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�
 ABSTRACT 

Purpose: Although radiotherapy (RT) is one of the primary 
treatment modalities used in the treatment of cancer, patients 
often experience toxicity during or after treatment. RT-induced 
genitourinary (GU) toxicity is a significant survivorship chal-
lenge for patients with prostate cancer, but identifying those at 
risk has been challenging. Herein, we attempt (i) to validate a 
previously identified biomarker of late RT-induced GU toxic-
ity, PROSTOX, consisting primarily of miRNA-based germline 
biomarkers (mirSNPs), and (ii) investigate the possibility 
of temporally and genetically defining other forms of RT- 
associated GU toxicity. 

Experimental Design: We included 148 patients enrolled in 
Magnetic Resonance Imaging-Guided Stereotactic Body Radio-
therapy for Prostate Cancer (MIRAGE; NCT 04384770), a trial 
comparing MRI- versus CT-guided prostate stereotactic body RT. 
Linear regression was used to evaluate the association between 

PROSTOX score and late GU grade toxicity. Machine learning 
approaches were used to develop predictive models for acute 
toxicity and chronic GU toxicity, and the accuracy of all models 
was assessed using AUC metrics. A comparative Gene Ontology 
analysis was performed. 

Results: PROSTOX accurately predicts late GU toxicity, 
achieving an AUC of 0.76, and demonstrates strong correlation 
with GU toxicity grade (p-1.2E�9). mirSNP-based signatures can 
distinguish acute RT-associated GU toxicity and chronic RT-as-
sociated GU toxicity (AUCs of 0.770 and 0.763, respectively). 
Finally, Gene Ontology analysis identifies unique pathways in-
volved in each form of GU toxicity: acute, chronic, and late. 

Conclusions: These findings provide strong evidence for the 
continued application of mirSNPs to predict toxicity to RT and 
act as a path for the continued personalization of RT with im-
proved patient outcomes. 

Introduction 
Radiotherapy (RT) is a treatment that has been used for over a 

century (1) in the management of all cancers, including prostate 
cancer, and has been dramatically transformed and improved 
through the application of advanced technologies (2). Along with an 
appreciation of the high sensitivity of prostate cancer to larger RT 
doses per fraction, these technological advances have led to the 
introduction of stereotactic body RT (SBRT), which allows the de-
livery of radiation in as few as five fractions instead of the prior 
standard course of radiation of 8 to 9 weeks [referred to as con-
ventionally fractionated RT (CFRT)]. SBRT is now considered a 
standard-of-care option for localized prostate cancer with non-
inferior outcomes (3–5). 

Unfortunately, RT-associated long-lasting toxicity continues to 
be a problem for patients, including even those treated with the 
most advanced treatment delivery methods (6, 7). The significance 

of long-lasting toxicity is especially problematic for patients with 
prostate cancer, given their excellent prognosis and the high inci-
dence of the disease (8). The most frequent toxicity experienced by 
patients with prostate cancer is genitourinary (GU) toxicity, which 
includes symptoms such as urinary frequency, urgency, retention, 
dysuria, hematuria, and a weak urinary stream (9). Currently, two 
“types” of RT-associated toxicity are clinically reported, acute tox-
icity, toxicity that occurs during or within 3 months after treatment, 
and late toxicity, toxicity that presents 6 months or later after 
treatment. However, there is an additional form of RT-induced 
toxicity that, although not separately clinically reported, is recog-
nized, which is referred to as consequential or chronic toxicity (3, 
10). Chronic toxicity is experienced when acute toxicity does not 
resolve and may explain the previously identified association be-
tween acute and late toxicity (10). Currently, although it is unknown 
if patients who develop chronic toxicity differ from those who de-
velop acute-only or late toxicity, these patients are counted in both 
groups owing to the early presentation and slow resolution of this 
form of toxicity. 

Although the original studies of RT-induced toxicity centered 
around countermeasures to manage risks of lethal large whole- 
body doses of RT (11), current work has focused on RT-induced 
toxicity experienced by patients treated with curative intent RT. 
Some toxicity can be attributed to clinical factors (12) and dose to 
organs at risk, such as the bladder in the case of prostate cancer 
(13, 14). However, even as more precise targeting and improved 
dosimetry to organs at risk is realized through advancements in 
technology, toxicity remains, suggesting that some degree of tox-
icity is due to inherent patient-specific radiosensitivity. Attempts 
to identify patient-specific RT toxicity biomarkers have interro-
gated the germline DNA (15–18). Most recently, germline variants 
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based on disruption of miRNAs and their regulatory regions (re-
ferred to as mirSNPs) have been shown to be powerful predictors 
of both response and toxicity to RT (19–21). mirSNPs were re-
cently applied to patients with prostate cancer to identify those at 
increased risk of significant late grade ≥2 GU toxicity after SBRT 
versus CFRT (22, 23). These studies found distinct genetic sig-
natures predicting significant late GU toxicity for patients treated 
with SBRT versus those treated with CFRT (22), findings sup-
ported by prior work showing unique biological and genetic re-
sponses based of radiation fraction sizes (24). These original 
studies led to the development of the PROSTOX biomarker, which 
dichotomizes patients into those at low risk of SBRT-induced late 
grade ≥2 GU toxicity versus those at high risk, with those at high 
risk having an approximate 12-fold increased risk (22). 

Here, our purpose was to independently validate PROSTOX as a 
predictor of SBRT-induced late significant GU toxicity in a pro-
spective technologically driven trial, enabling consideration of 
carefully detailed patients’ clinical and dosimetric characteristics as 
well as the evaluation of PROSTOX with GU toxicity grade. We also 
investigated the possibility of temporally and genetically defining 
chronic GU toxicity as a separate entity from acute-only and late 
toxicity using mirSNPs in conjunction with clinical and dosimetric 
factors. 

Materials and Methods 
MIRAGE 

The phase III Magnetic Resonance Imaging-Guided Stereotactic 
Body Radiotherapy for Prostate Cancer (MIRAGE; NCT 04384770) 
trial evaluated whether aggressive planning target volume margin 
reduction enabled by MRI-guided prostate SBRT would reduce 
toxicity when compared with standard-of-care CT-guided prostate 
SBRT (6). All patients received 40 Gy in five fractions prescribed to 
the prostate and proximal seminal vesicles, with either a 2 mm (MRI 
arm) or 4 mm (CT arm) expansion. Hormonal therapy and elective 
nodal RT using simultaneously integrated boost were used at the 
discretion of the physician, and patients were stratified based on the 

baseline International Prostate Symptom Score (IPSS) and prostate 
gland volume. Dosimetric endpoints were collected including 
Bladder D0.035cc, Bladder V39Gy, Bladder V20Gy, Bladder V40Gy, 
Urethra Max, and Urethra D0.03cc. The primary endpoint was the 
incidence of acute grade ≥2 GU toxicity by Common Terminology 
Criteria for Adverse Events (CTCAE) version 4.03 criteria within 
the first 90 days after SBRT, which has been reported. The findings 
of this analysis were that MRI-delivered SBRT is associated with less 
acute grade ≥2 GU toxicity (7). In total, 156 patients were ran-
domized, and samples from 148 of these participants were available 
and evaluated at the 2-year follow-up point for this study. Basic 
patient demographics from those included in this study are reported 
in Supplementary Table S1. This study followed the Declaration of 
Helsinki ethical guidelines, written informed consent was obtained 
from each subject or their guardian on the study, and the study was 
approved by the UCLA Human Investigation Committee and In-
stitutional Review Board. 

Toxicity scoring 
In the trial, physician-reported toxicity was evaluated using 

CTCAE version 4.03 for both acute and late adverse events and 
included grading for both GU and gastrointestinal toxicities. The 
scoring assessed the severity of symptoms and their impact on the 
patient’s daily life, providing a standardized method to compare 
outcomes between the MRI-guided and CT-guided treatment arms. 
Patients were evaluated at baseline, 1 and 3 months after SBRT, 
every additional 3 months for the first year after treatment, and then 
every 6 months through 24 months after SBRT (at the time of a 
prespecified secondary endpoint analysis). Per the study, as is 
standard, acute toxicity was defined as grade ≥2 toxicity that oc-
curred within the first 3 months after treatment, and late toxicity as 
any grade ≥2 that was present after 3 months or later after treat-
ment. There was no distinction between acute toxicity that resolved 
and that which did not (chronic toxicity), nor was chronic toxicity 
separated from late toxicity in the trial. 

For the purpose of this analysis, a patient was defined as having 
chronic GU toxicity if they still had the same grade ≥2 GU tox-
icity that they had acutely 6 months or later after SBRT. Here, we 
refer to patients with resolving acute GU toxicity as having 
“acute-only” toxicity, and those experiencing unresolving acute 
GU toxicity as having “chronic toxicity.” We define late GU 
toxicity as grade ≥2 toxicity that occurred 3 to 6 months or later 
after treatment, without the occurrence of the same acute 
grade ≥2 GU toxicity. Therefore, if patients had acute GU toxicity 
that resolved, but then a unique, second GU toxicity presented at 
a later timepoint, they were considered to have late GU toxicity in 
addition to acute GU toxicity, instead of chronic GU toxicity. It 
was also noted if patients had grade ¼ 2 GU toxicity owing only 
to α-adrenergic antagonist prescription (or increased dose of a 
preexisting prescription). Physician scored GU toxicity is re-
ported in Supplementary Table S2. 

DNA biomarker panel evaluation and testing 
DNA was isolated from cheek swab samples using standard DNA 

extraction methods (22). Blinded samples had PROSTOX testing 
performed at MiraDx, per standard operating procedures. Mas-
sARRAY genotyping investigating >110 primarily mirSNPs and 
noncoding variants as previously defined and evaluated (25) was 
performed on DNA from all samples to further investigate signa-
tures of acute only toxicity and chronic GU toxicity. A small 
number (<15%) of SNPs in the larger exploratory panel were coding 

Translational Relevance 
Toxicity following radiotherapy (RT) remains a major con-

sideration for patients with cancer and physicians contemplating 
choice of treatment. In a previous study, we identified a bio-
marker, PROSTOX, based primarily on germline variants dis-
rupting miRNAs and their regulatory regions (referred to as 
mirSNPs), which dichotomized patients with prostate cancer 
into low versus high risk of stereotactic body RT–induced late 
grade ≥2 genitourinary toxicity, with those at high risk having an 
approximate 12-fold increased risk. In this study, we prospec-
tively validate PROSTOX and show that clinical and dosimetric 
factors do not enhance this genetic biomarker. Additionally, we 
demonstrate the clear existence of three separate temporal RT- 
induced genitourinary toxicity profiles—acute only, chronic, and 
late—which are also defined based on mirSNP-derived signa-
tures. These results support that mirSNP-based biomarkers can 
enable appropriate counseling of patients about different types 
of toxicity risks prior to RT, truly personalizing radiation by 
determining the safest treatment choice for each patient. 
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sequence variants, which were previously identified as potentially 
important in radiation toxicity. 

GU toxicity trend cluster analysis 
To attempt to visualize inherent groupings within the dataset 

based on the trajectories of GU toxicity over time, we employed 
k-means clustering, using toxicity grade trajectories reported at 
3 through 24 months for each patient. Missing GU toxicity grades 
were imputed with the mean grade at the corresponding timepoint 
across all patients with at least three timepoints available. Prior to 
clustering, the toxicity data were normalized. The optimal number 
of clusters was determined by utilizing the elbow method for the 
within-cluster sum of squares and identified the most significant 
change in slope. This analysis suggested a five-cluster solution. 
Following clustering, the average GU toxicity grade for each cluster 
at each timepoint was computed. These averages were plotted to 
visualize and interpret the temporal trajectories of GU toxicity 
across the identified clusters, and two clusters with patients who did 
not experience GU toxicity grade ≥2 were combined. 

PROSTOX validation 
To evaluate PROSTOX’s performance in predicting assessed late 

GU grade ≥2 toxicity, the PROSTOX signature was applied to the 
relevant mirSNPs in R (RRID: SCR_001905), and values above or 
equal to 0.5 were classified as high risk (predicted to have late GU 
toxicity), and those with values below 0.5 were considered low risk 
(predicted to not have late GU toxicity). Model performance was 
assessed using sensitivity, specificity, positive predictive value 
(PPV), negative predictive value, F1 score, and AUC. The treatment 
arm, α-adrenergic prescription/dose increase as only grade 2 GU 
toxicity, and pelvic lymph node treatment with simultaneously in-
tegrated boost was also evaluated. 

Logistic regression was used to assess if other nonbinary clinical 
variables, including the baseline IPSS, prostate gland volume, use of 
rectal spacer, as well as whether collected dosimetry factors provided 
additional information for predicting late GU toxicity beyond that 
offered by the PROSTOX genetic model. Each measure was ana-
lyzed in a separate model, and we used the traditional P value 
threshold of 0.05 to determine if other variables provided substantial 
contributions to the prediction of late GU toxicity beyond that of 
our current genetic PROSTOX biomarker. 

Linear regression was used to assess if the PROSTOX probability 
of late GU toxicity was predictive of GU toxicity grade overall and 
within treatment arm for patients with no GU toxicity, acute, or late 
GU toxicity. A Fisher exact test was used to examine whether the 
PROSTOX signature was predictive of acute or chronic GU toxicity 
from SBRT. 

Prefiltering SNPs to evaluate models of acute-only toxicity 
and chronic GU toxicity 

To develop models to predict grade ≥2 acute-only or chronic GU 
toxicity, we analyzed outcomes based on the physician scored GU 
toxicity, which separated people into one of four categories: no 
toxicity, acute-only toxicity, chronic toxicity, and late toxicity 
(Supplementary Table S2). To eliminate genetic bias in the devel-
opment of the model predicting acute-only GU toxicity, we ex-
cluded nine individuals who experienced both acute and late GU 
toxicity. 

SNPs were included as potential covariates via sure independent 
screening (26) to evaluate if they were marginally associated with 
the outcome of interest (either acute-only or chronic GU toxicity) 

via the Fisher exact test (27) or Jonckheere–Terpstra test (28) at a P 
value threshold of <0.2 (exact P values computed via the Monte 
Carlo method). In the acute-only GU toxicity model, 16 of 111 SNPs 
were marginally associated to acute toxicity. In the chronic GU 
toxicity model, 25 of 111 SNPs were marginally associated to 
chronic toxicity. The proportions of GU toxicity by SNP category 
for these filtered SNPs are provided in Supplementary Table S3. The 
choice of the liberal P value threshold is for reducing dimensionality 
not for associative means. For each SNP genotype, the 0, 1, or 
2 count refers to the number of alternative alleles compared with the 
reference genome. 

Developing genetic signatures of acute-only toxicity and 
chronic GU toxicity 

Each prefiltered SNP was coded to obtain up to four possible 
values: 0, 1, 2, or missing. We fit elastic net (EN; ref. 29), random 
forest (RF; ref. 30), and boosted tree (BT; RRID: SCR_017301; ref. 
31) models to predict toxicity. To minimize sensitivity to imbalances 
between groups, we used up-sampling to balance the classes (e.g., 
GU toxicity or not). This process resamples the dataset to include 
more cases from the minority class while training a predictive 
model. 

Maximizing AUC was used as the training metric for EN and RF 
models, and minimizing deviance was used for BT models. The 
optimal λ for EN models were chosen using fivefold cross- 
validation. For BT models, we used the 0.6 bagging fraction with 
the Bernoulli distribution. Predicted values above 0.5 were classified 
as toxicity and equal or below 0.5 as no toxicity. Model performance 
was assessed using nested leave-one-out cross-validation (LOOCV) 
sensitivity, specificity, PPV, negative predictive value, F1 score, and 
AUC. The model with the highest AUC (between all EN, RF, and 
BT) was chosen for our signature. 

Variable importance was calculated as a relative influence com-
pared with the other variables in the model. We calculated the 
relative influence using a filtering approach, namely, as the relative 
change in AUC obtained by dropping one variable at a time and 
comparing to the AUC of the full model. We converted these 
metrics to a relative scale by dividing the change in AUC by the total 
change in AUC from all variables. 

To understand if there was a contribution of dosimetry planning 
on the incidence and severity of various GU toxicity outcomes, we 
employed Kruskal–Wallis and Student t tests to assess differences in 
six dosimetric measures between individuals who did and did not 
develop late, acute, or chronic GU toxicity. Subsequently, we ex-
amined the correlation between dosimetric measures and the se-
verity of late GU toxicity grades. Finally, to evaluate the relationship 
between PROSTOX scores and baseline clinical factors, we con-
ducted a correlation analysis using Pearson correlation between the 
PROSTOX numeric score and pretreatment clinical variables. 

Gene Ontology analysis 
Gene Ontology (GO) analysis (32) was performed to assess bio-

logical pathways that are different between acute-only, chronic, and 
late GU toxicity signatures. We set the genomic background to the 
whole genome as this approach was chosen to mitigate the limita-
tions of our SNP panel, which is relatively small (<200) as they were 
curated based on their hypothesized relevance to cancer outcomes 
and represent only a fraction of genomic variation. By utilizing the 
whole genomic background, our analysis was not confined to these 
preselected variants, thereby allowing us to explore broader bio-
logical pathways and possibly uncover additional relevant genes and 
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processes beyond those initially targeted. To understand biological 
differences between PROSTOX and preliminary acute-only and 
chronic GU toxicity signatures, a comparative GO analysis for genes 
included in the three unique GU toxicity signatures using the uni-
versal genomic background at an adjusted P value threshold of 
0.05 was performed. All analyses were conducted in R (RRID: 
SCR_001905) using biomaRt and clusterProfiler packages. 

Data availability 
The raw data generated in this study are available upon reason-

able request to the corresponding author. Synthetic data generation 
and sample code are included in a self-contained Code Ocean 
compute capsule (https://codeocean.com/capsule/0639380/tree/v1). 

Results 
Time trend and clustering to visualize temporal patterns of GU 
toxicity 

We performed a clustering analysis to attempt to better visualize 
the patterns of different forms of RT-associated GU toxicity. The 
clustering analysis identified five distinct clusters of temporal GU 
toxicity: no toxicity (n ¼ 46), mild toxicity (≤ grade 1, n ¼ 38), acute 
grade ≥2 toxicity (n ¼ 22), chronic grade ≥2 toxicity (acute 
grade ≥2 toxicity not resolving by 6 months, n ¼ 18), and late 
grade ≥2 toxicity (on average, toxicity arising around 1 year, n ¼ 24; 
Supplementary Fig. S1). Given our interest in grade ≥2 GU toxicity 
specifically, we condensed this into four GU toxicity groups: no 
significant toxicity, acute toxicity, chronic toxicity, and late toxicity 
(Fig. 1). 

Interestingly, we found that the 6-month posttreatment mark 
emerged as a pivotal timepoint in separating patients who had 
acute-only GU toxicity from those who had chronic GU toxicity. As 
expected, late GU toxicity seemed to have a unique temporal pattern 
that distinguished it from acute-only or chronic GU toxicity. This is 
the first visualization based on a clustering analysis of these unique 
forms of GU toxicity. These cluster labels also aligned well with the 
a priori toxicity classifications assigned to patients for this study 
(none, acute only, late, or chronic) as shown in Supplementary 
Table S4. Cohen’s κ is 0.669, which is considered substantial 
agreement between the two methods. We therefore used the clinical 
classifications for PROSTOX validation of late GU toxicity and 
further evaluation of acute-only toxicity and chronic GU toxicity. 

Validation of PROSTOX in MIRAGE and association with grade 
of GU toxicity 

We next evaluated the ability of PROSTOX to predict late 
grade ≥2 GU toxicity in the MIRAGE trial as a whole as well as 
across treatment arms (CT or MRI). PROSTOX had strong per-
formance predicting late grade ≥2 GU toxicity with an AUC of 
0.762 overall, and similar AUCs across the treatment arms (0.762 in 
the MRI and 0.761 in the CT-treated groups). Compared with the 
original training LOOCV metrics, validation in the MIRAGE cohort 
resulted in similar but slightly higher specificity (0.948 vs. 0.924) 
and lower overall sensitivity (0.576 vs. 0.714, Table 1). Excluding 
patients who only had a grade ≥2 GU toxicity by virtue of adren-
ergic antagonist prescription only or increases in bladder dose 
resulting from pelvic lymph node field inclusion, yielded qualita-
tively similar results. In addition, PROSTOX performed well in 
people with or without androgen deprivation therapy (ADT) usage, 
although it had a slightly better performance in people without ADT 
usage (PPV ¼ 1.0 vs. 0.727, Supplementary Table S5). 

We also evaluated the association of the numeric output from 
PROSTOX (as opposed to the binary cutoff value, which indicates 
toxicity or not) with GU toxicity in each treatment arm. We ex-
plored the numeric output predictive power using ROC curves and 
found that the AUC of PROSTOX was 0.83 in the MRI group and 
0.71 in the CT-treated group (Fig. 2A). These findings further in-
dicate that PROSTOX can accurately predict grade ≥2 late GU 
toxicity for both of these SBRT delivery techniques, and if anything, 
trended to be better for the MRI-treated group. 

We next used regression analysis to evaluate if the numeric 
output of PROSTOX was correlated with the grade of late GU 
toxicity that patients experienced, which ranged from 0 to 3 in this 
cohort. We evaluated the distribution of PROSTOX values by 
treatment arm, including all patients with no toxicity, acute-only 
toxicity, or late toxicity. We found that a higher PROSTOX score 
was predictive of higher GU toxicity grade using linear regression. 
This was true overall (linear regression P ¼ 1.2 � 10�9), in the MRI- 
treated patients (1.7 � 10�7), and in the CT-treated patients 
(P ¼ 0.001; Fig. 2B; Supplementary Table S6). 

Impact of dosimetric and clinical variables on PROSTOX 
Next, we evaluated the association between late GU toxicity (both 

incidence and severity) and clinical and dosimetric measures, which 
included various bladder and urethra dosages and volumes. We found 
no significant association between any dosimetric measures and late 
toxicity risk, but the baseline IPSS was positively correlated with late 
GU grade, as expected (Supplementary Table S7). In addition, logistic 
regression models demonstrated the dominance of PROSTOX in 
predicting late GU toxicity events. After including PROSTOX, no 
other clinical or dosimetric factors had a significant association with 
toxicity themselves (Fig. 3A) nor improved prediction of late GU 
toxicity over PROSTOX alone (Supplementary Table S8A; Fig. 3B). 

In addition, correlation analysis between PROSTOX scores and 
clinical variables reveal no relationships between them, indicating 
that PROSTOX is not predictive of clinical factors that may influ-
ence GU toxicity. For example, we found a weak, nonsignificant 
association between PROSTOX scores and baseline IPSS 
(r ¼ �0.095; P ¼ 0.25), indicating that PROSTOX predictions are 
not influenced by baseline urinary symptoms. No other clinical 
variables demonstrated significant correlations with PROSTOX 
(Supplementary Table S8B). 
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Figure 1. 
Average GU toxicity trajectories after SBRT treatment in four grouped clus-
ters. Four groups were made by combining two of the identified clusters. 
These four categories represent the average GU toxicity grade at each time-
point for people in those groups. There were 24 people in late, 18 in chronic, 
22 in acute, and 84 without toxicity. 
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Genetically modeling acute-only versus chronic GU toxicity 
We next tested if we could create signatures that could distin-

guish patients with significant acute-only versus chronic GU tox-
icity. We first evaluated the association between acute-only or 
chronic GU toxicity (incidence) and clinical and dosimetric mea-
sures. We found no significant association between any dosimetric 
or clinical measures and acute-only GU toxicity but found that a 
higher urethra D0.035cc, higher IPSS, and no spacer use were 
positively correlated with chronic GU toxicity risk (Supplementary 
Table S9). We then developed predictive combined models with 
mirSNPs and clinical and dosimetric variables and compared them 
with models that used clinical and dosimetric variables only. 

The constructed acute-only GU toxicity model had an LOOCV 
AUC of 0.770 versus an AUC of 0.624 for the clinical- and 
dosimetric-only model (Table 2), indicating that germline genetics 
are strong predictors of acute GU toxicity. The most important 
genetics for the acute-only model were three SNPs in MSH2, P2RX7, 
and TGFB1 (Supplementary Table S10), which improved the overall 
AUC by 0.03 to 0.04 points each and correspond to a relative in-
fluence of at least 10%. 

The constructed chronic GU toxicity model achieved an LOOCV 
AUC of 0.763 versus an AUC of 0.654 for the clinical- and 
dosimetric-only model (Table 2). Notably, the most influential 
predictors of chronic GU toxicity included both clinical factors, 
such as spacer use and the baseline IPSS, and SNPs in BMP2 and 
IL1A. Each of these variables had at least 10% relative influence 
(Supplementary Table S10). This enhancement over clinical- and 

dosimetric-only models underscores the role of combining genetic 
factors with clinical parameters to identify predispositions in the 
case of chronic GU toxicity. 

PROSTOX and acute-only or chronic GU toxicity 
To assess whether the validated PROSTOX biomarker of late GU 

toxicity was predictive of other toxicity endpoints, we evaluated its 
performance in predicting acute-only or chronic GU toxicity. We 
found that PROSTOX did not predict the occurrence of acute-only 
or chronic GU toxicity (Supplementary Table S11A). This was 
further evidenced by area under the ROC curve values, which 
remained under the nondiscriminatory threshold of 0.5 for chronic 
and acute-only GU toxicity (Supplementary Table S11B). This 
finding supports the unique genetic underpinnings of these three 
forms of RT-associated GU toxicity. 

Comparative GO among acute-only, chronic, and late GU 
toxicity models 

We analyzed the GO enrichment pathways associated with our 
acute-only, chronic, and PROSTOX late GU toxicity signatures, 
comparing all against a universal genomic background. The GO 
analysis for acute-only GU toxicity found associations with DNA 
and RNA regulation, nucleocytoplasmic transport, and cell-cycle 
regulation. Chronic GU toxicity was enriched in apoptosis and cell- 
cycle regulation. In contrast, the PROSTOX late toxicity signature 
primarily involved immune-cell activation and cytokine production, 

Table 1. PROSTOX late GU toxicity signature performance metrics in MIRAGE. 

Data N Num Tox Sensitivity Specificity PPV NPV F1 AUC 

MIRAGE overall 148 33 0.576 0.948 0.760 0.886 0.655 0.762 
MIRAGE MRI 76 14 0.571 0.952 0.727 0.908 0.640 0.762 
MIRAGE CT 72 19 0.579 0.943 0.786 0.862 0.667 0.761 
Original signature 93 14 0.714 0.924 0.625 0.948 0.667 0.819 

Abbreviation: NPV, negative predictive value; Num Tox, number of people with toxicity. 
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Figure 2. 
Validating PROSTOX for predicting late GU toxicity and grade in MIRAGE. A, ROC plot displaying PROSTOX accuracy in MRI and CT arms. This displays numeric 
output from PROSTOX, not its binary classification. The numeric AUCs are 0.83 and 0.71 for MRI and CT, respectively, which differ from the binary AUC presented 
in Table 1. B, Boxplot illustrating the relationship between PROSTOX scores and late GU toxicity grades stratified by treatment arm. PROSTOX scores are 
significantly associated with late GU toxicity grade overall (P ¼ 1.2 � 10�9), within the MRI arm (P ¼ 1.7 � 10�7), and within the CT arm (P ¼ 0.001) based on 
linear regression. 
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highlighting significant immune system dysregulation (Supple-
mentary Table S12; Fig. 4). 

Discussion 
In this study, we validated the PROSTOX biomarker as a pre-

dictor of late significant (grade ≥2) GU toxicity in patients treated 
with SBRT in a clinical trial comparing MRI- versus CT-guided 
SBRT. Although our analysis was neither of the trial nor meant to 
compare the technologies themselves, our findings do indicate that 
PROSTOX predicts late GU toxicity with either treatment modality. 
We also found that PROSTOX was not improved by the addition of 
clinical or dosimetric measures, supporting that PROSTOX is not 
simply reflecting preexisting clinical conditions but instead is likely 
capturing independent genetic risk factors for late GU toxicity. We 
also found that the PROSTOX score is correlated with toxicity 
grade, with a higher score being associated with higher GU toxicity 
grade. Although it should be acknowledged that the sensitivity of 
PROSTOX was lower in this study than in the original cohort, this 
could be explained by the use of a different toxicity scoring systems 
(CTCAE vs. Radiation Therapy Oncology Group, RTOG) as well as 
inclusion of pelvic lymph nodes and ADT in this validation study. 
Finally, we were able to temporally and genetically trisect RT- 
associated toxicity into acute-only, chronic, and late GU toxicity for 
the first time. Here, we found that acute-only toxicity and chronic 

GU toxicity have unique mirSNP-based genetic signatures, and all 
three forms of toxicity have gene pathway alterations based on GO 
analyses that differentiate them from each other. 

Our GO results identified important differences in the biological 
processes involved in the unique forms of GU toxicity. In acute-only 
GU toxicity, the involvement of processes like primary miRNA 
processing, mitotic DNA damage checkpoint signaling, and regu-
lation of nucleocytoplasmic transport indicates significant changes 
in cellular state and gene regulation. These processes are likely 
critical for responding to the acute stress of radiation and correcting 
DNA damage, ensuring genomic stability and managing cellular 
response to immediate stress (33–35). The involvement of nuclear 
transport pathways suggests disruptions in the regulated exchange 
of molecules between the nucleus and cytoplasm, and dysregulation 
of these processes may compromise genomic stability and hinder 
timely DNA repair, contributing to the development of acute GU 
toxicity. In contrast, chronic GU toxicity was enriched in pathways 
focused on apoptosis and cell-cycle regulation, which highlight the 
balance between cell survival and programmed death following 
SBRT. Both processes point to tissues attempting to modify cell- 
cycle progression, and dysregulation or genetic factors may lead to 
unresolving toxicity. Finally, in our PROSTOX late GU toxicity 
signature, we found enrichment of immune-cell proliferation and 
cytokine production, highlighting significant immune system dys-
regulation with possible roles in late fibrosis (36). The enrichment of 

Table 2. Acute-only and chronic GU toxicity models’ LOOCV performance. 

GU toxicity outcome Variable Sensitivity Specificity PPV NPV F1 AUC 

Acute only SNPs + clinical + dosimetric 0.650 0.891 0.500 0.938 0.565 0.770 
Clinical + dosimetric only 0.450 0.798 0.281 0.892 0.346 0.624 

Chronic SNPs + clinical + dosimetric 0.636 0.889 0.500 0.933 0.560 0.763 
Clinical + dosimetric only 0.567 0.741 0.370 0.865 0.447 0.654 

Abbreviation: NPV, negative predictive value. 
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Figure 3. 
PROSTOX is predictive of late GU toxicity without benefit from clinical or dosimetric variables. A, Forest plot of ORs from logistic regression models evaluating 
individual clinical and dosimetric factors as predictors of late grade 2+ GU toxicity. Each row represents a model with a single clinical or dosimetric covariate. No 
factor alone was significantly predictive of late GU toxicity. Error bars represent 95% confidence intervals. B, Forest plot of ORs from logistic regression models 
including PROSTOX and one clinical or dosimetric factor as covariates for predicting late grade 2+ GU toxicity. PROSTOX remains a strong predictor of toxicity 
across all models, whereas clinical or dosimetric factors do not significantly contribute after adjusting for PROSTOX. Error bars represent 95% confidence 
intervals. OAR, organs at risk. 
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these processes suggests that late GU toxicity may be driven by the 
activation and differentiation of T cells, contributing to inflamma-
tion and tissue damage after radiation, as previously hypothesized 
(37–39). The negative regulation of the MAPK cascade, a key sig-
naling pathway involved in cellular responses to stress and inflam-
mation (33), suggests that MAPK signaling, known to be critical in 
RT damage (40), may also contribute to the persistence of toxic 
effects in tissues exposed to radiation. Although the use of a uni-
versal genomic background in our GO analysis was intended to 
mitigate bias introduced by the curated SNP panel, we acknowledge 
that the initial selection of SNPs focused on cancer-related processes 
may still influence the enrichment of certain biological pathways. 
This preselection bias may overrepresent pathways already impli-
cated in oncologic outcomes, and, thus, our GO analysis findings 
should be interpreted as exploratory and will require further vali-
dation in broader, unbiased genomic datasets. 

Other limitations of our study include a small sample size, 
preventing conclusions on the true impact of technology on these 
unique forms of toxicity. In addition, in this study, we newly 
defined and modeled chronic RT-induced toxicity, which is not 
currently separately reported in clinical trials or in the MIRAGE 
trial, making a direct comparison of our results with reported 
results of reduced toxicity with MRI treatment not possible. We 
acknowledge that thoughtful evaluation will need to be done to 
best characterize chronic toxicity moving forward. Although we 
are not proposing that current clinical toxicity scoring be 
revamped to separately identify chronic toxicity, we believe that 
our findings raise some important considerations about future 
toxicity analyses. First, because chronic GU toxicity seems to be a 
separate genetic entity from late GU toxicity, it should be recog-
nized when attempting to genetically identify those at increased 
risk of long-lasting RT toxicity. In addition, based on the impor-
tance of clinical and dosimetric measures in addition to genetics 
predicting chronic GU toxicity in this analysis, it may be that 

chronic toxicity is the form of radiation toxicity most reduced by 
advanced technological delivery. 

We acknowledge that numerous germline genetic studies have 
been performed to identify biomarkers of RT-associated toxicity in 
prostate cancer, including genome-wide association studies (GWAS; 
ref. 16). A GWAS investigating long-lasting low-grade urinary 
toxicity for patients with prostate cancer (17) that included more 
than 3,000 patients identified seven SNPs associated with long- 
lasting RT toxicity. Our study incorporated three of these variants, 
but our panel also captured many additional mirSNPs not found in 
current GWAS arrays, allowing expansion of the scope of genetic 
factors linked to RT toxicity. Interestingly, the most important 
GWAS SNP, which is also part of the PROSTOX biomarker panel, 
disrupts a noncoding RNA (41), further highlighting the importance 
and relevance of evolving genetic arrays to capture functional 
noncoding elements (42–44). Other important differences between 
our study and GWASs, beyond our separation of late GU toxicity as 
a unique entity from chronic toxicity, include the following: our 
studies exclusively included modern SBRT techniques versus varied 
treatment approaches, based on our prior evidence for unique ge-
netic signatures of toxicity based on fractionation (22); and we have 
applied advanced statistical methods, like EN and BT methods, to 
address the complexities of SNP interdependencies, leading to su-
perior model performance with an AUC of 0.76, far exceeding the 
modest discrimination achieved by previous GWAS models, with a 
top C statistic of 0.621 (18). 

Our findings indicate that to continue to decrease significant RT- 
induced long-lasting GU toxicity in patients with prostate cancer, 
both genetic identification of those at risk in conjunction with 
continued technological development is necessary. PROSTOX is 
validated here to identify patients at genetic risk of late significant 
GU toxicity, affording them the opportunity to choose alternative, 
safer treatment approaches, of which there are several options, in-
cluding CFRT (as described in our prior study; ref. 22). However, 
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PROSTOX does not identify patients at risk of chronic GU toxicity, 
which may be potentially decreased through the application of ad-
vanced technology. As both late toxicity and chronic GU toxicity 
significantly affect a patient’s quality of life (45) and pose a significant 
financial burden to the medical system as a whole (46, 47), the im-
portance of reducing both of these forms of toxicity is most pressing. 

Our findings represent critical steps toward meaningfully iden-
tifying patients as genetically radiosensitive, which will enable ap-
propriate treatment selection for the best outcomes. Ongoing work 
continues to validate mirSNP-based panels as toxicity and outcome 
predictors in other cancer types treated with radiation, as well as 
across other cancer therapies. Finally, with further validation of our 
GO findings, this study provides a foundation for future work to 
explore potential targeted and precision-based therapeutic inter-
ventions to prevent late RT-associated GU toxicity, with the ulti-
mate goal to improve patient outcomes and quality of life. 

Authors’ Disclosures 
A.U. Kishan reports grants from the University of California Cancer Research 

Coordinating Committee, Department of Defense, and NIH during the conduct of 
the study, as well as grants and personal fees from Varian Medical Systems, Inc., 
Janssen, and Lantheus, personal fees from Boston Scientific and Novartis, and 
grants from POINT Biopharma and ArteraAI outside the submitted work. M. Cao 
reports personal fees from Varian outside the submitted work. J.B. Weidhaas 
reports grants from the NIH and nonfinancial support from MiraDx during the 
conduct of the study; other support from MiraDx outside the submitted work; 

a patent for miRNA mutations at Yale University licensed to MiraDx; and being a 
co-founder of MiraDx, which has developed the PROSTOX test. No disclosures 
were reported by the other authors. 

Authors’ Contributions 
A.U. Kishan: Conceptualization, formal analysis, methodology, writing– 

original draft, writing–review and editing. K. McGreevy: Formal analysis, meth-
odology, writing–original draft, writing–review and editing. L. Valle: Data cura-
tion, writing–review and editing. M. Steinberg: Conceptualization, data curation, 
writing–review and editing. B. Neilsen: Data curation, writing–review and editing. 
M. Casado: Data curation, writing–review and editing. M. Cao: Data curation, 
writing–review and editing. D. Telesca: Methodology, writing–review and editing. 
J.B. Weidhaas: Conceptualization, data curation, formal analysis, funding acqui-
sition, validation, methodology, writing–original draft, writing–review and editing. 

Acknowledgments 
J.B. Weidhaas and D. Telesca are supported by a grant from the NCI, 

R01CA238998. J.B. Weidhaas, A.U. Kishan, and D. Telesca are supported by a 
grant from the NCI, R01CA292795. We acknowledge MiraDx for processing 
blinded samples without charge for PROSTOX testing. 

Note 
Supplementary data for this article are available at Clinical Cancer Research Online 
(http://clincancerres.aacrjournals.org/). 

Received November 24, 2024; revised February 7, 2025; accepted April 1, 2025; 
posted first April 3, 2025. 

References 
1. Karamanou M, Diamantis A, Vladimiros L, Androutsos G. The history of 

x-ray therapy. J Buon 2009;14:339–44. 
2. Pacelli R, Caroprese M, Palma G, Oliviero C, Clemente S, Cella L, et al. 

Technological evolution of radiation treatment: implications for clinical ap-
plications. Semin Oncol 2019;46:193–201. 

3. van As N, Tree A, Patel J, Ostler P, Van Der Voet H, Loblaw DA, et al. 5-year 
outcomes from PACE B: an international phase III randomized controlled trial 
comparing stereotactic body radiotherapy (SBRT) vs. conventionally frac-
tionated or moderately hypo fractionated external beam radiotherapy for lo-
calized prostate cancer. Prostate Cancer 2023;117:e2–3. 

4. Tree AC, Ostler P, van der Voet H, Chu W, Loblaw A, Ford D, et al. Intensity- 
modulated radiotherapy versus stereotactic body radiotherapy for prostate 
cancer (PACE-B): 2-year toxicity results from an open-label, randomised, 
phase 3, non-inferiority trial. Lancet Oncol 2022;23:1308–20. 

5. van As N, Griffin C, Tree A, Patel J, Ostler P, van der Voet H, et al. Phase 
3 trial of stereotactic body radiotherapy in localized prostate cancer. N Engl 
J Med 2024;391:1413–25. 

6. Ma TM, Lamb JM, Casado M, Wang X, Basehart TV, Yang Y, et al. Magnetic 
resonance imaging-guided stereotactic body radiotherapy for prostate cancer 
(mirage): a phase iii randomized trial. BMC Cancer 2021;21:538. 

7. Kishan AU, Ma TM, Lamb JM, Casado M, Wilhalme H, Low DA, et al. 
Magnetic resonance imaging-guided vs computed tomography-guided ste-
reotactic body radiotherapy for prostate cancer: the MIRAGE randomized 
clinical trial. JAMA Oncol 2023;9:365–73. 

8. Soerjomataram I, Lortet-Tieulent J, Parkin DM, Ferlay J, Mathers C, Forman 
D, et al. Global burden of cancer in 2008: a systematic analysis of disability- 
adjusted life-years in 12 world regions. Lancet 2012;380:1840–50. 

9. Pointreau Y, Kreps S, Hennequin C. [Side effects evaluation of ionizing ra-
diation]. Cancer Radiother 2010;14:246–9. 

10. Ratnakumaran R, Hinder V, Brand D, Staffurth J, Hall E, van As N, et al. The 
association between acute and late genitourinary and gastrointestinal toxic-
ities: an analysis of the PACE B study. Cancers (Basel) 2023;15:1288. 

11. Singh VK, Newman VL, Romaine PL, Wise SY, Seed TM. Radiation coun-
termeasure agents: an update (2011-2014). Expert Opin Ther Pat 2014;24: 
1229–55. 

12. Wang K, Mavroidis P, Royce TJ, Falchook AD, Collins SP, Sapareto S, et al. 
Prostate stereotactic body radiation therapy: an overview of toxicity and dose 
response. Int J Radiat Oncol Biol Phys 2021;110:237–48. 

13. Henderson DR, Murray JR, Gulliford SL, Tree AC, Harrington KJ, Van As NJ. 
An investigation of dosimetric correlates of acute toxicity in prostate stereo-
tactic body radiotherapy: dose to urinary trigone is associated with acute 
urinary toxicity. Clin Oncol 2018;30:539–47. 

14. Neilsen BK, Ma TM, Akingbemi WO, Neylon J, Casado MC, Sharma S, et al. 
Impact of interfractional bladder and trigone displacement and deformation 
on radiation exposure and subsequent acute genitourinary toxicity: a post hoc 
analysis of patients treated with magnetic resonance imaging-guided prostate 
stereotactic body radiation therapy in a phase 3 randomized trial. Int J Radiat 
Oncol Biol Phys 2024;118:986–97. 

15. Palumbo E, Piotto C, Calura E, Fasanaro E, Groff E, Busato F, et al. Individual 
radiosensitivity in oncological patients: linking adverse normal tissue reactions 
and genetic features. Front Oncol 2019;9:987. 

16. Barnett GC, Thompson D, Fachal L, Kerns S, Talbot C, Elliott RM, et al. A 
genome wide association study (GWAS) providing evidence of an association 
between common genetic variants and late radiotherapy toxicity. Radiother 
Oncol 2014;111:178–85. 

17. Kerns SL, Dorling L, Fachal L, Bentzen S, Pharoah PDP, Barnes DR, et al. 
Meta-analysis of genome wide association studies identifies genetic markers of 
late toxicity following radiotherapy for prostate cancer. EBioMedicine 2016;10: 
150–63. 

18. Kerns SL, Fachal L, Dorling L, Barnett GC, Baran A, Peterson DR, et al. 
Radiogenomics consortium genome-wide association study meta-analysis of 
late toxicity after prostate cancer radiotherapy. J Natl Cancer Inst 2020;112: 
179–90. 

19. Kalbasi A, Kamrava M, Chu F-I, Telesca D, Van Dams R, Yang Y, et al. A 
phase 2 trial of five-day neoadjuvant radiation therapy for patients with high- 
risk primary soft tissue sarcoma. Clin Cancer Res 2020;26:1829–36. 

20. Weidhaas JB, Harris J, Schaue D, Chen AM, Chin R, Axelrod R, et al. The 
KRAS-variant and cetuximab response in head and neck squamous cell cancer: 
a secondary analysis of a randomized clinical trial. JAMA Oncol 2017;3: 
483–91. 

21. Weidhaas JB, Hu C, Komaki R, Masters GA, Blumenschein GR, Chang JY, 
et al. The inherited KRAS-variant as a biomarker of cetuximab response in 
NSCLC. Cancer Res Commun 2023;3:2074–81. 

22. Kishan AU, Marco N, Schulz-Jaavall M-B, Steinberg ML, Tran PT, Juarez JE, 
et al. Germline variants disrupting microRNAs predict long-term genitourinary 
toxicity after prostate cancer radiation. Radiother Oncol 2022;167:226–32. 

AACRJournals.org Clin Cancer Res; 31(12) June 15, 2025 2537 

Germline miRNA-Based Biomarkers Predict Radiation Toxicity 

http://clincancerres.aacrjournals.org/
https://aacrjournals.org/


23. Kishan AU, Marco N, Ma TM, Steinberg ML, Sachdeva A, Cao M, et al. 
Application of a genetic signature of late GU toxicity in SCIMITAR, a post-op 
SBRT trial. Clin Transl Radiat Oncol 2023;39:100594. 

24. Paul S, Kleiman NJ, Amundson SA. Transcriptomic responses in mouse blood 
during the first week after in vivo gamma irradiation. Sci Rep 2019;9:18364. 

25. Chen X, Paranjape T, Stahlhut C, McVeigh T, Keane F, Nallur S, et al. Tar-
geted resequencing of the microRNAome and 3’UTRome reveals functional 
germline DNA variants with altered prevalence in epithelial ovarian cancer. 
Oncogene 2015;34:2125–37. 

26. Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature 
space. J R Stat Soc Ser B Statis Methodol 2008;70:849–911. 

27. Fisher R. Statistical methods for research workers. Edinburgh: Oliver and 
Boyd; 1932. 

28. Jonckheere AR. A distribution-free k-sample test against ordered alternatives. 
Biometrika 1954;41:133–45. 

29. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear 
models via coordinate descent. J Stat Softw 2010;33:1–22. 

30. Liaw A, Wiener M. Classification and regression by RandomForest. R news 
2001;2/3:18–22. 

31. Friedman JH. Stochastic gradient boosting. Comput Statis Data Mining 2002; 
38:367–78. 

32. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene 
ontology: tool for the unification of biology. The Gene Ontology Consortium. 
Nat Genet 2000;25:25–9. 

33. Tang FR, Loke WK. Molecular mechanisms of low dose ionizing radiation- 
induced hormesis, adaptive responses, radioresistance, bystander effects, and 
genomic instability. Int J Radiat Biol 2015;91:13–27. 

34. Shukla GC, Singh J, Barik S. MicroRNAs: processing, maturation, target rec-
ognition and regulatory functions. Mol Cell Pharmacol 2011;3:83–92. 

35. Vanneste J, Vercruysse T, Boeynaems S, Van Damme P, Daelemans D, Van 
Den Bosch L. Cellular stress induces nucleocytoplasmic transport deficits in-
dependent of stress granules. Biomedicines 2022;10:1057. 

36. Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. Bio-
chim Biophys Acta 2013;1832:1049–60. 

37. Alam A, Mukhopadhyay ND, Ning Y, Reshko LB, Cardnell RJ, Alam O, et al. 
A preliminary study on racial differences in HMOX1, NFE2L2, and 
TGFβ1 gene polymorphisms and radiation-induced late normal tissue toxicity. 
Int J Radiat Oncol Biol Phys 2015;93:436–43. 

38. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory re-
sponses and inflammation-associated diseases in organs. Oncotarget 2018;9: 
7204–18. 

39. Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal 
tissue toxicity and implications for future clinical trials. Radiat Oncol J 2014; 
32:103–15. 

40. Hall S, Rudrawar S, Zunk M, Bernaitis N, Arora D, McDermott CM, et al. 
Protection against radiotherapy-induced toxicity. Antioxidants 2016;5:22. 

41. Sun Y, Tsai Y, Wood R, Shen B, Chen J, Zhou Z, et al. KDM3B single- 
nucleotide polymorphisms impact radiation therapy toxicity through circular 
RNA-mediated KDM3B expression and inflammatory responses. Int J Radiat 
Oncol Biol Phys 2024;119:251–60. 

42. Lindström S, Wang L, Feng H, Majumdar A, Huo S, Macdonald J, et al. 
Genome-wide analyses characterize shared heritability among cancers and 
identify novel cancer susceptibility regions. J Natl Cancer Inst 2023;115: 
712–32. 

43. Gong J, Liu C, Liu W, Wu Y, Ma Z, Chen H, et al. An update of miRNASNP 
database for better SNP selection by GWAS data, miRNA expression and 
online tools. Database (Oxford) 2015;2015:bav029. 

44. Liu C, Zhang F, Li T, Lu M, Wang L, Yue W, et al. MirSNP, a database of 
polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in 
GWAS SNPs and eQTLs. BMC Genomics 2012;13:661. 

45. Wang K, Tepper JE. Radiotherapy-associated toxicity: etiology, management, 
and prevention. CA Cancer J Clin 2021;71:437–54. 

46. Chen YH, Molenaar D, Uyl-de Groot CA, van Vulpen M, Blommestein HM. 
Medical resource use and medical costs for radiotherapy-related adverse ef-
fects: a systematic review. Cancers (Basel) 2022;14:2444. 

47. Tonse R, Ramamoorthy V, Rubens M, Saxena A, McGranaghan P, Veledar E, 
et al. Hospitalization rates from radiotherapy complications in the 
United States. Sci Rep 2022;12:4371. 

2538 Clin Cancer Res; 31(12) June 15, 2025 CLINICAL CANCER RESEARCH 

Kishan et al. 


