
 International Journal of 

Molecular Sciences

Article

Preparation of Fish Skin Gelatin-Based Nanofibers
Incorporating Cinnamaldehyde by Solution
Blow Spinning

Fei Liu 1,2, Furkan Türker Saricaoglu 3 ID , Roberto J. Avena-Bustillos 4, David F. Bridges 4,
Gary R. Takeoka 4, Vivian C. H. Wu 4, Bor-Sen Chiou 4, Delilah F. Wood 4 ID , Tara H. McHugh 4,*
and Fang Zhong 1,2,*

1 State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
fliua15c@gmail.com or feiliu@jiangnan.edu.cn

2 School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
3 Department of Food Engineering, Ondokuz Mayis University, Samsun 55139, Turkey;

furkanturker61@gmail.com
4 Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, USA;

Roberto.Avena@ars.usda.gov (R.J.A.-B.); David.Bridges@ars.usda.gov (D.F.B.);
Gary.Takeoka@ars.usda.gov (G.R.T.); Vivian.Wu@ars.usda.gov (V.C.H.W.);
Bor-Sen.Chiou@ars.usda.gov (B.-S.C.); De.Wood@ars.usda.gov (D.F.W.)

* Correspondence: tara.mchugh@ars.usda.gov (T.H.M.); fzhong@jiangnan.edu.cn (F.Z.);
Tel.: +1-510-559-5864 (T.H.M.); +86-510-8532-8307 (F.Z.)

Received: 23 January 2018; Accepted: 13 February 2018; Published: 22 February 2018

Abstract: Cinnamaldehyde, a natural preservative that can non-specifically deactivate foodborne
pathogens, was successfully incorporated into fish skin gelatin (FSG) solutions and blow spun into
uniform nanofibers. The effects of cinnamaldehyde ratios (5–30%, w/w FSG) on physicochemical
properties of fiber-forming emulsions (FFEs) and their nanofibers were investigated. Higher ratios
resulted in higher values in particle size and viscosity of FFEs, as well as higher values in diameter
of nanofibers. Loss of cinnamaldehyde was observed during solution blow spinning (SBS) process
and cinnamaldehyde was mainly located on the surface of resultant nanofibers. Nanofibers all
showed antibacterial activity by direct diffusion and vapor release against Escherichia coli O157:H7,
Salmonella typhimurium, and Listeria monocytogenes. Inhibition zones increased as cinnamaldehyde
ratio increased. Nanofibers showed larger inhibition effects than films prepared by casting method
when S. typhimurium was exposed to the released cinnamaldehyde vapor, although films had higher
remaining cinnamaldehyde than nanofibers after preparation. Lower temperature was favorable
for cinnamaldehyde retention, and nanofibers added with 10% cinnamaldehyde ratio showed the
highest retention over eight-weeks of storage. Results suggest that FSG nanofibers can be prepared
by SBS as carriers for antimicrobials.
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1. Introduction

Microbial contamination can not only lead to food spoilage but it can also increase the risk of
foodborne illness [1]. These illnesses caused by foodborne pathogens might have several symptoms,
ranging from mild gastroenteritis to life-threatening neurological, hepatic, or renal syndromes [2].
In the United States, foodborne pathogens cause around 3000 deaths each year [2,3]. There are
31 known pathogens responsible for the 9.4 million episodes of foodborne illnesses each year according
to Scallan, et al. [4]. Among them, Escherichia coli, Salmonella typhimurium, and Listeria monocytogenes
are three of the major pathogens [2,5]. One method of inactivating the foodborne pathogens and
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preserving food products is to add preservatives. Since consumers and food processors worry about
the potential hazards of synthetic chemical residues in foods, natural additives have been gaining
extensive attention [6,7].

Essential oils, containing small, hydrophobic terpenoid or phenolic compounds, have been
reported to have powerful antimicrobial activity against a variety of foodborne pathogens [8,9].
Cinnamaldehyde, the main active constituent in cinnamon essential oil (60–75%), has effective activity
against a broad spectrum of food-borne pathogens, including Gram-positive and Gram-negative
bacteria [3,10]. It is approved by the Food and Drug Administration (FDA) as Generally Recognized as
Safe (GRAS) and has been widely used in gum, ice cream, candy, beverages, breads and cereals [11].
However, the application of cinnamaldehyde in food preservation is limited by its particular flavor,
volatility and lipophilic nature [1,2,12]. This limitation can be avoided or lessened by encapsulation,
which can mask flavor, improve aqueous solubility and improve stability [13]. Recently, nanomaterials
incorporating natural antimicrobials have attracted increased attention because they have improved
antimicrobial activities as compared to traditional materials [1,14].

Nanofibers have been examined for controlled release of drugs and bioactive agents due
to their large surface area to volume ratio, high encapsulation efficiency and controlled-release
properties [15,16]. Among various approaches to preparing nanofibers, electrospinning has been
widely used due to its relative continuous fabricating capability and simple operating process [17,18].
Previous studies have shown that cinnamaldehyde can be encapsulated into chitosan/poly (ethylene
oxide) or polyvinyl alcohol nanofibers, showing excellent antimicrobial activity against Escherichia coli,
Pseudomonas aeruginosa, and Staphylococcus aureus [1,8]. Nevertheless, the use of a large electric field, a
conductive collector as well as the low fiber production rate in electrospinning limit the commercial
applicability and the use for an immediate in situ application of electrospun fibers [19–21]. Very recently,
a novel alternative technique, solution blow spinning (SBS), has been developed to produce nano- and
microfibers [22–25]. Generally, a SBS setup consists of a pressurized air gas source for delivering the
carrier gas and a syringe pump for polymer solution, which combines concepts of electrospinning,
solution and melt spinning [21]. In addition, environmentally-friendly polymers are preferable
to traditional petroleum-based polymers for use as the polymeric matrix in food applications [1].
According to Liu, et al. [26], blow spun nanofibers can be successfully prepared from fish skin gelatin
(FSG) using an acetic acid solution as the solvent.

In this study, we aim to develop antimicrobial FSG-based nanofibers incorporating
cinnamaldehyde at different ratios through SBS technology. Physicochemical properties of
fiber-forming emulsions (FFEs) and their resultant nanofibers were investigated as a function
of cinnamaldehyde ratios. Antibacterial activities of these nanofibers against E. coli O157:H7,
S. typhimurium, and L. monocytogenes and their storage stability were evaluated. Films made by
the same FFEs were investigated as controls in antimicrobial tests.

2. Results and Discussion

2.1. Characterization of Fiber-Forming Emulsions (FFEs)

2.1.1. Particle Size and Particle Size Distribution

FSG and lecithin form complexes to disperse cinnamaldehyde according to Xue and Zhong [27].
As shown in Figure 1, FSG-based FFE with a particle size of 233.7 nm was obtained at the 5%
cinnamaldehyde ratio. The formation of small oil droplets would be affected by oil phase composition
because of its impact on oil phase and surfactant properties [28]. Therefore, the particle size was
then significantly (p < 0.05) increased to 375.0 nm as the cinnamaldehyde ratio increased to 25%.
Similar results were also reported by Liang, et al. [29] in the preparation of essential oil nanoemulsions.
Further increase in cinnamaldehyde ratio to 30% led to an obvious decrease in particle size to 305.7 nm.
This might be due to the presence of excessive oil volume fraction, which could not be completely
encapsulated by FSG and lecithin. However, the polydispersity index (PDI) values corresponding
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to the particle size distribution of droplets were all lower than 0.1 at any cinnamaldehyde ratio.
This suggested that all FFEs had a narrow range of size distribution. Furthermore, cinnamaldehyde
might form Schiff bases with FSG due to its aldehyde structures [30], thus resulting in pink colors of
FFEs especially at higher cinnamaldehyde ratios (≥15%, Figure S1).
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Figure 1. Particle size and polydispersity index (PDI) of fiber-forming emulsions (FFEs). FFE-x,
fiber-forming emulsion prepared with the indicated cinnamaldehyde ratio to fish skin gelatin (FSG)
(%). Asterisk indicates significant (p < 0.05) differences for particle size.

2.1.2. Viscosity

The viscosity of polymer solutions had previously been shown to influence the fiber diameter,
initial droplet shape and jet trajectory during the SBS process [31]. Only certain appropriate viscosities
could favor the formation of fibers; decreasing the viscosity below a certain limit or increasing it
above a certain limit would result in the failure of spin ability [32]. Figure 2 shows that the viscosity
of FFEs slightly increased with increasing cinnamaldehyde ratio from 0% to 30%. This increase in
viscosity might be due to the increase in internal cinnamaldehyde content and droplet size, as well
as the expansion caused by the binding of cinnamaldehyde to gelatin [32,33]. Solutions showed
shear-thinning behavior with an increase in shear rate, especially for FFE-25 and FFE-30. FFEs with
higher cinnamaldehyde ratios had higher degrees of shear-thinning behavior and this shear-thinning
behavior appeared at lower shear rates. This shear-thinning behavior might be due to the decrease
in average cluster sizes of the droplets as the shear rate increases. In addition, the deformation or
compaction of clusters could also result in the shear-thinning behavior.
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2.1.3. Surface Tension

The surface tension was caused by a net downward force as the liquid molecules below the
surface exerted a greater attractive force than the gas molecules [34]. Similar to viscosity, it also had a
direct impact on the fiber formation as well as the structures formed in the SBS process [35]. Compared
to the blank sample, the surface tension of FSG solutions sharply decreased in value with the addition
of cinnamaldehyde and lecithin (Figure 3). This might be due to the surface activity of lecithin,
thus lowering the surface tension [32]. The increase in cinnamaldehyde ratio from 5% to 15% caused
a gradual decrease in the surface tension of FFEs. This decrease in surface tension might facilitate
the formation of thinner and more uniform fibers as well as reduce the formation of beads [36,37].
A relatively constant surface tension value was observed when more cinnamaldehyde (≥20%) was
added to the FFEs. This might be due to the reduction in the amount of lecithin molecules available
to adsorb at the air-water interface, where more FSG-lecithin complexes are needed to disperse the
cinnamaldehyde at higher cinnamaldehyde ratios [27,32].
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2.2. Characterization of Nanofibers

2.2.1. Morphology and Diameter

The morphology of FSG-based nanofibers with different cinnamaldehyde ratios (0%, 5%, 15%,
20%, 25% and 30%) was investigated using scanning electron microscopy (SEM) and the representative
images and fiber diameter distributions are shown in Figure 4. Uniform nanofibers were formed at all
cinnamaldehyde ratios, but beads were observed at higher ratios. The average fiber diameter (AFD) of
nanofibers also increased from 67.5 nm to 98.3 nm by increasing cinnamaldehyde ratio from 0% to
30%. According to previous reports, the viscosity and surface tension of the polymer solution could
affect the fiber formation in the SBS process [22,36,37]. Higher viscosity of FSG solutions could lead
to less stretching of the ejected jet [16], thus forming thicker nanofibers with the presence of beads.
Moreover, the increase in cinnamaldehyde ratio resulted in new morphology, with bundled nanofibers
being observed. This might be due to the counteraction between viscoelasticity/surface tension from
FSG solution and shearing/stretching forces from blown air [38,39]. Similar results were also reported
previously [23].
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2.2.2. Cinnamaldehyde Distribution within Nanofibers

Transmission electron microscopy (TEM) was used to visualize the distribution of cinnamaldehyde
emulsions in the FSG-based nanofibers. As shown in Figure 5, the blank nanofibers showed smooth
surfaces with no trace of emulsion droplets prior to the addition of cinnamaldehyde. Emulsion
droplets (arrows) were exclusively observed on the surface of the FFE-5 sample in the presence
of cinnamaldehyde. These droplets appeared more transparent to the electron beam in contrast
to the darker nanofibers due to the differences in material contrast. It was hypothesized that the
cinnamaldehyde was successfully loaded on the surface of nanofibers. Emulsion droplets became
elongated as the cinnamaldehyde ratio was progressively increased to 30%. This might be due
to the greater particle size (Figure 1), where emulsion droplets were sheared and stretched along
the nanofibers.
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Fourier Transform Infrared Spectroscopy (FTIR) was also used to confirm the presence of
cinnamaldehyde in the nanofibers (Figure 6). The blank nanofibers had a broad peak at 3290 cm−1

corresponding to the N–H stretching coupled with hydrogen bonding. More characteristic
peaks indicative of gelatin at 1636, 1530 and 1240 cm−1 were assigned to the C=O stretching in
combination with COO, bending vibration of N–H groups associated with stretching vibrations
of C–N groups, and vibrations in C–N and N–H groups of bound amide [40–42], respectively.
These characteristic absorption peaks were not significantly modified after incorporation of
cinnamaldehyde. In comparison to the spectra of blank nanofibers, cinnamaldehyde-loaded nanofibers
showed some new peaks at 1122, 746 and 687 cm−1 corresponding to the aromatic C–H bond,
–CH bending out-of-plane in aromatic ring and CH=CH bending out-of-plane in alkenes [10,43,44],
respectively. These results further suggested the presence of cinnamaldehyde within nanofibers.
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the nanofibers without cinnamaldehyde.

2.3. Antimicrobial Activity and Storage Stability of Nanofibers

2.3.1. Antimicrobial Activity

The antimicrobial activities of FSG-based nanofibers with and without cinnamaldehyde against
E. coli O157:H7, S. typhimurium, and L. monocytogenes were investigated using the disk diffusion method
(Figure 7a). Blank nanofibers had an inhibition effect against S. typhimurium and L. monocytogenes,
which might be due to the trace amounts of residual acetic acid after fiber preparation. With the
addition of 5% cinnamaldehyde, the inhibition effect was significantly enhanced (p < 0.05).
The inhibition zone was further increased with increasing cinnamaldehyde from 5% to 30%, indicating
that cinnamaldehyde was a concentration-dependent antimicrobial. Similar results were also observed
by Manu, et al. [45]. In addition, L. monocytogenes was more sensitive to cinnamaldehyde-loaded
nanofibers than E. coli O157:H7 and S. typhimurium at the same cinnamaldehyde ratios. Generally,
Gram-negative bacteria have a hydrophilic outer membrane with degradative and detoxifying
enzymes in periplasmic space, however, such outer membrane and protective enzymes are absent in
Gram-positive bacteria [3,6,46]. This absence might have allowed cinnamaldehyde to penetrate the
microbial cell easier in L. monocytogenes and subsequently resulted in a greater inhibitory effect.
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Figure 7. Antimicrobial activity (inhibition zone) of (a) nanofibers and (b) films prepared from FFEs
and blank against E. coli O157:H7, S. typhimurium, and L. monocytogenes. Letters (a–f) mean significant
differences (p < 0.05) for each foodborne pathogen. FFE-x, nanofibers/film prepared with the indicated
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Corresponding films with increasing cinnamaldehyde ratios were prepared from the same FFEs as
controls (Figure 7b). Similar results to nanofibers were also observed in the films. Nanofibers showed
smaller inhibition zones for E. coli and S. typhimurium compared to films with the same cinnamaldehyde
ratios. This might be due to differences in cinnamaldehyde retention after fiber/film preparation
(Table 1). More cinnamaldehyde was lost during the SBS of FFEs. However, a different behavior was
observed when S. typhimurium was exposed to the vapor of cinnamaldehyde (Figure S2). Nanofibers
showed larger inhibition zones than those of films at 25% and 30% cinnamaldehyde ratios. According
to Goñi, et al. [47], an equilibrium could be attained when the cinnamaldehyde was released from
nanofibers/film into the headspace in the vapor-phase test. The larger surface area to volume ratio
of nanofibers might favor the sustained release of cinnamaldehyde resulting in a higher equilibrium
concentration [1] and increased antimicrobial activity.

Table 1. Cinnamaldehyde retention of freshly prepared fibers or films. FFE-x, nanofibers prepared
with the indicated cinnamaldehyde ratio to FSG (%). Blank is the nanofibers without cinnamaldehyde.

Samples Cinnamaldehyde Retention after Fiber Preparation
(mg C/mg F)

Cinnamaldehyde Retention after Film Preparation
(mg C/mg F)

Blank - -
FFE-5 0.013 0.002

FFE-10 0.004 0.044
FFE-15 0.012 0.021
FFE-20 0.058 0.074
FFE-25 0.080 0.116
FFE-30 0.084 0.171

2.3.2. Storage Stability

The retention of volatile cinnamaldehyde in FSG-based nanofibers as a function of environmental
conditions (2 ◦C, 70% relative humidity (RH) and 20 ◦C, 51% RH) over eight weeks was investigated
(Figures 8 and S3). At both storage conditions, nanofibers with higher cinnamaldehyde ratios showed
higher remaining cinnamaldehyde contents during the first two weeks (Figure S3). After this time,
the remaining contents were almost the same regardless of the cinnamaldehyde ratios. This might
be due to the location of cinnamaldehyde on the surface of nanofibers, whose release was controlled
by diffusion [8]. Moreover, Figure 8 showed that the cinnamaldehyde retention percent decreased
as cinnamaldehyde ratio increased, however, nanofibers with 10% cinnamaldehyde ratio had the
highest retention percent over eight weeks. This higher retention percent might be due to the
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changes in microstructure and properties of nanofibers with 10% ratio, which slowed down the
cinnamaldehyde diffusion [10]. Although higher %RH might cause greater swelling and lead to
a faster diffusion [48], nanofibers stored at 2 ◦C had better cinnamaldehyde retention than those
at 20 ◦C for all cinnamaldehyde ratios. This suggested that temperature was the dominant factor
during nanofibers storage. The higher temperature could enhance the motion of FSG chains [49],
thus increasing the diffusion of cinnamaldehyde through the FSG. In real food systems, the released
cinnamaldehyde could adsorb on food surfaces and exhibit antimicrobial activity during food storage.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  8 of 14 

 

might cause greater swelling and lead to a faster diffusion [48], nanofibers stored at 2 °C had better 
cinnamaldehyde retention than those at 20 °C for all cinnamaldehyde ratios. This suggested that 
temperature was the dominant factor during nanofibers storage. The higher temperature could 
enhance the motion of FSG chains [49], thus increasing the diffusion of cinnamaldehyde through 
the FSG. In real food systems, the released cinnamaldehyde could adsorb on food surfaces and 
exhibit antimicrobial activity during food storage. 

 

Figure 8. Cinnamaldehyde retention percent of nanofibers prepared from FFEs as a function of 
storage time. (a) 2 °C and 70% RH, (b) 20 °C and 51% RH. FFE-x, nanofibers prepared with the 
indicated cinnamaldehyde ratio to FSG (%). 

3. Materials and Methods  

3.1. Materials 

Fish skin gelatin (FSG), with high molecular weight, was provided by Norland Products Inc. 
(Cranbury, NJ, USA). Cinnamaldehyde, with a purity ≥98%, was obtained from Sigma Chemical Co. 
(St. Louis, MO, USA). Acetic acid was purchased from Avantor Performance Materials, LLC. (Baker 
Analyzed® A.C.S. Reagent, PA, USA). Organic lecithin was supplied by Clarkson Soy Products, 
LLC. (Cerro Gordo, IL, USA). 

3.2. Preparation of Fiber-Forming Emulsions (FFEs) 

FFEs containing various mass ratios of cinnamaldehyde were prepared according to Table 2. 
Briefly, 19.8 g of FSG was dissolved in 20% (v/v) acetic acid with continuous stirring at 40 °C. 
Cinnamaldehyde and lecithin were then added into the FSG solution and mixed for 2 min at  
15,000 rpm with a Polytron 3000 emulsifier (Kinematica, Littau, Switzerland) to form a crude 
emulsion according to Table 2. The crude emulsion was further homogenized three times at  
15,000 psi by an M-110Y Microfluidizer (Microfluidics Corp., Newton, MA, USA) at 20 °C to form 
FFEs. In addition, 19.8 g of FSG was dissolved into 100.2 g of 20% (v/v) acetic acid to obtain the 
blank FFE. After preparation, the FFEs were stored at 4 °C for analyses or fiber formation. A camera 
was used to take a photo of the FFEs and blank. 
  

Figure 8. Cinnamaldehyde retention percent of nanofibers prepared from FFEs as a function of storage
time. (a) 2 ◦C and 70% RH, (b) 20 ◦C and 51% RH. FFE-x, nanofibers prepared with the indicated
cinnamaldehyde ratio to FSG (%).

3. Materials and Methods

3.1. Materials

Fish skin gelatin (FSG), with high molecular weight, was provided by Norland Products Inc.
(Cranbury, NJ, USA). Cinnamaldehyde, with a purity ≥98%, was obtained from Sigma Chemical Co.
(St. Louis, MO, USA). Acetic acid was purchased from Avantor Performance Materials, LLC. (Baker
Analyzed® A.C.S. Reagent, PA, USA). Organic lecithin was supplied by Clarkson Soy Products, LLC.
(Cerro Gordo, IL, USA).

3.2. Preparation of Fiber-Forming Emulsions (FFEs)

FFEs containing various mass ratios of cinnamaldehyde were prepared according to Table 2.
Briefly, 19.8 g of FSG was dissolved in 20% (v/v) acetic acid with continuous stirring at 40 ◦C.
Cinnamaldehyde and lecithin were then added into the FSG solution and mixed for 2 min at 15,000 rpm
with a Polytron 3000 emulsifier (Kinematica, Littau, Switzerland) to form a crude emulsion according
to Table 2. The crude emulsion was further homogenized three times at 15,000 psi by an M-110Y
Microfluidizer (Microfluidics Corp., Newton, MA, USA) at 20 ◦C to form FFEs. In addition, 19.8 g of
FSG was dissolved into 100.2 g of 20% (v/v) acetic acid to obtain the blank FFE. After preparation,
the FFEs were stored at 4 ◦C for analyses or fiber formation. A camera was used to take a photo of the
FFEs and blank.
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Table 2. Formulation of FFEs and blank. FFE-x, fiber-forming emulsion prepared at the indicated
cinnamaldehyde ratio to FSG (%). Blank is the solution without cinnamaldehyde.

Ingredient (g) Blank FFE-5 FFE-10 FFE-15 FFE-20 FFE-25 FFE-30

FSG 19.8 19.8 19.8 19.8 19.8 19.8 19.8
20% acetic acid 100.2 96.24 95.25 94.26 93.27 92.28 91.29

Cinnamaldehyde - 0.99 1.98 2.97 3.96 4.95 5.94
Lecithin - 2.97 2.97 2.97 2.97 2.97 2.97

Total 120 120 120 120 120 120 120

3.3. Characterization of Fiber-Forming Emulsions (FFEs)

3.3.1. Particle Size and Particle Size Distribution

The z-average particle size and PDI of FFEs were measured via dynamic light scattering technique
using a Malvern Zetasizer (Nano-ZS; Malvern Instruments, Worcestershire, UK) at 25 ◦C. The FFEs
were diluted 100 times by ultrapure water before analysis to reduce multiple scattering effects.
All measurements were performed in triplicate.

3.3.2. Viscosity

The viscosity of FFEs and blank were measured with an AR 2000 rheometer (TA Instruments Inc.,
New Castle, DE, USA) using parallel plate geometry (diameter of 60 mm and gap of 1 mm) at 25 ◦C.
Steady shear mode was used to measure the viscosity over a shear rate range of 1–1000 s−1.

3.3.3. Surface Tension

The surface tension of FFEs and blank was measured with a Krüss K100 force tensiometer
(Krüss GmbH, Hamburg, Germany) at 22 ◦C according to Parize, Oliveira, Foschini, Marconcini and
Mattoso [37]. The Wilhelmy plate method was used and the surface tension was recorded for 120 s
after placing the platinum plate on the solution surface.

3.4. Preparation of Nanofibers

Nanofibers were prepared with the solution blow spinning (SBS) method at 18 ◦C and 48% relative
humidity (RH) according to our previous study [26], with minor modifications. The SBS apparatus
consisted of a syringe pump (KD Scientific, Holliston, MA, USA), a concentric nozzle, and a source of
compressed air. FFEs and blank were fed through a 10 mL Becton-Dickinson (Franklin Lakes, NJ, USA)
plastic syringe to the inner nozzle. The feed rate was controlled at 0.1 mL/min by the syringe pump.
Pressurized air was delivered through the outer nozzle with a pressure of 0.38 MPa and an airflow
speed of 14 m/s. A static plate collector covered with aluminum foil located 50 cm from the nozzle tip
was used to collect nanofibers. Nanofibers were sealed in Petri dishes, covered with aluminum foil
and stored at 4 ◦C until testing.

3.5. Characterization of Nanofibers

3.5.1. Scanning Electron Microscopy (SEM)

Nanofibers were cut and glued onto aluminum specimen stubs using double-sided adhesive
carbon tabs. The samples were first coated with gold-palladium on an Emitech K550X sputter coater
(Quorum Technologies Inc., Guelph, ON, Canada) at 25 mA for 45 s. They were then examined using a
Hitachi S-4700 field emission scanning electron microscope (Hitachi, Tokyo, Japan) at an accelerating
voltage of 5 kV. Nanofiber diameters were measured directly from the scanning electron micrographs
using Image Pro Plus 7 (Media Cybernetics, Inc., Rockville, MD, USA) software. The average fiber
diameter (AFD) was calculated from ~100 random measurements.
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3.5.2. Transmission Electron Microscopy (TEM)

Nanofibers were first applied to a 200 mesh copper grid coated with Formvar/carbon (Catalog
No. 01801, Ted Pella Inc., Redding, CA, USA). TEM was then analyzed using a Hitachi H-700
transmission electron microscope (Hitachi, Tokyo, Japan) with an accelerating voltage of 100 kV
at room temperature. The samples were not stained.

3.5.3. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectra of nanofibers were investigated using an FTIR spectrometer (Nicolet IS 10, Thermo
Fisher Scientific Inc., Madison, WI, USA) with attenuated total reflection (ATR) mode at room
temperature. Each spectrum was recorded from 700 to 4000 cm−1 using 64 consecutive scans with a
resolution of 4 cm−1. Spectra were then analyzed using OMNIC 8.2 data collection software (Thermo
Fisher Scientific Inc., Madison, WI, USA).

3.6. Antimicrobial Activity and Storage Stability of Nanofibers

3.6.1. Antimicrobial Activity

Frozen cultures of E. coli O157:H7 ATCC® 35150, S. typhimurium ser. ATCC® 14028 and
L. monocytogenes ATCC® 19115 from the Western Regional Research Center (USDA;ARS:WRRC) strain
collection were streaked on tryptic soy agar (TSA). TSA was composed of tryptic soy broth and 1.5%
granulated agar (Difco, Becton, Dickinson & Co., Sparks, MD, USA). TSA with pathogens were then
incubated at 37 ◦C for 24 h. After that, TSA was used to re-streak an isolated colony and incubated
at 37 ◦C for 24 h. A tube with 5 mL Trypticase Soy Broth (TSB, Difco) was also used to inoculate an
isolated colony, which was incubated at 37 ◦C for 24 h with agitation. This microbial broth was then
serially diluted (10-fold) using 0.1% peptone water.

Each bacterial culture with a 0.1 mL volume of 1 × 105 colony-forming-units (CFU)/mL was
added onto each of five TSA plates. Each plate was spread evenly with the inoculum and was then
dried in a biosafety hood for 5 min. For diffusion release, each agar plate was divided evenly into
2–4 areas and labeled with the different antimicrobial concentrations. On the center of each area,
~15 mg nanofiber mat was deposited in a constant area over the inoculated agar allowing all fibers to
touch the agar by applying slight pressure to avoid breaking the agar gel. The plates were incubated at
35 ◦C for 24 h. The inhibition diameter (colony-free perimeter), including the area where the fibers
were deposited on the agar surface, was measured with a digital caliper in triplicate after 24 h of
incubation and reported in mm.

3.6.2. Storage Stability

The loss of cinnamaldehyde from nanofibers during eight-weeks of storage at 2 ◦C (70% RH)
and 20 ◦C (51% RH) under constant air flow was measured at two week intervals. Since volatile
cinnamaldehyde would occupy the surrounding headspace of vials to inhibit release, the nanofiber
samples were stored without covering. Cinnamaldehyde retention in the FSG-based nanofiber
matrix was measured by gas chromatography. Around 20 mg of nanofibers were extracted with
10 mL of dichloromethane containing 0.1013 mg/mL of cinnamyl alcohol (internal standard). The %
recovery of the first extraction was 93.1% (average of two replicates) as determined by the analysis of
three consecutive extractions. Extracts containing cinnamaldehyde were analyzed with an Agilent
6890 GC equipped with a flame ionization detector (FID). A 30 m × 0.32 mm i.d. (df = 0.25 µm)
DB-5 bonded-phase fused-silica capillary column (Agilent Technologies Inc., Folsom, CA, USA)
was employed. The injector and detector temperatures were 220 ◦C. The oven temperature was
programmed from 80 ◦C to 165 ◦C at 6 ◦C/min. The linear velocity of the helium carrier gas was
38.2 cm/s (80 ◦C). Split injections were used with a split ratio of 1:7.9. The instrument was controlled
and data were processed by an HP ChemStation (Rev. B.01.01[164]SR1; Agilent Technologies Inc.,
Santa Clara, CA, USA).



Int. J. Mol. Sci. 2018, 19, 618 11 of 14

The relative response factor (RRF) was calculated with the following Equation (1):

RRF = (Aa/Ais) × (Cis/Ca) (1)

where:
Aa is the GC peak area of analyte
Ais is the GC peak area of internal standard
Cis is the concentration of internal standard in a solution
Ca is the concentration of analyte in a solution.
The relative response factor, RRF, of cinnamaldehyde/cinnamyl alcohol was determined to

be 1.27.
The concentration of cinnamaldehyde was calculated with the following Equation (2):

Ca = ((Aa/Ais) × (Cis/RRF))/% recovery (2)

3.7. Statistical Analysis

Data were reported as mean value ± standard deviation. One-way analysis of variance (ANOVA)
was used to analyze the data with the SPSS 19.0 package (IBM, New York, NY, USA). The significant
differences of the mean values (p < 0.05) was determined by Duncan’s-multiple range test.

4. Conclusions

FSG-based nanofibers incorporating cinnamaldehyde were successfully prepared via SBS.
A significant influence of cinnamaldehyde ratio was demonstrated from the physicochemical,
rheological and antimicrobial properties of FFEs and their nanofibers. The morphology of nanofibers
was dependent on the viscosity of FFEs, which was controlled by the cinnamaldehyde ratio.
Cinnamaldehyde droplets were stretched and distributed on the surface of nanofibers due to their
larger size compared to prepared nanofibers. SBS resulted in higher losses of cinnamaldehyde from
FFEs than those during film casting. All nanofibers and films showed antimicrobial activity by diffusion
and vapor release against three selected foodborne pathogens at all concentrations of cinnamaldehyde.
Since cinnamaldehyde was a concentration-dependent antimicrobial, more cinnamaldehyde led to
enhanced inhibition effects. Nanofibers had higher antimicrobial activity than films in vapor phase
antimicrobial tests due to their larger surface area to volume ratios. The diffusivity of cinnamaldehyde
from nanofibers was greatly affected by temperature during storage tests. Loss of cinnamaldehyde was
higher at higher cinnamaldehyde ratio, but nanofibers with 10% cinnamaldehyde ratio had the highest
retention percent due to changes in their microstructure properties. This research provides insights on
the factors that influence the formation and antimicrobial efficacy of cinnamaldehyde-loaded blow
spun nanofibers for controlled-release applications.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/19/2/618/s1.
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Abbreviations

FSG fish skin gelatin
FFE fiber-forming emulsion
SBS solution blow spinning
FDA Food and Drug Administration
GRAS Generally Recognized as Safe
PDI polydispersity index
RH relative humidity
SEM scanning electron microscopy
AFD average fiber diameter
TEM transmission electron microscopy
FTIR fourier transform infrared spectroscopy
CFU colony-forming-units
FID flame ionization detector
RRF relative response factor
ANOVA analysis of variance
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