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Abstract

Background High-grade gliomas (HGG) comprise the most common primary adult brain cancers and universally recur.
Combination of re-irradiation therapy (reRT) and bevacizumab (BVZ) therapy for recurrent HGG is common, but its reported
efficacy is mixed.

Objective To assess clinical outcomes after reRT + BVZ in recurrent HGG patients receiving stereotactic radiosurgery (SRS),
hypofractionated radiosurgery (HFSRT), or fully fractionated radiotherapy (FFRT).

Methods We performed a systematic review of PubMed, Web of Science, Scopus, Embase, and Cochrane databases, following
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We identified studies reporting
outcomes for patients with recurrent HGG treated via reRT + BVZ. Cohorts were stratified by BVZ treatment status and re-
irradiation modality (SRS, HFSRT, and FFRT). Outcome variables were overall survival (OS), progression-free survival (PFS),
and radiation necrosis (RN).

Results Data on 1399 patients was analyzed, with 954 patients receiving reRT alone and 445 patients receiving reRT + BVZ. All
patients initially underwent standard-of-care therapy for their primary HGG. In a multivariate analysis that adjusted for median
patient age, WHO grade, RT dosing, reRT fractionation regimen, time between primary and re-irradiation, and re-irradiation
target volume, BVZ therapy was associated with significantly improved OS (2.51, 95% CI [0.11, 4.92] months, P =.041) but no
significant improvement in PFS (1.40, 95% CI [- 0.36, 3.18] months, P = .099). Patients receiving BVZ also had significantly
lower rates of RN (2.2% vs 6.5%, P < .001).

Conclusions Combination of reRT + BVZ may improve OS and reduce RN rates in recurrent HGG, but further controlled studies
are needed to confirm these effects.
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tarium of treatment options requires complex interdisciplinary
decision-making to determine optimal management strategies
based on individual patient-care goals. Classically, the World
Health Organization (WHO) has histologically classified
high-grade gliomas (HGGs) as WHO grade 11l gliomas, which
include anaplastic astrocytomas (AA) and
oligodendrogliomas (AOA), and WHO grade IV glioblastoma
[41]. GBM accounts for approximately 60% of HGG and 50%
of all malignant brain tumors and portends the poorest prog-
nosis [19]. Since then, WHO glioma classification has been
re-examined and re-defined according to various genetic
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markers, mainly IDH mutation and 1p/19q deletion status
[41]. The current standard-of-care for GBM involves a multi-
modal approach, including surgical resection of the primary
lesion, chemotherapy with temozolomide, and adjuvant radio-
therapy (typically involving conventional external beam radi-
ation therapy, EBRT). Landmark studies by Stupp and col-
leagues demonstrated improved 2-year survival to 27.2%
from 10.9% when adding EBRT to temozolomide (TMZ)
chemotherapy in primary GBM [71, 72]. Even with modern
treatment regimens, however, HGG recurrence is virtually
inevitable. Estimated post-recurrence survival in AA and
GBM patients is approximately 10 and 6 months, respectively
[72]. Thus, there is a need for further clinical investigation of
survival outcomes to optimize treatment protocols for recur-
rent HGG.

Eighty percent of recurrent HGG tumors appear within 2 cm
of the initial contrast-enhanced primary lesion [48]. Recent
advances in imaging and radiotherapy techniques allow irradi-
ation with higher doses, improved local tumor control, and
sparing of adjacent tissue [1]. Several fractionation regimens
are available, which offer flexibility between the number of
treatment sessions and maximum radiation doses required, in-
cluding stereotactic radiosurgery (SRS), hypofractionated ste-
reotactic radiotherapy (HFSRT), and fully fractionated radio-
therapy (FFRT) [64, 66]. HFSRT and FFRT regimens effec-
tively target larger-volume lesions with lower doses adminis-
tered over cumulative fractions, while SRS may offer a favor-
able radiation modality for smaller lesions [56]. Recurrent
HGG is regularly treated with a combination of repeat surgical
resection, systemic cancer therapies, and radiosurgery. Re-
resection and repeat radiation therapy (reRT) improve overall
survival (OS) and progression-free survival (PFS) in recurrent
HGG:; however, lesion size and proximity to eloquent tissue
may limit reRT use [64]. Adjuvant chemotherapy and radio-
sensitizing agents may further improve outcomes in the setting
of reRT, but their effect on survival remains inconclusive [17,
62]. Furthermore, the reported efficacy of traditional chemo-
therapy agents such as TMZ is limited to patients with non-
resistant, MGMT-methylated primary, or recurrent tumors [53,
65]. Overall, despite a plethora of new therapeutic alternatives,
there remains no established standardized treatment protocol
for recurrent HGG [35, 64].

One promising avenue for glioma treatment involves im-
munotherapy targeting tumor blood supply. HGG survives,
differentiates, and grows well in hypoxic niches, which
upregulates a conglomerate of molecular factors in the glial
tumor cells, including hypoxic inhibitory factor (HIF)-1 and 2
[2]. HIF is a potent inducer of vascular endothelial growth
factor (VEGF), a transcription factor key to promoting
vasculogenesis. Neurovasculature in hypoxic tumor niches is
tortuous and aberrant; it jeopardizes the blood-brain barrier
and promotes further damage, edema, and necrosis. Anti-
VEGEF therapy with bevacizumab (BVZ) can reduce aberrant
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vasculogenesis, reduce radiation necrosis, and improve out-
comes in clinical studies of HGG [5, 27, 28, 40]. Beyond its
use in primary lesions, BVZ is combined with reRT (reRT +
BVZ) to treat recurrent HGG. Recent studies have found that
reRT + BVZ regimens are well tolerated, reduce radiation
necrosis (RN) [23], and improve survival outcomes in HGG
patients [8, 18, 29]. However, due to mixed results [14, 23],
there remains no consensus on the utility of reRT + BVZ
regimens for HGG. Here, we present a systematic review that
synthesizes data from the published literature to assess the
efficacy of reRT + BVZ treatment for recurrent HGG com-
pared to reRT alone.

Methods

Adherence to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) (www.prisma-
statement.org) was maintained throughout this study. We
indexed peer-reviewed abstracts and articles published be-
tween 1990 and 2019 in the following databases: PubMed,
Scopus, Embase, Cochrane, and Web of Science. The last
electronic search was completed in November 2019. An inter-
sectional Boolean-search was performed to screen for articles
with search terms including “high-grade glioma,” “glioblasto-
ma,” “recurrent,” or “irradiation” AND (or NOT)
“bevacizumab.” For inclusion in our systematic review, we
required that articles met the following eligibility criteria:
full-text, English-language clinical trials, prospective, or ret-
rospective studies of patients with histologically proven, re-
current HGG who had initially received standard surgery and
chemoradiation therapy for their primary lesion, with eventual
tumor recurrence treated with either reRT or reRT + BVZ.
Articles describing patients who received additional systemic
therapies with reRT other than standard chemotherapy or
BVZ, or who received reRT modalities other than SRS,
HFSRT, or FFRT (e.g., brachytherapy), were excluded.

We further queried the bibliographies of identified manu-
scripts to screen for additional articles appropriate for review
that could have escaped our electronic search. Some publica-
tions reported multiple treatment cohorts (e.g., both reRT and
reRT + BVZ); in these cases, we separately extracted corre-
sponding data for each treatment regimen. Where applicable,
we required that authors controlled for demographic variables
between groups in studies reporting aggregate demographic
data across multiple treatment groups. Studies without report-
ed demographic comparisons were excluded. Some articles
reported overall survival data for WHO grades I1I/IV individ-
ually without reporting cumulative outcome data; in these
cases, we only included data for GBM patients.

The following measures were extracted from included
studies: (1) patient demographics (age, sex, and
Karnofsky Performance Scale (KPS) at start of reRT), (2)
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WHO grade (III/IV), (3) primary RT and other adjuvant
therapy parameters, (4) reRT and details of other therapies
administered after recurrence, (5) latency from initial RT to
reRT, (6) planned tumor volume for reRT (PTV). Extracted
outcome measures included (1) overall survival after reRT
(0S), (2) progression-free survival after reRT (PFS), (3)
rates of radiation necrosis (RN), and (4) treatment-induced
toxicity rates. For studies with multiple reRT protocols that
qualified under a specific modality (SRS if < 5 fractions
administered, HFSRT if 5-10 fractions administered, or
FFRT if > 10 fractions administered), radiation dosage
was computed as the average of the individual regimens.
For comparative purposes, we converted radiation doses to
reflect an equivalent total dose in 2 Gy fractions (EQD2)
utilizing a linear-quadratic model with o/3 = 2 [24]. Of
note, IDH mutation and 1p/19q deletion status were not
extracted since most publications did not classify according
to the updated WHO glioma classification [41].

Statistical analysis

We utilized unpaired Welch #tests and Fischer exact tests for
pairwise comparisons of continuous and binary variables.
BVZ treatment and reRT fractionation modality were the
two primary explanatory variables-of-interest. To compare
OS and PFS between BVZ treatment groups (reRT vs. reRT
+ BVZ) and between reRT radiation modalities (SRS vs.
HFSRT vs. FFRT), we used weighted Welch #-tests in order
to weigh individual studies appropriately by their relative
sample size when estimating pooled differences. Finally, we
employed multivariate linear regression analysis to evaluate
the amount of variance in OS and PFS explained collectively
by all explanatory variables considered (median age at reRT,
GBM diagnosis, BVZ treatment status, reRT fractionation
modality, time between initial RT and reRT, planned target
volume (PTV) for reRT, and EQD2 at both initial- and re-
irradiation). All statistical analysis was performed in R, using
the R core utilities in addition to the weights package for R
[54, 59]. Statistical significance is defined as P <.05.

To further assess the quality of reviewed studies and the
validity of our systematic review, we used standard meta-
analytic methods to quantify cross-study heterogeneity and
assess the risk of study bias (RoB) on OS and RN outcomes.
We separately fit generalized linear mixed models within each
treatment group that incorporated random study effects. These
models allowed for the calculation of H, 7%, and P, standard,
and closely related metrics for quantifying heterogeneity in a
meta-analysis. Statistical significance of study heterogeneity
was determined for each treatment group based upon
Cochran’s Q statistic. To assess the potential influence of
RoB, we determined a numeric RoB score for each reviewed
study which incorporated key factors that could increase each
study’s susceptibility to bias. Estimation of RoB scores is fully

described in Supplementary Table 3 and considered the over-
all rigor of described study methodology, whether studies
were prospective, randomized, or blinded, as well as the var-
iability in patients’ tumor subtypes, chemotherapy, reRT, im-
munotherapy regimens, stringency of RN diagnosis, and ade-
quacy of follow-up. Regression analyses were performed for
each treatment group to detect any associations between RoB
score and reported outcomes. We used simple linear regres-
sion (i.e., Pearson’s correlations) to assess the impact of RoB
on OS or PFS within each treatment group, given the limited
number of studies reporting standard errors or confidence in-
tervals for medial survival estimates. For RN outcomes, we
used meta-regression to assess the impact of RoB score as this
more robust approach also accounted for random study ef-
fects. Meta-analyses were performed using the meta, metafor,
and metamedian packages for R [45, 63, 75]. The metamedian
package was used to quantify heterogeneity in reported OS
outcomes for studies which at minimum reported the range
(min and max) of survival times in addition to medial survival,
using quantile estimation methods described by McGrath et al.
[44, 45]. We did not attempt to quantify heterogeneity in re-
ported PFS outcomes, given the paucity of studies amenable
to quantile estimation.

Results

Our combined electronic and manual bibliographic search
identified 1742 articles in total before eligibility screening.
Of these, 293 articles survived to the full-text review stage,
of which 34 papers (2%) were deemed eligible for inclusion in
our review (Fig. 1). Among the included studies, 26 papers
reported data on patients receiving reRT alone, and 12 papers
reported data on patients receiving reRT + BVZ (Tables 1 and
2)[3,6-8, 10, 13-16, 18,20, 22,23,26,29-31, 33, 34, 36, 37,
42,46, 51, 57, 61, 67-69, 74, 76, 77, 79, 80].

Demographic variables
reRT group

We identified 954 patients receiving reRT alone. Ninety-four
patients (10%) received FFRT, 206 (21%) received HFSRT,
and 654 (69%) received SRS. Among 862 patients for whom
gender was reported, 492 were male and 370 were female (M
= 57%, F = 43%). Specifically, FFRT had 39 female patients
(43%), HFSRT had 74 female patients (42%), and SRS had
257 female patients (43%). Among patients receiving reRT,
779 (82%) patients had GBM, and 175 (18%) had WHO
grade IIT gliomas. reRT patients had a median Karnofsky
Performance Score (KPS) of 80 (range: 40—100) (Table 3).
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Fig. 1 PRISMA flow diagram

Records identified through
database searching
(n=1832)

Additional records identified
through other sources
(n=25)

Records after duplicates removed
(n=1742)

reRT + BVZ group

Four hundred forty-five patients receiving reRT + BVZ were
identified; 293 (66%) received FFRT, 80 (18%) received
HFSRT, and 72 (16%) received SRS. Among 453 patients
for whom gender was reported, 299 were male and 154 were
female (M = 66%, F = 34%). Specifically, FFRT had 106
female patients (35%, P =.17), HFSRT had 24 female patients
(36%, P = .38), and SRS had 17 female patients (24%, P =
.002). Among patients receiving reRT + BVZ, 337 (76%) had
GBM, and 108 (24%) had WHO grade III gliomas, with a
median KPS of 80 (range: 40-100) (Table 3).

Treatment parameters

All patients had either WHO grade I1I or IV tumors and had
previously received primary surgical resection followed by
RT with a median cumulative dose of 60 Gy and a median
fractional dose of 2 Gy. All patients received chemotherapy
for their primary lesion, with the most received agent being
TMZ (> 54%). Patients receiving reRT alone underwent sal-
vage reRT after a mean latency of 13.4 + 5.3 months (range:

@ Springer
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3-40 months), compared to 16.2 = 5.9 months (range: 8—40
months, P =.18) for patients receiving reRT + BVZ (Table 4).
reRT + BVZ patients received adjuvant BVZ dosed at 10
mg/kg once every two weeks for a range of 2—12 cycles.
Within the reRT group, patients receiving SRS incurred
lower cumulative doses at reRT (19.7 + 6.2 Gy) than patients
receiving HFSRT (28.2 + 3.8 Gy, P=.0053) or FFRT (37.9 +
3.2 Gy; P =.0058). There were no differences in total dose at
re-irradiation among patients receiving different modalities
within the reRT + BVZ treatment group (Table 4). PTV was
comparable between reRT and reRT + BVZ groups after strat-
ifying by reRT modality. PTV for reRT vs. reRT + BVZ
patients averaged 120.5 cm® vs. 102.9 cm® for FFRT (P =
91), 26.6 cm® vs. 33.0 cm® for HFSRT (P = .83), and 11.9
cm’ vs. 3.8 cm® for SRS (P = .14), respectively (Table 4).
However, within the reRT + BVZ group, PTV was signifi-
cantly different between each radiation modality group
(Table 4). The latency between initial radiotherapy and re-
irradiation only differed between reRT and reRT + BVZ pa-
tients who received SRS, which averaged 20.5 months for
reRT + BVZ patients compared to 12.2 months for reRT pa-
tients (P < .001). Other demographic variables and radiation
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Table 1 Studies on re-irradiation with bevacizumab for recurrent high-grade glioma

Study Modality Patients Median Initial FU Re-irradiation Median Median Median Median RN Total

(grade I/ age (y) radiation*  (mo) KPS PTV OS (mo) PFS (mo) (N) toxicity
V) (Gy) *(Gy) EQD2 (e )
(Gy)

Fleischmann FFRT 124 (29/95) 51 60/2 17 362 36 80 117 9.0 5.0 6 12
2019 [23]

Palmer” FFRT 68 (14/48) 57 60/2 11 35/3.5 48 80 35 13.9 - 0 7
2018 [51]

Palmer” FFRT 50 (5/39) 54 60/2 8 35/3.5 48 80 35 133 - 0 7
2018 [51]

Schernberg ~ FFRT 35(1124) 57 60/2 22 56/32 83 - 104 10.5 6.7 0 0
2017 [61]

Back 2015 FFRT 18 (5/13) 50 60/2 15 35/2.0 30 - 136 10.0 - 1 2
(3]

Hundsberger FFRT 10 (4/6) 45 60/2 41 42/2.6 58 70 190 8.4 5.7 0 4
2013 [34]

Yasuda 2018 HFSRT 29 (7/22) 46 60/2 19 42/6 84 80 34 10.4 5.6 0 3
[79]

Minniti 2015 HFSRT 26 (7/19) 50 60/2 13 25/5 44 - 31 11.0 - 0 4
[46]

Gutin 2009  HFSRT 25 (5/20) 56 59/2 15  30/6 60 80 34 12.5 73 0 31
[29]

Clarke 2017 SRS 15 (5/10) 63 60/2 33/11 107 90 - 13.0 7.0 1 14
[14]

Cabrera 2013 SRS 15 (7/8) 53 60/2 20 15/15 56 90 3 144 39 0 15
(8]

Cuneo 2012 SRS 42 (9/33) 47 60/2 21 17/9 48 80 5 11.2 52 2 17

(18]

FFRT, fully fractionated radiotherapy; HFSRT, hypofractionated stereotactic radiotherapy; SRS, stereotactic radiosurgery; /U, median latency between
initial and re-irradiation; EQD2, equivalent dose in 2Gy per fraction; KPS, Karnofsky performance scale; PTV, planned tumor volume; OS, overall
survival from re-irradiation; PFS, progression-free survival from re-irradiation; RN, radiation necrosis; y, year; mo, months; N, number

*Total dose/fraction dose
Y Same publication with separate cohorts

parameters did not differ significantly by treatment group or
reRT modality (Tables 3 and 4).

Clinical outcomes

The reRT treatment group had a mean OS 0f9.9 + 2.1 months,
with PFS of 5.2 + 1.6 months and RN rate of 9.5% (95% CI
[7.7%, 11.6%]). In comparison, the reRT + BVZ group had a
mean OS of 11.2 + 2.1 months (P = .057), with PFS of 5.6 +
1.0 months (P = .55), and an average RN rate 0of 2.2% (95% CI
[1.1%, 4.0%], P < .001) (Table 5).

Among patients receiving FFRT, the reRT treatment group
had a mean OS of 8.7 = 1.6 months, with PFS of 5.3 £ 0.5
months, and RN rate of 6.4% (95% CI [2.4%, 13.4%]). In
comparison, the reRT + BVZ group had a mean OS of 11.0
+ 2.4 months (P = .095), with PFS of 5.4 £ 0.8 months (P =
.38), and RN rate of 2.3% (95% CI [0.9%, 4.7%], P = .088)
(Table 5).

Among patients receiving HFSRT, the reRT group had a
mean OS of 9.4 + 1.6 months, with PFS of 5.2 + 1.4 months,
and RN rate of 7.7% (95% CI1[4.5%, 12.2%]). In comparison,

the reRT + BVZ treatment group had a mean OS of 11.3 £ 1.6
months (P = .045), with PFS of 6.4 + 0.9 months (P = .40),
and RN rate of 0% (95% CI [0%, 4.5%], P = .0076) (Table 5).

Among patients receiving SRS, the reRT treatment group
had a mean OS of 10.3 + 2.2 months, with PFS of 5.2 £ 2.1
months, and RN of 6.2% (95% CI [2.4%, 10.0%]). The reRT
+ BVZ group had a mean OS of 12.2 = 1.8 months (P = .11),
mean PFS of 5.3 + 0.9 months (P =.92), and RN rate of 4.2%
(95% C1[0.9%, 11.7%], P = .097) (Table 5).

Tables 6 and 7 present the results of multivariate regression
analysis assessing the significance of nine explanatory
variables-of-interest accounting for the variance in OS and
PFS, respectively. BVZ treatment status was the only signif-
icant predictor of OS (P = .041) (Table 6). No significant
predictor variables were identified for PFS (Table 7).

Heterogeneity analysis
Analysis of study heterogeneity was performed for RN and

OS (Supplementary Table 1, 2). Fixed and random effect
model values are reported side by side. For both outcomes,
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Table 2 Studies on re-irradiation alone for recurrent high-grade glioma

Study Modality Patients Median Initial FU Re-irradiation Median Median ~ Median Median RN Total

(grade I1I/  age (y) radiation* (mo) KPS PTV OS (mo) PFS (N) toxicity
V) Gy) #Gy) EQD2 (em’) (mo) ™)
(Gy)

Fleischmann FFRT 37(8/29) 51 60/2 18 36/2 36 80 122 9.0 5.0 5 14
2019 [23]

Hundsberger FFRT 4(2/2) 45 60/2 41 4226 58 70 190 14.3 3.7 1 -
2013 [34]

Combs 2005 [17] FFRT 53(0/53) 55 57/2 10 362 36 - 49 8.0 5.0 -

Gigliotti 2018 HFSRT 25(5/25) 54 60/2 18 255 44 - 10 9.0 - -
[26]

Zemlin 2018 [80] HFSRT 41 (6/35) 56 60/2 22 31/4 30 - 63 6.7 43 2 -

Holt 2016 [31] HFSRT 34 (0/34) 60 60/2 14 233 30 - 9 10.9 7.1 1 5

Dincoglan 2015  HFSRT 28 (0/28) 56 60/2 11 25/5 44 80 37 10.3 5.8 3 8
[20]

Ciammella 2013 HFSRT 15 (0/15) 52 60/2 11 25/5 44 90 - 9.5 - 0 -
[13]

Vordermark 2005 HFSRT 14 (0/14) 50 60/2 19 305 353 90 15 7.9 49 0 19
[76]

Voynov 2002 HFSRT 10 (4/4) 48 60/2 18 305 53 80 - 10.1 - 6 -
[77]

Hudes 1999 [33] HFSRT 20 (1/19) 52 60/2 3 3013 38 80 - 10.5 - 0 2

Shepherd 1997 HFSRT 21(11/10) 37 5572 29 353 53 - - 10.7 - 4 0
[67]

Bir 2015 [6] SRS 36 (0/36) 53 60/2 7 28/28 210 - - 7.3 - 14

Pinzi 2015 [57] SRS 128 51 60/2 15 20/10 69 - 5 11.5 - 19

(40/88)

Martinez-Carrillo SRS 87 (41/46) 49 60/2 14 18/18 90 83 - 10.0 - 0 -
2014 [42]

Khalil 2013 [36] SRS 50 (16/34) 58 60/2 10 15/15 64 70 - 11.4 8.6 7 10

Cuneo 2012 [18] SRS 21 (5/16) 48 60/2 19 179 47 80 6 3.9 2.1 4 11

Skeie 2012 [69] SRS 32(0/32) 51 60/2 20 31/31 256 73 - 12.0 - 0 2

Elliott 2011 [22] SRS 26 (10/16) 60 60/2 8 30/30 240 90 - 13.5 - 2 3

Torok 2011 [74] SRS 14 (0/14) 58 60/2 13 24/12 84 - - 10.0 5.0 0 0

Biswas 2009 [7] SRS 33(0/33) 58 60/2 9 15/15 64 - - 6.7 43 1 -

Kong 2008 [37] SRS 65 (0/65) 49 60/2 - 16/16 72 70 11 13.0 4.6 22 -

Combs 2005 [15] SRS 32(0/32) 56 54/2 10 15/15 64 - 10 10.0 5.0 0 0

Hall 1995 [30] SRS 35(8/26) 48 60/2 8 2020 110 70 28 8.0 - 5 0

Shrieve 1995 [68] SRS 76 (4/72) 46 60/2 10 13/13 49 80 - 10.2 - 0 -

Chamberlain SRS 20 (14/6) 34 60/2 11 1414 52 80 - 8.0 4.0 0 7
1994 [10]

FFRT, fully fractionated radiotherapy; HFSRT, hypofractionated stereotactic radiotherapy; SRS, stereotactic radiosurgery; /U, median latency between
initial and re-irradiation; EQD2, equivalent dose in 2Gy per fraction; KPS, Karnofsky performance scale; P7V, planned tumor volume; OS, overall
survival from re-irradiation; PFS, progression-free survival from re-irradiation; RN, radiation necrosis; y, year; mo, months; N, number

*Total dose/fraction dose

studies were separated according to re-treatment protocols.
For RN outcomes, heterogeneity was significant among
FFRT (Q(2) = 10.82; P = .0045), HFSRT (Q(8) = 34.8; P <
.0001) and SRS treatment groups (Q(12) = 54.66; P < .0001).
For OS outcomes, heterogeneity was significant among FFRT
+ BVZ (Q(2) = 6.27; P = 0.044), HFSRT (Q(3) =9.85; P =
.02), and SRS (Q(8) = 45.73; P < .0001) groups.
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Risk of bias analysis

We assessed individual studies for risk of bias (RoB) using ten
factors of study quality for reRT + BVZ studies
(Supplementary Table 3), and nine parameters of study quality
for reRT-only studies (Supplementary Table 4; see Methods
for further details). The average RoB score for reRT + BVZ



Acta Neurochir (2021) 163:1921-1934

1927

Table 3  Treatment group demographics

Modality Patients Age WHO glioma grade Karnofsky Performance Score
N (M/F) Pvalue* Mean SE P value* I v P value* [95% CI] Median Range P value*

Cumulative’ 954 (492/370) - 513 63 - 175 (183%) 779 (81.7%) - 80 40-100 -

FFRT! 94 (50/39) - 503 50 - 10 (10.6%) 84 (89.4%) - 75 60-100 -

HFSRT! 206 (99/74) - 516 65 - 27 (13.1%) 179 (86.9%) - 80 60-100 -

SRS 654 (343/257) - 513 6.8 - 138 21.1%) 516 (78.9%) - 80 40-100 -

Cumulative 445 (299/154) .002 524 53 .60 108 (24.3%) 337 (75.7%) .012[0.53, 0.93] 80 40-100 .48

FFRT! 293 (195/106) .17 523 47 .57 68 (23.2%) 225 (76.8%) .0076[0.17,0.82] 80 40-100 .22

HFSRT! 80 (42/24) .38 507 50 .83 19 (23.8%) 61 (76.3%) .032[0.24,0.993] 80 70-100 .21

SRS! 72 (55/17) .002 543 8.1 .51 21(292%) 51(70.8%) .13[0.37,1.18] 90 50-100 .042

M, male; F, female; SE, standard error; WHO, World Health Organization; FFRT, fully fractionated radiotherapy; HFSRT, hypofractionated stereotactic
radiotherapy, SRS; stereotactic radiosurgery; C/, confidence interval; “Cumulative” denotes combined statistic for all fractionation groups within a

treatment group; mo, months; N, number
*Pairwise comparison between treatment groups
i Re-irradiation only group

ii Re-irradiation with bevacizumab group

studies was 7.75 = 1.83 (range: 4-10), and 7.31 = 1.61 (range:
4-10) for reRT-only studies. We evaluated the effects of RoB
scores on outcome measures using Pearson correlations for
PFS and RN and meta-regression for RN (Supplementary
Table 5). The only significant association of outcomes with
RoB score was observed for reported PFS among the FFRT
group (r(1) =—1.0; P <.0001).

Discussion

High-grade gliomas remain incurable with universal recur-
rence. Treatment of recurrent HGG is limited and heteroge-
neous in terms of treatment protocols and reported efficacy.
Although salvage combination therapy with re-irradiation and
adjuvant bevacizumab (BVZ) has mixed outcomes, multiple
studies suggest it improved overall survival, progression-free
survival, radiation necrosis, and tolerable toxicity in patients
with recurrent HGG. The current study attempts to consolidate
knowledge from the available published data on this topic.
The reported outcome data compares recurrent HGG pa-
tients receiving reRT with or without concomitant BVZ. We
set strict inclusion criteria that eliminate any cohorts wherein
more than 17.5% of patients received additional systemic ther-
apies or adjuvant surgery at the time of reRT. We found that
patients receiving BVZ had marginally improved average
overall survival (P = .057) and significantly lower rates of
radiation necrosis (P < 0.001) compared to patients receiving
reRT alone. Stratifying by the reRT fractionation regimen,
BVZ significantly improves OS (P = .045) and RN (P =
.0076) for HFSRT patients. Despite similar trends towards
improved OS and RN in reRT + BVZ patients undergoing

FFRT and SRS, no effects reached statistical significance. In
a multivariate analysis adjusting for median patient age, WHO
grade (III vs. IV), reRT modality, latency between initial RT
and reRT, planned tumor volume for radiation planning,
EQD?2 at reRT, and total EQD2 across initial RT and reRT,
treatment with BVZ was the only significant predictor of im-
proved overall survival and accounted for improved OS of 2.5
months on average (95% CI [0.1, 4.9], P = .041).

The foremost accepted therapeutic mechanism for BVZ is
the mitigation of radiation necrosis secondary to irradiation-
induced vascular dysfunction [81]. First, irradiation of glioma
tissue causes vascular damage and subsequent hypoxia of the
surrounding tissue. Subsequent upregulation of HIF-1« aug-
ments a milieu of pro-survival factors, including VEGF.
VEGF overexpression yields aberrant neovascularization,
which is highly permeable, resulting in perilesional edema
and, ultimately, radiation necrosis [81]. Importantly, astrocyt-
ic glioma lineages have pronounced VEGF-mediated patho-
logic sequelae [47]. Furthermore, hierarchical grading of gli-
oma tumors is strongly associated with VEGF expression
predominating in GBM tumors [11].

Preclinical evidence describes a significant reduction in
tumor volume and vascularization following RT with BVZ,
which likely explains the reduced rates of RN in novel HGG
patients [5, 27, 28, 39, 40]. BVZ exhibits radio-sensitizing
effects by selectively targeting glial stem cells, which are oth-
erwise minimally neutralized by radiation [4, 5]. BVZ thereby
limits aberrant revascularization, a key mechanism in
restricting further tumor growth [4, 25, 39]. By reducing
VEGF expression, BVZ helps establish a normoxic niche,
enhancing the cytotoxicity of radiation therapy [5, 28]. Thus,
concomitant BVZ and irradiation have an advantageous
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Table6 Multivariate linear regression analysis for overall survival after
re-irradiation

Explanatory variable Beta value 95% CI P value
Age 0.23 [=0.11, 0.57] .16
GBM 0.43 [-3.76,4.63] .83
HFSRT -1.22 [—4.64,2.20] 46
FFRT 0.24 [-4.77,5.25] 92
Bevacizumab 2.51 [0.11, 4.92] .041
FU 0.0066 [-0.24,0.25] 95
PTV -0.023 [~ 0.066, 0.018] 24
EQD2 RT 041 [-0.62, 1.43] 41
EQD2 reRT 0.0186 [-0.039, 0.076] .50

GBM, glioblastoma; HFSRT, hypofractionated stereotactic radiotherapy;
FFRT, fully fractionated radiotherapy; FU, latency between irradiations;
PTV, planned tumor volume; R7, initial radiotherapy; reRT, re-irradiation
therapy; £QD2, equivalent dose in 2Gy per fraction; CI, confidence
interval

synergistic therapeutic effect compared to BVZ administra-
tion alone [28, 39].

Clinically, there have been conflicting reports on the ther-
apeutic efficacy of adjuvant BVZ in recurrent HGG patients.
Our systematic review found that reRT + BVZ improves both
RN and OS when compared to reRT alone. In a recent study,
Fleischmann et al. [23] demonstrated that BVZ was signifi-
cantly associated with decreased radiation necrosis and edema
rates. Consistent with our data, Fleischmann et al. reported
significant reductions in RN using BVZ in both univariate
and multivariate analyses. Additionally, several other publica-
tions corroborate a moderate side effect profile for BVZ, with
low or acceptable reported toxicity rates. Among studies in-
cluded in our review, the reRT-only and reRT + BVZ

Table7  Multivariate linear regression analysis for progression-free sur-
vival after re-irradiation

Explanatory variable Beta value 95% CI P value
Age 0.11 [—0.089, 0.30] 23
GBM 1.36 [-1.21,3.94] 24
HFSRT 1.17 [~ 1.41,3.75] 31
FFRT 0.71 [-3.23,4.67] .67
Bevacizumab 1.40 [-0.36,3.18] .099
FU 0.020 [-0.18,0.21] .81
PTV —-0.00012 [~ 0.036, 0.036] .99
EQD2 RT 0.080 [-0.59, 0.75] 78
EQD2 reRT 0.015 [-0.032, 0.061] A7

GBM, glioblastoma; HFSRT, hypofractionated stereotactic radiotherapy;
FFRT, fully fractionated radiotherapy; FU, latency between irradiations;
PTV, planned tumor volume; R7, initial radiotherapy; reR7, re-irradiation
therapy; EQD2, equivalent dose in 2Gy per fraction; CI, confidence
interval

treatment group had comparable toxicity rates of 21% and
25%, respectively.

Superior survival and functional outcomes are more com-
monly reported for women than men with HGG [73].
Stratified by re-radiation modality, gender distributions were
comparable for FFRT (35% female) and HFSRT (28% fe-
male), reflecting known demographics for HGG patient pop-
ulations in general [73]. However, the gender demographics
among patients receiving SRS differed significantly between
reRT and reRT + BVZ treatment groups (P = .002, Table 3).
Despite a higher proportion of male patients, the median KPS
score among our pooled reRT + BVZ SRS cohort was signif-
icantly higher than the reRT SRS cohort. Such inconsistency
indicates a predilection for better-performing males in the
reRT + BVZ group, limiting the interpretation of outcome
differences for our pooled SRS cohorts.

Our reRT + BVZ groups had a higher proportion of grade
III gliomas. While grade III gliomas are associated with favor-
able clinical outcomes compared to GBM [50], it is unclear
whether BVZ portends a particular benefit for patients with
grade III gliomas relative to patients with GBM. However,
interpretation of BVZ’s role in outcomes for patients with
grade III gliomas is limited, considering the updated WHO
glioma classification [41]. In fact, IDH wild-type anaplastic
astrocytomas have been shown to have similar clinical and
molecular behavior as IDH wild-type GBM [9, 60]. Still,
IDH wild-type AA constitutes the minority of grade III AA
[60], and tumor grade was not associated with OS, PFS, or RN
rate in our comparative univariate analyses. Similarly, tumor
grade was not significantly associated with survival outcomes
in our multivariate analysis. Most important, we found a sig-
nificant beneficial effect of BVZ treatment on overall survival
after adjusting for tumor grade in a multivariate linear regres-
sion analysis.

Balancing planned radiation treatment volumes with ap-
propriate radiation doses is paramount to achieving safe and
effective treatment. Higher doses destroy tumors more effi-
ciently, albeit with a higher risk of side effects, particularly
radiation necrosis [38]. In our pooled cohorts, there were no
differences in total reRT dose between reRT- and reRT +
BVZ-treated patients, whether they received SRS, HFSRT,
or FFRT. Improved outcomes may be attainable with more
aggressive radiation dosages in the setting of BVZ, given
BVZ’s radioprotective effects [23, 27, 40]. To this point, both
Clarke et al. [14] and Schemberg et al. [61] discuss the possi-
bility of using BVZ to permit higher radiation doses with SRS
and FFRT without undue radiation toxicity. Clarke et al. dem-
onstrated an acceptable toxicity profile of a more aggressive
SRS regimen (33 Gy in 3 fractions, EQD2 = 107 Gy) com-
pared to a lower dose regimen (30 Gy in 5 fractions, EQD2 =
60 Gy). Similarly, Schernberg et al. reported improved sur-
vival associated with a more aggressive FFRT regimen for
reRT (EQD2 > 50 Gy) compared to less aggressive dosing.
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Finally, Yasuda et al. [79] reported no radiation necrosis in
patients with a more aggressive HFSRT radiation regimen of
42 Gy in 7 fractions (EQD2 = 84 Gy) in combination with
BVZ. Notably, these authors described acceptable toxicity
profiles despite exceeding cumulative doses over 100 Gy, a
range traditionally associated with increased risk of radiation
necrosis in the absence of BVZ [43, 67]. While we did not find
a significant effect of the total dose (i.e., EQD2) at re-
irradiation on patient outcomes, more rigorous studies are re-
quired to investigate the optimal volume range and radiation
dose for each fractionation regimen supplemented with BVZ.

Limitations

The retrospective nature of the majority of available studies
limited our systematic review [70]. Additionally, the paucity
of literature for reRT + BVZ treatment involving HFSRT and
SRS limited our assessment of BVZ and reRT modality on
clinical outcomes. Several papers reported combined data for
HGG tumors and did not delineate between grade I1I and IV
gliomas. Moreover, the heterogeneity in data reporting and
treatment protocols prevented us from disaggregating impor-
tant demographic, treatment, and clinical outcome variables in
some cases. Partial or inconsistent reporting of BVZ-induced
toxicities also prevented us from performing any rigorous
synthesis of adverse outcomes from BVZ in this analysis.
Overall, study heterogeneity and risk of bias were thus
major limitations of our approach and are inherent in any
systematic review or meta-analysis. We attempted to address
both these issues using robust meta-analytic modeling tech-
niques (Supplementary Tables 1-5). Our RoB analyses dem-
onstrated that obvious sources of study bias did not systemat-
ically skew reported study outcomes. However, we found that
study heterogeneity was present within multiple treatment
groups for both RN and OS outcomes. Comparing our simple
pooling of median OS and RN rates using weighted means
(Table 5) with the more rigorous meta-analytic quantification
of pooled estimates incorporating random study effects
(Supplementary Tables 1-2) in general showed good agree-
ment in the pooled survival and RN estimates. The only major
exception was OS in the FFRT group (8.7 months using
weighted means vs. 14.3 months using a random-effects mod-
el). This discrepancy is explained simply by the fact that many
studies did not report sufficient data to be amenable to the
meta-analysis of median survival times (see Methods); thus,
only a subset of reviewed studies contributed to the data re-
ported in Supplementary Table 2. Still, our findings provide
the most comprehensive synthesis for recurrent glioma
outcomes after reRT - given the limitations in data reported
in the existing literature - and suggest a possible benefit of
BVZ for both OS and RN. However, improved estimation of
clinical outcomes will require improved data reporting from
clinical studies, which would ideally involve comprehensive

@ Springer

datasets reported to shared electronic databases. Continued
innovation in meta-analytic techniques may also push the
limits of what can be achieved with the existing literature.
For example, direct graphical estimation of individual data
points from published survival curves might be used to glean
more granular data from individual studies even when not
reported directly by authors in the text. While not attempted
here, such an approach may become more feasible in future
work utilizing novel analysis software being pioneered for this
purpose [52, 58].

Regarding radiation necrosis, accurate evaluation of anti-
VEGEF therapy response is also limited by imaging techniques,
as conventional MRI does not reliably differentiate between
pseudoprogression, tumor progression, and RN [78].
However, dynamic contrast-enhanced (DCE) perfusion MRI
and diffusion-weighted imaging (DWI) are better able to dif-
ferentiate between post-treatment radiation effect and actual
tumor progression [21, 32, 49, 55]. Decreased tumor perme-
ability and perfusion detected on DCE-MRI can reliably cor-
relate with improved clinical outcomes after BVZ treatment
[8, 29]. Such imaging results suggest that BVZ’s effects are
consistent with the proposed vascular modulating theory.
Recent reviews have further justified the more consistent use
of perfusion MRI technology for evaluating HGG patients
[49, 55, 61]. The lack of uniform objective characterization
of tumor progression limits reliable determination of PFS and
the potential benefits of novel therapeutic agents in slowing
disease progression [12]. These limitations may have contrib-
uted to the lack of a significant benefit of BVZ on PFS in our
multivariate analysis. As DCE and DWI technology im-
proves, guidelines should be updated to standardize radiologic
determination of tumor progression and RN.

Finally, most publications included in this study predated
the revised 2016 WHO classification of CNS tumors; thus,
IDH classification was not consistently reported. While this
limits our interpretation of outcomes according to current stan-
dards, our study’s comparative nature does elucidate general
correlations according to a classically utilized grading schema.
Future studies should consistently report and compare the ef-
fect of BVZ on recurrent gliomas characterized by the updated
2016 WHO schema for gliomas.

Conclusion

To our knowledge, this study is the most extensive and
targeted systematic review evaluating the impact of
bevacizumab on clinical outcomes in the setting of recurrent
HGG treated with reRT. Our results suggest that reRT + BVZ
may be associated with improved OS and lower RN rates than
reRT alone. Upon multivariate analysis, treatment with BVZ
was the only clinical variable significantly associated with
improved OS. reRT + BVZ treatment had the most
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pronounced benefits in patients receiving HFSRT. Our find-
ings suggest a potential benefit for reRT + BVZ, yet are lim-
ited by inconsistent data reporting and heterogeneity in study
methodologies, the latter of which was also reflected in the
heterogeneity of OS and RN outcomes reported across studies
describing the same patient subgroups. Our findings support
further randomized prospective studies to robustly assess the
potential benefit of BVZ in patients with glioma and highlight
the need for improved outcome reporting of published studies
in this area. Future studies should clarify optimal reRT proto-
cols and BVZ regimens (i.e., timing, dosing, and treatment
duration). Finally, further work is needed to more accurately
diagnose radiologic progression and RN in patients with re-
current glioma undergoing reRT.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00701-021-04794-3.
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