CpG (Figure S6A) and elastic net (Fig-

ure S6B) clocks. While the common CpG accuracy metrics were comparable (Pearson = 0.94 and mean ab-

solute error = 3.84 years), the elastic net clock displayed a noticeable dip in performance with a Pearson

correlation of 0.87 and a mean absolute error of 5.73 years. Regardless of the correction method used,

the majority of cells were predicted to be epithelial cells or neutrophils. A small proportion was labeled

as other immune cells, which include B cells, monocytes, eosinophils, CD8 T cells, and CD4 T cells.

While our proof-of-concept clocks (Figure 4) display predictive power, they do not outcompete the pediatric

buccal clock developed by McEwen et al. (Table 1). We posit that the McEwen 2020 clock is exceptionally accu-

rate for three reasons. First, it was trained on a narrow pediatric age range and therefore able to filter for CpGs

that uniquely undergo changes between 0 and 20 years of age. In contrast, the adult age range is broader and

expected to involve greater variability. Second, a large number of samples were utilized to train (n = 1,032) and

validate (n = 689) the McEwen 2020 clock. Given the dearth of publicly available adult buccal data, our sample

size was limited in this study. Third, McEwen et al. only analyzed cheek swabs andwere therefore able to identify

themost predictive inputs for buccal tissue. In our study, it was necessary to combine buccal datawith saliva data

given the limited amount of public data. Thus, efforts are warranted to develop a more powerful, adult-specific

clock using a greater number of buccal samples from individuals aged 18 years or older.

Down syndrome subjects and moist snuff users exhibit epigenetic age acceleration

The collated datasets (Table S4) containing control samples additionally had samples derived from Down

syndrome subjects (n = 10), moist snuff users (n = 40), cigarette smokers (n = 40), and patients with

Figure 3. Common CpGs highlight telomere maintenance and the adaptive immune system

Using WebGestalt, a network topology-based analysis was performed on unique gene IDs associated with common

buccal clock CpGs. All 14 significantly enriched results in the Gene Ontology Biological Process database are presented

as -log10(FDR). The threshold for significance was a false discovery rate (FDR) less than 0.05.
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Parkinson’s disease (n = 128). Using our proof-of-concept aging clocks, we next investigated whether or not

these samples exhibit epigenetic age acceleration in comparison to controls not associated with a condi-

tion, disease, or tobacco-related behavior.

We found that individuals with Down syndrome have a significantly higher Dage compared to controls

(Figure 5). The Wilcoxon p values were 0.005 and 0.004 for the common CpG (Figure 5A) and elastic net

(Figure 5B) clocks, respectively. These data corroborate prior reports that epigenetic age is elevated in in-

dividuals with Down syndrome (Horvath et al., 2015; Xu et al., 2022). In line with evidence that smokeless

tobacco increases the risk of mortality and chronic disease (Siddiqi et al., 2015), moist snuff users were pre-

dicted to have a higher Dage (Wilcoxon p = 0.004) according to the elastic net clock (Figure 5B). For both

clocks, Dage differences between controls, Down syndrome subjects, moist snuff users, cigarette smokers,

and Parkinson’s disease patients are visualized in Figure S7. To assess the impact of sample size on accu-

racy metrics (Figure S8) and ability to detect age acceleration (Figure S9), we performed 100 random sam-

pling runs of either 200 or 300 samples for the commonCpG and elastic net clocks. These results (Figures S8

and S9) collectively demonstrate that clock performance is influenced by the number of samples available

for training.

Clock inputs as molecules of interest

Previously, we collaborated with Drs. Benoit Lehallier and Tony-Wyss Coray to develop a uniquely accurate

plasma proteomic aging clock. This model utilizes 491 proteins as inputs and was used to show that aerobic

exercise-trained individuals have a lower proteomic age compared to sedentary subjects (Lehallier et al.,

2020). A detailed bioinformatics analysis of this model showed that these proteins were significantly asso-

ciated with immunological processes. Furthermore, an extensive literature review concluded that the ma-

jority of these proteins were previously reported to influence lifespan and/or age-related disease in animal

models (Johnson et al., 2021). We similarly found that genes commonly prioritized for transcriptomic age

prediction exhibit intimate connections to the immune system and age-related disease (Johnson and Sho-

khirev, 2021). It is therefore tempting to speculate that a portion of molecules important for age prediction

may be more than simple biomarkers. Instead, some may actively underlie and contribute to age-related

dysfunction.

In the present work, we have identified 130 common CpGs that were prioritized by two or more different

epigenetic clocks used to predict age in buccal tissue. Based on our previous work, we were curious if the

genes associated with these CpGs had known roles in the regulation of lifespan. To begin this exploration,

Figure 4. Proof-of-concept epigenetic aging clocks that predict age in human buccal tissue and saliva

(A) In conjunction with multiple linear regression, the 130 common CpGs were used to predict epigenetic age in human

methylomic data with a Pearson correlation of 0.95 and a mean absolute error (MAE) of 3.88 years.

(B) A set of 335 CpGs were selected by elastic net regression and used to build an unbiased epigenetic clock in the same

set of methylomic data. This model had a Pearson correlation of 0.94 and a MAE of 3.85 years. The four different colors

(red, blue, green, and orange) represent four different publicly available datasets, three of which were derived from

buccal tissue (red, blue, and orange) and one of which was generated in saliva (green). This dataset includes 431 samples

(age range of 25–88 years) not associated with a disease, condition, or tobacco-associated behavior.
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we uploaded our list of gene IDs to the Human Aging Genomic Resources database (Tacutu et al., 2018).

Interestingly, nine genes had existing entries (Table S7), including existing lifespan effects forCLOCK, FXN,

and HTRA2. In mice, creating a deficiency in Clock induces a premature aging phenotype characterized by

a reduced lifespan and a higher likelihood of developing dermatitis and cataracts (Dubrovsky et al., 2010).

Disrupting the expression of Fxn in mouse hepatocytes impairs mitochondrial function, lowers life expec-

tancy, and leads to the development of hepatic tumors (Thierbach et al., 2005). Mutant mice that lack Htra2

exhibit a phenotype similar to Parkinson’s disease and die prematurely (Jones et al., 2003). Transgenically

expressing human HTRA2 in these mice elongates their lifespan and rescues their neurodegeneration

phenotype. These mutant mice lacking mouse Htra2 and expressing human HTRA2 display a phenotype

of accelerated aging and die between 12 and 17 months of age (Kang et al., 2013). For all three genes,

the loss of expression is tethered to a longevity-lowering effect. It would be intriguing to assess if age-

related methylation changes in CLOCK, FXN, and HTRA2 are functionally significant.

This inspired us to do a mini-literature review (Table S7) to see if other genes associated with these common

buccal CpGs influence lifespan in animal models. Using UniProt (UniProt, 2021) for up-to-date nomenclature

and the Alliance of Genome Resources (Alliance of Genome Resources, 2020) for established orthologs, we

searched for genes alone or in conjunction with either ‘‘lifespan’’ or ‘‘life span’’ in PubMed. This approach addi-

tionally implicated the following 16 genes in the regulation of lifespan in yeast, worms, flies, or mice: BSN,

CAMKK1, DLX5, ELOVL2, FZD9, GALC, GLO1, KCNC2, KCNC4, KLF2, MBNL1, RPL31, TBC1D23, TSPAN32,

UBA7, and VPS18 (Table S7). Of the 19 genes identified (including those listed in the Human Aging Genomic

Resources database), 10 examples are highlighted in Table 2. For instance, overexpressing klf-3 (ortholog of

KLF2) in worms enhances health and lifespan (Hsieh et al., 2017) while the genetic depletion of Tsp2A (ortholog

of TSPAN32) in flies shortens lifespan and causes intestinal barrier dysfunction (Izumi et al., 2019). Our literature

reviewalso revealed that several of these genes have roles in the regulationof age-related dysfunction. Although

by no means comprehensive, 10 literature connections are provided in Table 3 where the manipulation of an

associated gene or protein influences neurodegeneration, visual decline, osteoporosis, atherosclerosis, dia-

betes, obesity, or cancer in vivo. An illustration of this is a study by Sharma et al., which showed that recombinant

Scgn can protect against insulin insensitivity, obesity, and cardiovascular risk in mice fed a high-fat diet (Sharma

et al., 2019). As a separate example, the overexpression of Snx8 in Alzheimer’s disease mice decreases amyloid-

beta levels and guards against cognitive impairment (Xie et al., 2019).

Compounds associated with CpG-linked genes

Inspired by these literature connections, we searched the DrugBank database (Wishart et al., 2018) to

see if any of the CpG-linked genes had known drug relations. Of the 130 common CpGs, a total of 39

Figure 5. Epigenetic age acceleration in Down syndrome subjects and moist snuff users

Compared to samples not associated with a condition, disease, or tobacco-associated behavior, Dage was assessed in

Down syndrome subjects (n = 10) and moist snuff users (n = 40).

(A) Using the common CpG clock, individuals with Down syndrome were predicted to be significantly older (Wilcoxon

p = 0.005).

(B) Significantly higher Dage values were observed in both Down syndrome subjects (Wilcoxon p = 0.004) and moist snuff

users (Wilcoxon p = 0.004) according to the elastic net clock. An asterisk indicates statistical significance compared to

controls.
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were connected to a DrugBank entry via their associated gene (Table S7). Intriguingly, some of the

implicated molecules have been reported to extend lifespan in model organisms. The compounds

glycine, alpha-linolenic acid, S-adenosyl-L-homocysteine, and spermidine were identified in relation

to PIPOX, ELOVL2, PNMT, and ADRB1, respectively. In 2019, the Interventions Testing Program

demonstrated that glycine supplementation in genetically heterogeneous mice extends lifespan in

males and females (Miller et al., 2019). In nematode worms, treatment with the omega-3 fatty acid

alpha-linolenic acid leads to a dose-dependent increase in lifespan (Qi et al., 2017). Supplementation

with S-adenosyl-l-homocysteine recapitulates the benefits of methionine restriction in C. elegans,

including the activation of AMPK and enhanced longevity (Ogawa et al., 2022). In mice, the polyamine

spermidine was reported to prolong lifespan and protect against cardiovascular disease (Eisenberg

et al., 2016).

DISCUSSION

In this work, we identify a set of 130 common CpGs that were used by two or more different epigenetic

aging clocks to predict age in human buccal tissue. Interestingly, many of the genes associated with

these CpGs influence lifespan and/or age-related disease in vivo. For example, overexpressing Vgf in

Alzheimer’s disease mice rescues memory impairment and improves neuropathology (Beckmann et al.,

2020). This is intriguing as VGF is reportedly underexpressed in biofluids from patients with Alzheimer’s

disease (Pedrero-Prieto et al., 2020), Parkinson’s disease (Virreira Winter et al., 2021), amyotrophic lateral

sclerosis (Zhao et al., 2008), frontotemporal dementia (Remnestal et al., 2020), and Lewy body dementia

(van Steenoven et al., 2019). In the rat hippocampus, the expression of Vgf declines with age (Blalock

et al., 2003; Porter et al., 2012). The concentration of VGF negatively correlates with age in the human

brain (Meng et al., 2016). As part of our previous transcriptomic meta-analysis of human studies (Sho-

khirev and Johnson, 2021), we collated publicly available brain transcriptomes derived from 91 samples

Table 2. For the 130 common CpGs (CpGs used by two or more epigenetic clocks applied to human buccal tissue),

we provide 10 examples of a CpG-associated gene influencing lifespan in an animal model. Whether or not lifespan

is increased or decreased is respectively highlighted with an upward ([) or downward (Y) arrow

Common CpG Associated Gene Reported Lifespan Effect

cg16933388 BSN Transgenically overexpressing rat Bsn in neurons

reduces climbing ability and lifespan in fruit flies

(Schattling et al., 2019) Y

cg05960024 CLOCK Clock�/� mice are shorter-lived and display an increased

incidence of dermatitis and cataracts (Dubrovsky et al., 2010) Y

cg16867657, cg21572722 ELOVL2 Deleting Elovl2 in mice causes an accelerated aging

phenotype, including a reduced lifespan (Li et al., 2022) Y

cg07158339 FXN Disrupting the expression of Fxn lowers lifespan and leads to

the development of hepatic tumors in mice (Thierbach et al.,

2005) Y

cg20692569 FZD9 Broadly inhibiting fz3 (ortholog of FZD9) in fruit flies increases

lifespan (Bouska and Bai, 2022) [

cg26824091 GL O 1 Lifespan in fruit flies is elongated via RNAi knockdown against

Glo1 (Bouska and Bai, 2022) [

cg02154074 HTRA2 Although mice lacking Htra2 die prematurely and exhibit

neurodegeneration, their short lifespan can be partially

rescued by transgenically expressing humanHTRA2 in the CNS

(Kang et al., 2013) Y

cg26842024 KLF2 Both health and lifespan in worms are enhanced by the

overexpression of klf-3 (ortholog of KLF2) (Hsieh et al., 2017) [

cg17627559 TSPAN32 Genetically depleting Tsp2A (ortholog of TSPAN32) causes

intestinal barrier dysfunction and shortens lifespan in flies

(Izumi et al., 2019) Y

cg19381811 UBA7 In fruit flies, Uba1 (ortholog of UBA7) mutants are shorter-lived

and exhibit motor impairment (Liu and Pfleger, 2013) Y
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with an age range of 32–99 years. By analyzing the brain samples in this data, we find that VGF is signif-

icantly underexpressed (log-fold change = �2.27, FDR = 9.64 3 10�5) in adults aged 70 + years

compared to those aged <70 years. Furthermore, the expression of VGF along with other select proteins

can be used to construct a machine learning classifier that distinguishes Alzheimer’s disease samples

from controls (Shokhirev and Johnson, 2022). Since three different clocks have reported that the VGF-

associated CpG cg04084157 becomes hypermethylated with age (Horvath, 2013; Horvath et al., 2018;

Levine et al., 2018), it would be interesting to explore whether or not methylation is driving this age-

related decrease in gene expression.

Another gene to highlight is ELOVL2, which elongates long-chain, polyunsaturated fatty acids such as

omega-3 (Chao and Skowronska-Krawczyk, 2020). The common buccal CpGs cg16867657 and

cg21572722 are linked to ELOVL2 and undergo hypermethylation with age (Horvath et al., 2018; McEwen

et al., 2020). As we show in this study, they can also be used to create a minimalistic epigenetic aging

clock. Creating a point mutation in Elovl2 disrupts the enzymatic activity of Elovl2, causes premature vi-

sual decline, and leads to the early accumulation of age-related autofluorescent deposits in mice (Chen

et al., 2020). In zebrafish, inactivating elovl2 alters lipid composition, increases retinal thickness, and per-

turbs visual behavior (Dasyani et al., 2020). The deletion of Elovl2 reduces lifespan and induces an accel-

erated aging phenotype in mice characterized by early hair loss as well as impairments in bone density,

endurance, muscle strength, learning, and memory (Li et al., 2022). Separate work has shown that the

ablation of Elovl2 drives mitochondrial dysfunction in the mouse liver (Gomez Rodriguez et al., 2022).

Given that the hypermethylation of this gene is tethered to a reduced expression level with age (Chen

et al., 2020; Li et al., 2022), it is feasible that the methylation of ELOVL2 contributes to age-related pathol-

ogy. Suggestive of this possibility, reversing promoter hypermethylation via 5-Aza-20-deoxycytidine res-

cues visual function in older, wild-type mice and elevates Elovl2 expression (Chen et al., 2020). In Elovl2

Table 3. 10 examples are provided where the manipulation of a gene associated with a common CpG induces an

in vivo effect relevant to age-related disease

Common CpG Associated Gene Literature Connection Pertinent to Age-related Disease

cg23124451 CBX7 Mice deficient in Cbx7 develop carcinomas and adenomas in the

lung and liver (Forzati et al., 2012)

cg16867657,

cg21572722

ELOVL2 Introducing a point mutation in Elovl2 accelerates visual decline

and induces the premature appearance of age-related deposits

(Chen et al., 2020)

cg21296230 GREM1 In atherosclerotic Apoe�/� mice, treatment with recombinant

Grem1 attenuates atheroprogression and reduces the content of

macrophages/monocytes in lesions (Muller et al., 2013)

cg19853760 LGALS1 In amouse model of glioblastoma, deleting LGALS1 in brain tumor

stem cells increases survival and suppresses tumorigenesis

(Sharanek et al., 2021)

cg06493994 SCGN In mice fed a high-fat diet, treatment with recombinant Scgn

protects against cardiovascular risk, obesity, and insulin

insensitivity (Sharma et al., 2019)

cg22679120 SNX8 Overexpressing Snx8 in Alzheimer’s disease mice protects against

cognitive impairment and decreases amyloid-beta levels (Xie et al.,

2019)

cg09646392 TNFSF13B While genetically deleting Tnfsf13b worsens diet-induced obesity,

overexpressing Tnfsf13b increases energy expenditure and

protects against weight gain in mice (Chan et al., 2021)

cg04084157 VGF The overexpression of Vgf rescues neuropathology and memory

impairment in Alzheimer’s disease mice (Beckmann et al., 2020)

cg02071305 VPS18 Deleting Vps18 in neural cells impairs autophagy and induces

severe neurodegeneration (Peng et al., 2012)

cg11298786 WNT3A Treating osteoporotic mice with human WNT3A protein

accelerates bone repair (Liu et al., 2019a)

ll
OPEN ACCESS

10 iScience 25, 105304, November 18, 2022

iScience
Article



knockout mice, supplementation with fish oil was found to partially rescue the accelerated aging pheno-

type (Li et al., 2022).

Notable connections also emerged when genes associated with common CpGs were analyzed in the

DrugBank database. For example, the amino acid glycine (linked to the gene PIPOX) has been reported

to extend lifespan in worms (Liu et al., 2019b), rats (Brind et al., 2011), and mice (Miller et al., 2019). In

conjunction with the enzyme GNMT, glycine is essential for clearing methionine in mammals (Luka

et al., 2009). Relevantly, the overexpression of Gnmt extends lifespan in fruit flies (Obata and Miura,

2015). PIPOX encodes for peroxisomal sarcosine oxidase, an enzyme that converts sarcosine to glycine

(UniProt, 2021). A metabolomics screen recently identified sarcosine as a circulating metabolite that de-

clines with age in both mice and humans. Sarcosine levels were increased by dietary restriction and

elevated in long-lived Ames dwarf mice (Walters et al., 2018). Further research is justified to determine

the relationship between the methylation status of this gene and concentrations of sarcosine and glycine.

Efforts are also warranted to assess the ability of PIPOX to influence lifespan and/or healthspan in model

organisms.

In this work, we also generate proof-of-concept epigenetic aging clocks that accurately predict age in pub-

licly available methylomic data. While the common CpG clock predicted age acceleration in Down syn-

drome subjects, the elastic net clock predicted significantly higher Dage values in both Down syndrome

subjects and moist snuff users. These novel findings indicate that clocks optimized for adult buccal and

saliva data can capture key aspects of health. They also corroborate previous work by Lowe et al., which

concluded that cheek swabs are an informative and useful tissue for epigenetic research (Lowe et al.,

2013). This is important given that the majority of work investigating epigenetic age acceleration in buccal

tissue has been done in pediatric populations. Building off of the findings presented here, we are working

on creating a more powerful aging clock using in-house cheek swab samples derived exclusively from

adults. By employing a more advanced training regime, our goal is to build a next-generation, adult-

focused buccal clock.

Regarding age acceleration, it was interesting to observe that neither proof-of-concept clock predicted a

significant Dage difference in smokers or patients with Parkinson’s disease. The Eipel 2016 clock similarly

reported a non-significant association between smoking and epigenetic age in cheek swab samples (Eipel

et al., 2016). Simpkin et al. reported a negative association between current smoking and the Horvath 2013

clock in buccal cells (Simpkin et al., 2017). The publicly available saliva dataset used in this study was pre-

viously analyzed by Chuang et al. The authors only detected five CpGs (cg15133963, cg01820192,

cg22275276, cg11748881, and cg24742912) that significantly differed between controls and patients with

Parkinson’s disease (Chuang et al., 2017), none of which were present in our common CpG or elastic net

clocks. These findings reveal the limitations of clocks simply trained on chronological age and emphasize

the importance of building a next-generation model. In order to more broadly predict age-related out-

comes, it is imperative to incorporate CpGs relevant to health.

Beyond building off of this work to create a more powerful adult buccal clock, there are many intriguing

research directions that could be pursued. Recently, Roudbar et al. created an especially accurate whole

blood aging clock by using a non-standard approach in conjunction with over 450,000 CpG sites present

on Illumina’s Infinium HumanMethylation450 array. Specifically, they developed a predictor using repro-

ducing kernel Hilbert spaces regression and a ridge regression model in a Bayesian framework (Roudbar

et al., 2021). Future efforts are warranted to compare the efficacy of clocks that use the entirety of an array

to those that utilize a specific subset identified via a machine learning approach like elastic net regression.

Unique modeling approaches should also be explored, such as best linear unbiased prediction (Zhang

et al., 2019). Work involving technical and/or biological replicates is also needed to better optimize these

clocks in terms of retest reliability. While the DunedinPACE model was able to achieve consistency across

replicates by filtering out noisy CpGs (Belsky et al., 2022), other clocks have been reported to benefit from

an additional PCA step (Higgins-Chen et al., 2022).

In conjunction with the in vivo results highlighted, our findings recommend future research into CpGs

important for epigenetic age prediction. Given that only a subset of methylomic changes correlate with

other omics changes, how age-related alterations inmethylation correspond with shifts in gene and protein

expression should be assessed. Furthermore, the ability of the genes and proteins associated with clock
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CpGs to influence lifespan and/or age-related disease in animals needs to be evaluated comprehensively.

Finally, the feasibility of these molecules as interventional targets should be explored in pre-clinical

models.

Limitations of the study

This study has two primary limitations, the first of which is that we utilized publicly available human meth-

ylomic data. Since these data were not generated in-house, key information regarding the participants is

lacking. Furthermore, the public data were created using Infinium HumanMethylation450 BeadChip arrays.

While a powerful research tool, they do not provide the same level of coverage of the more expansive In-

finiumMethylationEPIC arrays. Secondly, we mine databases and literature to suggest that the age-related

methylation changes of specific CpGs sites may underlie functional alterations. While we provide evidence

that some of the genes linked to these CpGs potentially represent molecules of interest, our paper remains

purely in silico and we do not perform any in vivo testing. Ultimately, experiments in animal models are

required to fully understand the relationship between common CpG genes, lifespan, and age-related

disease.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the Lead Contact, Adiv Johnson

(adiv@tallyhealth.com).

Materials availability

No new materials were generated in this study.

Data and code availability

d The methylomic datasets used in the study are all publicly available via the Gene Expression Omnibus

(Clough and Barrett, 2016) database under the following accession IDs: GSE50586, GSE137688,

GSE94876, and GSE111223. The raw count and meta-data tables from our previous transcriptomic aging

meta-analysis (Shokhirev and Johnson, 2021) are available on Mendeley Data under the digital object

identifier https://doi.org/10.17632/92rgnswtn8.1. Clock intercept and coefficient information is provided

in Table S5.

REAGENT or RESOURCE SOURCE IDENTIFIER

Available data

Methylomic dataset Gene Expression Omnibus (Clough and

Barrett, 2016) database

GSE50586

Methylomic dataset Gene Expression Omnibus (Clough and

Barrett, 2016) database

GSE137688

Methylomic dataset Gene Expression Omnibus (Clough and

Barrett, 2016) database

GSE94876

Methylomic dataset Gene Expression Omnibus (Clough and

Barrett, 2016) database

GSE111223

Raw count and meta-data tables from our

previous transcriptomic aging meta-analysis

(Shokhirev and Johnson, 2021)

Mendeley Data https://doi.org/10.17632/92rgnswtn8.1

Clock intercept and coefficient information Current paper Table S5

Software and algorithms

R studio 2022.02.3 https://www.rstudio.com/ N/A

R software v.4.1.3 https://www.r-project.org/ N/A

caret v6.0-92 R package https://cran.r-project.org/web/packages/

caret/index.html

N/A

EpiDISH v2.10.0 R package https://www.bioconductor.org/packages/

release/bioc/html/EpiDISH.html

N/A

ggplot2 v3.3.6 R package https://cran.r-project.org/web/packages/

ggplot2/index.html

N/A

GEOquery v2.62.2 R package https://bioconductor.org/packages/release/

bioc/html/GEOquery.html

N/A

glmnet v4.1-4 R package https://cran.r-project.org/web/packages/

glmnet/index.html

N/A

minfi v1.40.0 R package https://bioconductor.org/packages/

release/bioc/html/minfi.html

N/A

Code used in this paper https://github.com/Tally-Health/

BuccalComparison/

N/A
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d Code, coefficients, and plots are available at https://github.com/Tally-Health/BuccalComparison/.

d Additional information is available from the lead contact upon request.

METHODS DETAILS

Resources for omics data

Multiple omics resources are used throughout this study. An online tool developed by Lehallier et al (Le-

hallier et al., 2019) allows for plasma protein expression with age to be interrogated in a cohort of 4,263

adults aged 18–95 years old: https://twc-stanford.shinyapps.io/aging_plasma_proteome/. Previously, we

performed a systematic review of human proteomics aging studies and identified 1,128 proteins reported

to significantly change with age according to multiple studies. Information for these common proteins can

be found in Table S2 of that paper (Johnson et al., 2020). In a prior meta-analysis of human transcriptomic

data containing age information, we collated and filtered 3,060 RNA-Seq datasets from various tissues.

Table S2 of that work lists the 1,000 genes that were either the most differentially expressed or displayed

the most variability in expression with age (Shokhirev and Johnson, 2021). The Digital Aging Atlas contains

information regarding age-related changes across different types of omics data and can be accessed on-

line: https://ageing-map.org/.

Enrichment analyses

We performed network topology-based enrichment analyses (Wang et al., 2017) using the PPI BioGRID

database (Oughtred et al., 2021) andWebGestalt (Liao et al., 2019). In the ‘‘Advanced Parameters’’ section,

the ‘‘Network Construction Method’’ was ‘‘Network Expansion’’, the ‘‘Set Number of Top Ranking Neigh-

bors’’ was equivalent to half of the input size, the ‘‘Significance Level’’ was set to an FDR cut-off value of

0.05, and seeds were highlighted. The output was significantly enriched results in the Gene Ontology Bio-

logical Process database (The Gene Ontology, 2019). Inputs were unique gene IDs (Tables S3 and S6) asso-

ciated with specific DNA methylation sites. WebGestalt can be accessed via the following website: http://

www.webgestalt.org/.

Machine learning

Four methylomic datasets were downloaded from the Gene Expression Omnibus database (Clough and

Barrett, 2016) and combined along shared CpGs, resulting in a 649 sample by 485,512 CpG matrix of

beta values. Since cell-type composition variation can affect model training, we used the popular reference

based EpiDISH (Zheng et al., 2019) package (v2.6.1) for estimating cell type proportions. We used the hi-

erarchical EpiDISH procedure to estimate the fraction of epithelial, fibroblast, and various immune subsets

via the centEpiFibIC.m and centBloodSub.m references. The robust partial corrections method was utilized

(Teschendorff et al., 2017). After estimating cell types, the beta values were translated into M values for

downstream analysis:

M = log2

�
Beta

1 � Beta

�

We trained an unbiasedmodel on 431 samples from individuals not associated with a specific disease, con-

dition, or tobacco-related behavior in the combined dataset and filtered the 485,512 CpG sites. First, CpGs

with variance %0.1 and CpGs with average gaps between sorted M values R0.02 were removed to avoid

modeling noisy data. Then, the top 10,000 CpGs most correlated with age were used as potential inputs.

We added the cell type fractions for each sample as additional training features (since fractions add to 1, we

omitted the eosinophil fraction). We fit an elastic net (glmnet) model to the data using the R caret (Kuhn,

2008) package (v 6.0–86) train function. The elastic net model is a generalized linear regression model that

finds and groups predictors that are correlated with each other. From there, it selects a feature from the

group to keep or omit.

Tuning parameters included 10-fold cross-validation repeated once and allowed for a range of alpha and

lambda values that minimize root-mean-square error. 10-fold cross-validation operates by training the

model 10 times, each time using a randomly selected nine-tenths of the input data to train the

model and reserving one-10th as the test set. Optimal elastic net hyperparameters were a = 0.05

and l = 0.95. Given that our dataset had an age range of 25–88 years, predictions were constrained to a

range of 0–100 years during training. The output is a linear model with the following format:

ll
OPEN ACCESS

18 iScience 25, 105304, November 18, 2022

iScience
Article

https://github.com/Tally-Health/BuccalComparison/
https://twc-stanford.shinyapps.io/aging_plasma_proteome/
https://ageing-map.org/
http://www.webgestalt.org/
http://www.webgestalt.org/


Epigenetic Age = b0 + b1X1 + .+ bnXn

In this equation, B0 is the intercept, B1 - Bn are the coefficients, and X1 - Xn represent CpGs sites.

In addition to the unbiased model, we used the 130 common buccal CpG sites to train a multiple linear

regression (LM) model using the caret package. This model uses all of the input features, 130 common

buccal CpG sites (in this case), and assigns a coefficient based on the feature’s correlation with age and

weight. One M value was missing from the dataset and imputed using the median. As with the unbiased

model, cell type fractions for each sample were added as additional training features. 10-fold cross-valida-

tion was repeated once to optimize coefficients and allow for resampling of training and test data. The final

linear model is in the same format as described for the unbiased model. We additionally used the ELOVL2-

associated CpG sites cg16867657 and cg21572722 to train an LM model using the caret package.

In comparison to controls not associated with a disease, condition, or tobacco-related behavior, both

models were used to estimate epigenetic age in cigarette smokers, moist snuff users, Parkinson’s disease

patients, and Down syndrome subjects. Since models were trained on the controls, we used the values pre-

dicted when each control sample was held out during 10-fold cross validation to avoid predicting on

trained data. The Dage for each individual was calculated (epigenetic age – chronological age) and the

values for each of the listed groups were compared to those in the control subset using a Wilcoxon

rank-sum test to measure significance. Significance was defined as a Wilcoxon p value less than 0.05.

As described above, we used the reference based EpiDISH (Zheng et al., 2019) package (v2.6.1) for esti-

mating cell type proportions. Instead of including cell type proportions as separate features for model

training, we explored the effect of adjusting the beta values a priori. For this analysis, we adjusted the

methylation beta values of the matrix based on the predicted cell type proportions of epithelial cells, neu-

trophils, and combined immune subsets. To accomplish this, the original beta values were first modeled

as a linear model of cell type compositions and then the betas were replaced with the mean plus the re-

siduals. Adjusted beta values were then translated into M values for downstream analysis, as described

above. We continued to train an unbiased model on the 431 individuals not associated with a specific

disease, condition, or tobacco-related behavior in the combined dataset using the top 10,000 CpGs

most correlated with age and did not include cell type fractions for each sample as training input. We

trained a separate LM model on the 431 control samples that did not include cell type fractions for

each sample as training inputs.
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