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SUMMARY
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental conditions affecting communi-
cation and social interaction in 2.3% of children. Studies that demonstrated its complex genetic architecture
have been mainly performed in populations of European ancestry. We investigate the genetics of ASD in an
East African cohort (129 individuals) from a population with higher prevalence (5%). Whole-genome
sequencing identified 2.13 million private variants in the cohort and potentially pathogenic variants in known
ASD genes (including CACNA1C, CHD7, FMR1, and TCF7L2). Admixture analysis demonstrated that the
cohort comprises two ancestral populations, African and Eurasian. Admixture mapping discovered 10 re-
gions that confer ASD risk on the African haplotypes, containing several known ASD genes. The increased
ASD prevalence in this population suggests decreased heterogeneity in the underlying genetic etiology,
enabling risk allele identification. Our approach emphasizes the power of African genetic variation and
admixture analysis to inform the architecture of complex disorders.
INTRODUCTION

Autism spectrum disorder (ASD) is a constellation of individually

rare neurodevelopmental disorders characterized by stereo-

typed behaviors and impairments in social interaction and

communication. Despite the high heritability estimates of ASD

(�83%–90%1–3), extreme genetic and phenotypic heterogeneity

have posed major obstacles to gene discovery.4 Rare variants,

both spontaneously arising (de novo) and inherited, have been

demonstrated to contribute to ASD, highlighting its complex ge-

netic architecture.5 Significant advances over the past decade

enabled the identification of hundreds of genes that underlie

ASD. However, the genetic variants identified to date account

for only �30% of the disease burden.6

ASD affects 1 in 44 children in the United States (US).7 The re-

ported prevalence is geographically variable within the US, pre-

sumably due to decreased surveillance where access to assess-

ment, diagnosis, and services are limited. Several studies have

shown a higher prevalence of ASD in children born to East Afri-

can parents, including increased prevalence in children of So-
This is an open access article under the CC BY-N
mali and Ethiopian parents living in Sweden, and in the Somali

community in Minnesota.8–10 Furthermore, an epidemiological

study conducted across Texas public schools found that 1 in

20 children (5%) of Ethiopian ancestry is affected, which is two

times higher than the prevalence of ASD in the general popula-

tion.11 Since large-scale prevalence studies for ASD have not

been carried out in Africa, data from the aforementioned studies

in immigrant populations can provide reliable insights into popu-

lation prevalence. While there is a potential for ascertainment

bias in small studies and for other confounding factors such as

the stress of immigration or assessment bias due to cultural dif-

ferences, these studies nonetheless strongly suggest increased

ASDprevalence in East African children. An important motivation

for our study is the paucity of genomic studies that capture the

diversity on the African continent, and, as genetic findings

move into the clinic, this translates to healthcare disparities.12–14

Here, we set out to investigate the genetic contribution to the

increased ASD prevalence in children from East African origin.

Populations in Africa are the most genetically diverse in the

world, carrying up to three times as many rare variants as
Cell Genomics 3, 100322, July 12, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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European or East Asian populations.15 To date there is no

comprehensive catalog of African genetic diversity. The African

Genome Variation Project, an international collaboration aimed

at characterizing African genetic diversity, reported that the Ethi-

opian population has the greatest proportion of all the novel and

private genomic variation found in Africa (�24% of genomic var-

iants).16 Given the higher incidence of ASD in the East African

population, we sought to investigate the underlying genetic sus-

ceptibility factor(s) in this population. We recruited a cohort of

East African families in the US ascertained on probands with

ASD. The parents who enrolled in the study were all born in

East Africa, predominantly Ethiopia and Eritrea, and the children

were all born to East African parents. Thus, there is no present-

day admixture in our cohort with individuals of other ancestries.

We leveraged ancestral genomic information to identify ASD

genes through whole-genome sequencing (WGS) and admixture

analysis in a familial cohort from a population with a high rate

of ASD.

RESULTS

WGS and variant identification in the East African ASD
cohort
East African families who have at least one child affected with

ASD were enrolled in our study in the US. Of the total 33 families

who enrolled, the majority are Ethiopian, Eritrean, or both, and

one family is Kenyan. Although the populations in East Africa

are highly genetically diverse, the majority of families enrolled

in our study come from two geographically adjacent regions of

Ethiopia, the Amhara and Tigray regions, and belong to the

Ethiosemitic linguistic group, a subset of the Afroasiatic family

of languages. Interestingly, genome-wide genotyping data sug-

gest that populations of Amhara and Tigray share common ge-

netic ancestry.17,18 The cohort consisted of 30 trios with one

affected offspring (simplex families) and three multiplex families.

Parental age, which is a possible risk factor for ASD, was not

significantly different at the time of birth of affected compared

with unaffected offspring (Figure S1). All affected individuals

received a clinical diagnosis of ASD, and the affected male to fe-

male ratio in the cohort was 3.5 to 1. Demographics and clinical

information for the cohort are provided in Figure S2, Table S1,

and under ‘‘clinical information’’ (STAR Methods).

We performed WGS on samples from 129 individuals in the

East African ASD cohort including 36 affected children. The

average read depth was 373, with no difference in sequencing

depth between samples from affected and unaffected individ-

uals (Figure S3A), male and female (Figure S3B), or parent and

offspring (Figure S3C). On average, 97.55% and 86.87% of ba-

ses were covered at a mean read depth of at least 103 and

203, respectively (Figure S3D). An average of 5,015,279 total

variants were identified per genome; of those, 4,024,260 were

single nucleotide variants (SNVs) and 991,020 were insertions

or deletions (indels) (Table S2). After filtering for rare variants

with a minor allele frequency (MAF) <1% in all annotated popu-

lations (the 1000 Genomes project [1000G],19 the Genome

Aggregation Database [gnomAD],20 theGreater Middle East Var-

iome project [GME],21 and the Human Heredity and Health in Af-

rica project [H3Africa]22,23), there were, on average, 223,867 rare
2 Cell Genomics 3, 100322, July 12, 2023
variants per genome, of which 213,178 were heterozygous and

10,690 were homozygous (Table S2). We discovered an average

of 132,314 novel variants per genome that have not been re-

ported in any of the populations in the public databases that

we used for annotation (Table S2). Furthermore, we found an

average of 13,875 novel variants per individual that were private,

meaning they have not been reported in any of the annotated

populations and they were not present in any other individual

in the cohort (Table S3). In total, there were 2,130,158 novel pri-

vate variants in the cohort (Table S3). As expected, more private

variants were present in parents compared with offspring (Fig-

ure S4). It is important to note that the presence of private vari-

ants may relate to the fact that a substantial amount of genetic

information in African populations is not represented in the cur-

rent human reference genome. As recently reported, the pan-Af-

rican genome contains approximately 10% more DNA than the

most current version of the human reference genome.24 An

average of 23 private variants per individual were predicted to

be possibly pathogenic (Table S3). Given the genetic diversity

present on the African continent and the lack of comprehensive

sequencing of samples from diverse African populations,22,25

this is in line with expectations that we would discover a mean-

ingful number of novel variants in our cohort.

To determine whether there was an excess of potentially path-

ogenic variants in affected compared with unaffected individuals

in the cohort, we performed a burden analysis. We compared

rare and rare homozygous variants under four categories: total

coding, loss of function (LoF), missense damaging, or LoF and

missense damaging. We found no difference in the burden of

these variants between affected and unaffected individuals (Fig-

ure S5). This result is unsurprising given that ASD is a collection

of individually rare diseases and is genetically heterogeneous,

caused by rare alleles of large effect; therefore, an excess of

rare alleles will not be observed except in very large cohorts

that can capture this heterogeneity.26 Given the increased prev-

alence of ASD in East African families, we expect inherited vari-

ation to drive the increase in prevalence with a decrease in het-

erogeneity compared with populations with lower prevalence.

Given the contribution of copy number variants (CNVs) to

ASD,27we called CNVs in affected individuals usingwithin-family

controls by CNVkit.28 Out of the total CNVkit calls, we identified

84 loci that overlapped with known ASD CNVs, as defined by the

Simons Foundation Autism Research Initiative (SFARI) Gene

database29 (one to eight CNVs per affected individual, with an

average of two CNVs) (Table S4A). To identify genomic regions

that were significantly deleted or amplified across multiple

affected individuals compared with controls, we analyzed the

CNVkit segmentation files with GISTIC.30 We identified eight re-

gions on chromosomes 2, 8, 15, 17, and 22 (false discovery rate

<0.01), six deleted and two amplified, that overlapped with

known ASD CNVs (Table S4B). One particular region that stood

out in our CNV analysis was the 17p11.2 locus. Deletions and du-

plications at this locus are associated with Smith-Magenis31 and

Potocki-Lupski syndromes,32 respectively, and have also been

reported in ASD. Both syndromes are characterized by intellec-

tual disability, speech delay, and a host of developmental abnor-

malities. Although African population frequency data for the four

17p11.2 CNVs that we identified (Table S4B) are lacking, we
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examined their frequency in the gnomAD structural variant (SV)

database, which contains data from 10,847 genomes of different

ancestries, including African American.33We did not find the four

CNVs (with the same boundaries) in gnomAD SV; however, we

found CNVs that overlappedwith them. The population allele fre-

quencies for the overlapping CNVs ranged from 0.0046% to

29.8% across all populations and from 0% to 21.3% in the Afri-

can American population in gnomAD SV (Table S4C). Further

investigation including sequencing larger African cohorts and

functional analyses are necessary to determine whether the

identified CNVs play a pathogenic role in ASD in affected individ-

uals in the cohort.

Discovery of candidate ASD variants in known and in
new disease genes
We initially focused our analysis on rare coding variants

(MAF < 1% in 1000G,19 gnomAD,20 GME,21 and H3Africa22,23)

in affected individuals in our cohort that were either de novo or

segregated with ASD in the family under homozygous, com-

pound heterozygous, or X-linked inheritance. We identified, on

average, one de novo and three inherited homozygous rare cod-

ing variants, as well as four compound heterozygous variants in

two genes, per affected individual (Table S5). We also identified,

on average, five X-linked rare coding variants per affected male

(Table S5). In addition, we found no change in the number of rare

de novo variants with parental age, regardless of affection status

(Figure S6). In total, we identified 156 genes that carried 284 rare

potentially pathogenic coding variants (see STAR Methods for

definition) (Table S6). Out of these genes, 16 are reported in

the SFARI Gene database29 and 49 are known disease genes,

some of which are associated with neurodevelopmental pheno-

types including intellectual disability, brain abnormalities, and

epilepsy, as reported in the Online Mendelian Inheritance in

Man (OMIM) database34 and the Gene2Phenotype (G2P) Devel-

opmental Disorders (DD) panel35 (Table S6).

Through homozygosity analysis, wemapped rare inherited ho-

mozygous variants to genomic runs of homozygosity (ROHs) in

affected individuals. We identified an average of 169 rare in-

herited homozygous variants that were located within an ROH,

the vast majority of which were noncoding variants (Table S5).

Three variants were coding and potentially pathogenic (Table

S6). Furthermore, to predict any functional impact for the rare

noncoding inherited homozygous variants within ROHs, we an-

notated them using publicly available chromatin immunoprecip-

itation sequencing (ChIP-seq) and assay for transposase-acces-

sible chromatin with sequencing (ATAC-seq) datasets,36–38 as

previously described39 (see STARMethods for details). We iden-

tified 229 and 240 variants locatedwithin promoter and enhancer

regions, respectively, that are active in the human brain

(Table S5). Of these, 39 variants (zero to four per genome)

were within human brain-specific promoter or enhancer regions

(Table S7).

The identified rare variants were further prioritized based on

their predicted functional impact (see STARMethods for details).

Table 1 summarizes potentially pathogenic variants in known

ASD or neurodevelopmental disease genes for each affected in-

dividual. We identified 45 variants in 18 affected individuals

(approximately one to four variants per individual), including cod-
ing variants in 20 genes and noncoding variants in nine brain-

specific regulatory regions. ASD and neurodevelopmental dis-

ease genes with potentially pathogenic coding variants included

CACNA1C (ASD, Timothy syndrome, MIM: 601005),40 CDH23

(Usher syndrome, MIM: 601067),41 CHD7 (ASD, CHARGE syn-

drome, MIM: 214800),42,43 DLL1 (neurodevelopmental disease,

MIM: 618709),44 FMR1 (ASD, fragile X syndrome, MIM:

300624),45,46 PCDHAC1 (ASD),47,48 TCF7L2 (TCF7L2-related

neurodevelopmental disorder, ASD),49,50 and ZNF407 (SIMHA

syndrome, MIM: 619557).51 Noncoding regulatory variants

included ones in the promotors of CTCF,52 MED13L,53 and

PTPN1154 (Table 1). In addition, there were 66 coding and 17

noncoding variants in 63 genes that have not been previously

associated with ASD or other neurodevelopmental disorders,

and they warrant further investigation and functional character-

ization (Table 2). Variants included frameshift deletions in

GLUD2 and IDH3G (Table 2), both of which encode mitochon-

drial enzymes with major roles in the tricarboxylic acid cycle, a

glutamate dehydrogenase55 and an isocitrate dehydrogenase,56

respectively. Two of the noncoding variants occurred in pro-

moters of BDNF and NPAS4 (Table 2), two extensively studied

genes with established roles in neuronal development and

function.57,58

Genetic diversity and population history of the East
African ASD cohort
The African continent, home to the oldest human populations,

harbors the greatest genetic diversity.15,59–61 This diversity can

be represented by the percentage of the genome that is in a het-

erozygous state. We measured heterozygosity in the East Afri-

can ASD cohort compared with populations from the 1000G19

(Table S8). As expected, we found that the genetic variation is

much higher in the East African cohort (0.12% heterozygosity)

compared with all non-African populations (heterozygosity

ranging from 0.08% to 0.09%) (Figure 1A). Heterozygosity

across the genome in the East African cohort (0.12%) is slightly

higher than that for all other six African populations analyzed

(0.11%) (Figure 1A).

Using principal-component analysis (PCA) to explore the rela-

tionships between the East African ASD cohort and populations

from the 1000G,19 we found that the first principal component

distinguished the East African cohort from non-African popula-

tions (Figure S7A). Our cohort clustered in an intermediate posi-

tion between European and African populations with clear sepa-

ration between our cohort and other African populations. Given

that our cohort is predominantly Ethiopian and Eritrean, this

finding is consistent with expectations since the Ethiopian pop-

ulation is known to have Eurasian admixture.17,62 Five individuals

from one family in our cohort are Kenyan, and these samples

clustered together with other African groups. We then analyzed

the cohort in relationship to other African groups using publicly

available data, which included genotypes from the 1000G19 Afri-

can samples and additional African samples. Samples from 22

African countries were analyzed. The number of samples and

the geographic regions of origin are listed in Table S9.19,63–70

Samples from countries in Central Africa, East Africa, North Af-

rica, South Africa, and West Africa clustered together in their

respective regions (Figure S7B). Our ASD cohort clustered
Cell Genomics 3, 100322, July 12, 2023 3



Table 1. Potentially pathogenic variants in known ASD and neurodevelopmental disease genes identified in affected individuals from the East African ASD cohort

Affected

individual Inheritance Variant(s)

Variant

type Gene(s)

Variant

location Mutation

Relevant OMIM or

G2PDD phenotype

SFARI

score

pLI

score

LOEUF

score

MCD-01-4 inherited

homozygous

(ROH)

chr7:91,321,289:C:A SNV FZD1,

MTERF1,

AKAP9

enhancer – – 2

(AKAP9)

0.04;

0; 0

0.60;

1.26;

0.40

MCD-02-3 X-linked chrX:135,960,149:G:A missense RBMX exonic p.P105S intellectual disability

(XLR)

– 0.83 0.43

MCD-04-5 inherited

homozygous

(ROH)

chr12:116,591,972:C:G;

chr12:116,592,155:T:A;

chr12:116,714,156:T:C

SNV MED13L enhancer,

promoter

– impaired intellectual

development (AD)

1 1 0.06

MCD-04-5 inherited

homozygous

(ROH)

chr7:98,477,886:T:- Indel TRRAP promoter – developmental delay

(AD)

2S 1 0.06

MCD-05-3 compound

heterozygous

chr17:78,078,662:G:A;

chr17:78,083,769:C:G

missense GAA exonic p.A93T;

p.P451R

glycogen storage

disease II (AR)

– 0 0.98

MCD-05-3 inherited

homozygous

chr10:114,849,211:C:A missense TCF7L2 exonic p.P179H TCF7L2-related

neurodevelopmental

disorder

1 1 0.27

MCD-07-3 inherited

homozygous

(ROH)

chr16:71,062,908:A:C SNV HYDIN,

VAC14

enhancer – ciliary dyskinesia

(AR) (HYDIN);

striatonigral

degeneration (AR),

progressive

neurological disorder

and regression

(VAC14)

2

(HYDIN)

0;

0.19

0.51;

0.42

MCD-07-3 compound

heterozygous

chr17:78,081,608:A:G;

chr17:78,086,394:G:A

missense GAA exonic p.N290D;

p.R591Q

glycogen storage

disease II (AR)

– 0 0.98

MCD-08-3* De novo chr6:170,597,575:T:C missense DLL1 exonic p.E141G neurodevelopmental

disorder (AD)

2S 1 0.10

MCD-08-3* De novo chr8:61,757,960:C:A missense CHD7 exonic p.H1734Q CHARGE

syndrome (AD)

1 1 0.08

MCD-08-3* De novo chr5:140,308,275:.:T Frameshift PCDHAC1 exonic p.S601Lfs*4 – 2 0 1.02

MCD-08-3* De novo chr12:57,570,830:C:T missense LRP1 exonic p.T1333I – 2 1 0.06

MCD-13-3 inherited

homozygous

(ROH)

chr12:112,927,353:C:T SNV PTPN11 enhancer – LEOPARD

syndrome (AD)

1 1 0.14

MCD-13-3 X-linked chrX:77,245,178:A:T missense ATP7A exonic p.T354S Menkes

disease (XLR)

– 1 0.22

MCD-15-3 compound

heterozygous

chr8:2,886,901:G:A;

chr8:3,087,702:C:T

missense CSMD1 exonic p.L2599F;

p.R1402H

– 2 1 0.21

(Continued on next page)
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Table 1. Continued

Affected

individual Inheritance Variant(s)

Variant

type Gene(s)

Variant

location Mutation

Relevant OMIM or

G2PDD phenotype

SFARI

score

pLI

score

LOEUF

score

MCD-15-3 compound

heterozygous

chr8:17,815,232:T:C;

chr8:17,830,089:C:G

missense PCM1 exonic p.M663T;

p.T1279R

– 2 0 0.58

MCD-16-3 compound

heterozygous

chr12:2,794,928:G:A;

chr12:2,797,853:C:T

missense CACNA1C exonic p.R1875Q;

p.R2017W

Timothy syndrome (AD) 1 1 0.10

MCD-17-3 compound

heterozygous

chr5:89,923,448:G:T;

chr5:89,949,452:A:T;

chr5:90,368,293:T:C

missense ADGRV1 exonic p.D365Y;

p.N1354I;

p.L6061S

Usher syndrome (AR) – 0 0.52

MCD-17-3 inherited

homozygous

(ROH)

chr1:154,842,199:-:

GCTGCT

indel KCNN3 promoter – Zimmermann-Laband

syndrome 3 (AD)

– 0.97 0.32

MCD-18-3 compound

heterozygous

chr1:215,901,460:C:T;

chr1:215,933,087:G:T

missense USH2A exonic p.G3993D;

p.Q3716K

Usher syndrome (AR) 2 0 0.86

MCD-18-3 inherited

homozygous

chr7:4,830,879:G:A missense AP5Z1 exonic p.V763M spastic paraplegia (AR) – 0 1.47

MCD-19-3 compound

heterozygous

chr18:50,432,527:A:G;

chr18:51,013,227:C:T

missense DCC exonic p.N176D;

p.P1266L

developmental split-brain

syndrome (AR); Mirror

movements 1 (AD)

2 0.99 0.28

MCD-19-3 compound

heterozygous

chr18:72,775,399:G:A;

chr18:72,776,411:T:C

missense ZNF407 exonic p.D1908N;

p.L2245P

SIMHA syndrome (AR) – 1 0.09

MCD-19-3 inherited

homozygous

(ROH)

chr3:123,168,229:C:A SNV ADCY5 promoter – neurodevelopmental

disorder with dyskinesia

(AD or AR)

2 1 0.25

MCD-20-3,

MCD-20-4

inherited

homozygous

(ROH)

chr16:67,596,146:G:A SNV CTCF promoter – intellectual development

disorder (AD)

1 1 0.15

MCD-22-3 inherited

homozygous

chr10:73,485,206:C:T missense CDH23 exonic p.R1170W Usher syndrome (AR) – 0 0.57

MCD-24-3 compound

heterozygous

chr4:187,538,263:T:A;

chr4:187,629,414:T:C

missense FAT1 exonic p.N2991Y;

p.E523G

– 2 0 0.43

MCD-25-3 inherited

homozygous

(ROH)

chr2:25,140,835:G:A;

chr2:25,142,282:C:T

SNV ADCY3 promoter – – 2 0 0.68

MCD-33-4 compound

heterozygous

chr5:150,886,883:G:T;

chr5:150,901,082:C:T

missense FAT2 exonic p.P4117T;

p.G3691E

spinocerebellar

ataxia (AD)

– 0 0.51

MCD-33-4 X-linked chrX:147,027,118:A:G missense FMR1 exonic p.Q462R fragile X syndrome

(XLR)

1 0.65 0.42

List of deleterious coding and brain-specific regulatory noncoding variants affecting known ASD or neurodevelopmental disease genes identified for each affected individual. ROH indicates

inherited homozygous variants that are within runs of homozygosity. For SFARI score, S denotes syndromic genes. AD, autosomal dominant; AR, autosomal recessive; indel, insertion or deletion;

LOEUF, loss-of-function observed/expected upper bound fraction; SNV, single nucleotide variant; XLR, X-linked recessive. *Sample with a missing parent sample where compound heterozy-

gous variant calling was not possible and de novo, inherited homozygous, and X-linked variant calling relied on one parent only.
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Table 2. Potentially pathogenic variants in novel candidate ASD genes identified in affected individuals from the East African ASD cohort

Affected

individual Inheritance Variant(s)

Variant

type Gene(s)

Variant

location Mutation

pLI

score

LOEUF

score

MC-35-3 compound

heterozygous

chr1:3,329,057:G:A;

chr1:3,331,149:G:T

missense PRDM16 exonic p.G766S;

p.D877Y

1 0.19

MC-35-3 X-linked chrX:9,863,880:C:G missense SHROOM2 exonic p.S644R 0 0.53

MCD-01-3 inherited

homozygous

(ROH)

chr11:27,743,920:C:A SNV BDNF promoter – 0.66 1.52

MCD-02-3 X-linked chrX:112,022,894:C:T missense AMOT exonic p.G830R 1 0.27

MCD-02-3 X-linked chrX:153,051,602:

GGCTACAGGA:-

Frameshift IDH3G exonic p.L379Pfs*91 0.09 0.71

MCD-04-5 compound

heterozygous

chr2:108,924,874:G:C;

chr2:108,910,151:C:T

missense;

Stop gain

SULT1C2 exonic p.R282T;

p.Q10X

0 1.34

MCD-04-5 X-linked chrX:67,731,809:G:A missense YIPF6 exonic p.R59H 0.90 0.41

MCD-05-3 compound

heterozygous

chr11:92,577,302:C:T;

chr11:92,533,549:G:A

missense FAT3 exonic p.S3590L;

p.R2457Q

1 0.25

MCD-06-3* inherited

homozygous

(ROH)

chr15:79,143,366:A:T SNV ADAMTS7,

MORF4L1,

CTSH

enhancer – 0; 0.99;

0

0.65;

0.27;

1.01

MCD-07-3 inherited

homozygous (ROH)

chr10:16,392,185:G:A SNV MINDY3,

PTER

enhancer – 0.01; 0 0.054;

1.82

MCD-07-3 inherited

homozygous (ROH)

chr16:1,040,862:G:A SNV SOX8,

SSTR5-AS1,

SSTR5

enhancer – 0.67;

–; 0

0.51;

–; 1.59

MCD-08-3* inherited

homozygous (ROH)

chr6:96,506,344:-:

AAAAA

Indel FUT9, MANEA,

UFL1

enhancer – 0.08;

0; 0

0.71;

0.86;

0.84

MCD-10-3 compound

heterozygous

chr3:97,686,151:T:C;

chr3:97,677,992:T:C

missense RIOX2 exonic p.Y96C;

p.H195R

0 1.07

MCD-11-3 inherited

homozygous (ROH)

chr4:15,937,843:A:G missense FGFBP1 exonic p.V138A 0.59 1.06

MCD-11-3 X-linked chrX:101,909,395:A:G missense GPRASP1 exonic p.E185G 0.31 0.42

MCD-13-3 compound

heterozygous

chr6:75,893,146:A:G;

chr6:75,838,134:A:G

missense COL12A1 exonic p.I504T;

p.V2073A

0.97 0.28

MCD-13-3 compound

heterozygous

chr15:59,373,446:A:G;

chr15:59,359,263:G:C

missense RNF111 exonic p.M754V;

p.G556A

1 0.21

MCD-14-3* X-linked chrX:9,693,868:C:T missense GPR143 exonic p.S378N 0.93 0.37

MCD-14-3* X-linked chrX:153,035,691:C:T missense PLXNB3 exonic p.P592S 0.23 0.37

MCD-14-3* De novo chr8:144,688,700:A:T stop gain PYCR3 exonic p.C154X 0 1.43

MCD-15-3 compound

heterozygous

chr22:50,315,388:G:A;

chr22:50,315,966:C:G

missense CRELD2 exonic p.E191K;

p.S205C

0 1.05

(Continued on next page)
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Table 2. Continued

Affected

individual Inheritance Variant(s)

Variant

type Gene(s)

Variant

location Mutation

pLI

score

LOEUF

score

MCD-15-3 X-linked chrX:71,873,343:A:G missense PHKA1 exonic p.I360T 0 0.55

MCD-16-3 X-linked chrX:110,491,920:C:T missense CAPN6 exonic p.R454H 0.82 0.39

MCD-16-3 De novo chr5:31,317,594:A:T missense CDH6 exonic p.N542I 0.92 0.34

MCD-16-3 X-linked chrX:83,128,919:G:T missense CYLC1 exonic p.K401N 0.93 0.37

MCD-16-3 compound

heterozygous

chr13:76,414,552:C:T;

chr13:76,409,449:G:T

missense LMO7 exonic p.P935L;

p.D870Y

0 0.41

MCD-17-3 X-linked chrX:120,182,861:GT:. frameshift GLUD2 exonic p.W442Afs*16 0.03 1.27

MCD-17-3 inherited

homozygous (ROH)

chr10:25,463,474:G:C SNV GPR158-AS1 promoter – – –

MCD-17-3 X-linked chrX:17,820,025:C:T missense RAI2 exonic p.E36K 0.61 0.66

MCD-17-3 X-linked chrX:153,714,877:T:C missense UBL4A exonic p.Q16R 0.30 1.18

MCD-18-3 compound

heterozygous

chr5:74,364,457:G:A;

chr5:74,532,495:T:-

missense;

Frameshift

ANKRD31 exonic p.R1837C;

p.Q6Rfs*10

0 0.87

MCD-18-3 X-linked chrX:149,680,360:C:T missense MAMLD1 exonic p.L672F 0.63 0.45

MCD-18-3 compound

heterozygous

chr12:110,943,480:C:T;

chr12:110,952,911:C:T

missense RAD9B exonic p.P59L;

p.A110V

0 1.37

MCD-19-3 compound

heterozygous

chr2:209,210,794:A:G;

chr2:209,190,942:C:G

missense PIKFYVE exonic p.K1711R;

p.T1136S

0 0.39

MCD-21-3 compound

heterozygous

chr3:111,603,790:A:G;

chr3:111,603,963:T:A

missense PHLDB2 exonic p.K289R;

p.S347T

0 0.59

MCD-21-3 inherited

homozygous (ROH)

chr15:55,881,474:TTTTTG:- indel PYGO1 promoter – 0.99 0.23

MCD-22-3 compound

heterozygous

chr5:138,857,917:C:T;

chr5:138,858,039:C:A

missense TMEM173 exonic p.A233T;

p.G192V

0 0.90

MCD-23-3 inherited

homozygous (ROH)

chr8:28,166,424:-:

TGTGTGTGTGTGTGTGT

indel ELP3, PNOC enhancer – 0; 0.02 1.02;

1.10

MCD-24-3 compound

heterozygous

chr3:52,555,908:G:A;

chr3:52,557,482:G:A

missense STAB1 exonic p.R2071H;

p.A2394T

0 0.81

MCD-24-3 compound

heterozygous

chr15:54,792,341:C:T;

chr15:54,919,033:G:A

missense UNC13C exonic p.H1709Y;

p.G2123R

0 0.54

MCD-24-3 inherited

homozygous (ROH)

chr20:62,406,258:G:A SNV ZBTB46 promoter – 0.81 0.40

MCD-25-3 compound

heterozygous

chr1:24,389,694:C:T;

chr1:24,387,787:G:C

missense MYOM3 exonic p.G1231E;

p.A1316G

0 1.11

MCD-25-3 inherited

homozygous (ROH)

chr7:88,387,647:T:G;

chr7:88,387,990:T:C;

chr7:88,388,566:G:A

SNV ZNF804B promoter – 0 1

MCD-26-3 compound

heterozygous

chr19:55,748,036:G:A;

chr19:55,742,199:G:C

missense PPP6R1 exonic p.R655C;

p.P838R

0.98 0.30

(Continued on next page)
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Table 2. Continued

Affected

individual Inheritance Variant(s)

Variant

type Gene(s)

Variant

location Mutation

pLI

score

LOEUF

score

MCD-27-3 compound

heterozygous

chr15:68,609,616:C:T;

chr15:68,624,693:C:T

missense ITGA11 exonic p.R901Q;

p.V517I

0 0.55

MCD-27-3 inherited

homozygous

chr11:74,570,283:C:T;

chr11:74,638,465:C:T

missense XRRA1 exonic p.V356M;

p.V157M

0 0.78

MCD-28-3 compound

heterozygous

chr14:105,414,461:C:G;

chr14:105,416,755:T:G

missense AHNAK2 exonic p.E2343Q;

p.E1578A

0 1.01

MCD-28-3 inherited

homozygous

chr4:101,331,507:G:A missense EMCN exonic p.H240Y 0 0.96

MCD-28-3 compound

heterozygous

chr20:20,493,587:C:A;

chr20:20,552,253:G:A

missense RALGAPA2 exonic p.V1476F;

p.A1002V

0 0.59

MCD-29-3* inherited

homozygous (ROH)

chr8:132,048,583:C:T;

chr8:132,052,935:G:C;

chr8:132,053,736:C:T

SNV ADCY8 promoter – 0 0.54

MCD-29-3* inherited

homozygous (ROH)

chr3:159,560,791:

TTTTTTTTTTTTT:-

Indel IQCJ-SCHIP1,

SCHIP1

promoter – 0.03; 0.99 0.53;

0.23

MCD-30-3* inherited

homozygous (ROH)

chr11:66,190,893:T:G SNV NPAS4 promoter – 0.97 0.32

MCD-32-4 X-linked chrX:77,378,818:A:C missense PGK1 exonic p.N295H 0.77 0.47

MCD-32-4 X-linked chrX:131,205,199:G:A missense STK26 exonic p.A234T 0.31 0.54

MCD-32-4 X-linked chrX:37,931,320:G:C missense SYTL5 exonic p.G117A 0 0.65

MCD-33-3;

MCD-33-4

compound

heterozygous

chr12:58,220,823:C:T;

chr12:58,220,841:C:T;

chr12:58,220,831:C:G

missense CTDSP2 exonic p.V104M;

p.D98N;

p.R101T

0.11 0.67

List of deleterious coding and brain-specific regulatory noncoding variants affecting novel candidate ASD genes identified for each affected individual. ROH indicates inherited homozygous

variants that are within runs of homozygosity. Indel, insertion or deletion; LOEUF, loss-of-function observed/expected upper bound fraction; SNV, single nucleotide variant. * Samples with a

missing parent sample where compound heterozygous variant calling was not possible and de novo, inherited homozygous, and X-linked variant calling relied on one parent only.
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Figure 1. Heterozygosity and population structure of the East African ASD cohort

(A) Heterozygosity across the human genome calculated in the East African ASD (EA ASD) cohort and the 1000 Genomes project populations from all continents.

The East African genome is enriched for heterozygous variants compared with non-African genomes. Mean ± SEM are shown in black. Population abbreviations

are defined in Table S8.

(legend continued on next page)
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away from other groups on the first principal component in a po-

sition adjacent to other East African groups, particularly Kenya,

and intermediate between groups from West Africa and North

Africa (Figure S7B). While more sequencing on the African conti-

nent is needed to capture regional genetic diversity, the separa-

tion of clusters from various geographic regions supports our

observation that our predominantly Ethiopian and Eritrean

cohort is distinct from other African groups.

Population admixture in the East African ASD cohort
East African populations, and in particular the Ethiopians, have

a proportion of Eurasian ancestry.18,62 We carried out global

admixture analysis first on our cohort alone to determine the

number of presumed admixed populations and then analyzed

our cohort in combination with data from the 1000G19 to

determine which modern-day populations from the 1000G19

(Table S8) are most closely related to the admixed ancestral

populations in our cohort. We ran the analysis using values

of K from 2 to 20, where K is the number of presumed ances-

tral populations (Figures 1B and S8). For the East African ASD

cohort, K = 2 yielded the smallest value for cross-validation

error indicating two admixed ancestral populations in our

cohort (Figure S9A). For the dataset combined with the

1000G,19 K = 9 yielded the lowest cross-validation error, indi-

cating nine presumed ancestral populations in the combined

dataset (Figure S9B). Global admixture analysis with nine pre-

sumed ancestral populations in the combined East African

ASD cohort and 1000G19 dataset indicated that the modern-

day reference populations most closely related to the ances-

tral admixed populations in our cohort are the Luhya in

Webuye, Kenya (LWK) and the Toscani in Italy (TSI) (Figure 1B;

Table S10).

The proportion of ancestry from each presumed population

was determined for every sample and averaged across the

cohort (Table S10). For samples in the East African ASD cohort,

the predominant ancestry was related to population 6

(50.35%), which is most closely related to the LWK group,

and population 8 (16.58%), which is most closely related to

the TSI group (Table S10). Consistent with our PCA analysis,

which showed the ASD cohort as being distinct from other Af-

rican groups, population six, which represents the most closely

related African population to our cohort, is not the predominant

population in the LWK group, representing 11.26% of the LWK

ancestry (Table S10). The LWK are also admixed and show a

higher proportion of admixture related to other African groups

(Table S10). In line with our PCA results, the East African

ASD cohort clusters most closely with the LWK group but the

LWK group clusters more closely with other African groups.

Thus, the East African ASD cohort is distinct from other African

groups, with the LWK being the most closely related modern-

day population.
(B) Global admixture analysis in the East African ASD cohort and populations from

ASD cohort. The most closely related groups to the ancestral groups for the ASD

Population abbreviations are defined in Table S8.

(C) Global admixture analysis in the ASD cohort and African populations (listed in

African reference population, the East African ASD cohort shows distinct ancestry

defined in Table S9.
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We carried out the same admixture analysis on a combined

dataset of the ASD cohort and samples from the 22 African

groups (Table S9). The lowest cross-validation error was

observed at K = 3 (Figure S9C). Despite the small number of

samples from some of the regions (Table S9), which affected

the ability to discern admixture proportions, the analysis showed

that the East African ASD cohort is distinct from other African

groups (Figures 1C and S10).

Genomic variants within differential ancestry peaks
To leverage the full information from WGS with our local admix-

ture analysis, we calculated the number of alleles in the entire

cohort that mapped to the LWK reference population across all

markers. We expect that risk alleles would appear in regions en-

riched forAfricanancestry given thehighprevalenceofASD in the

East African population compared with the prevalence in the US

and Europe. Since by far the predominant ancestry in the cohort

mapped to the LWK reference, it was not possible to discern re-

gions with overrepresentation of African ancestry as most of the

genome for all individuals was 100% LWK reference. We then

looked for genomic regions that have differential ancestry repre-

sentation between affected and unaffected individuals (Figures 2

and S11). Given that transmitted ancestral segments can vary

within a family as a result of recombination, we took a familial

analysis approach in our cohort. We compared the percentage

of LWK alleles at each position in affected versus unaffected in-

dividuals (Table S11A). We defined admixture peaks as regions

where the difference in the percentage of LWK mapped alleles

(absolute value of delta [abs(D)]) was R15% (Figure 2;

Table S11B). We extracted variants mapping to these differential

ancestry peaks and found an average of 13,575 variants per indi-

vidual, 4,364 of whichwere genic (Table S11C).We restricted our

analysis to rare variants with an MAF < 1% in all annotated pop-

ulations (1000G,19 gnomAD,20 GME,21 and H3Africa22,23) and

filtered for variants that segregate with phenotype within families

(Table S11D). We identified a total of 205 variants, the majority

affecting noncoding regions, one nonframeshift insertion, and

five nonsynonymous SNVs resulting in missense mutations

(Table S11D). These five variants occurred in two genes,

CFAP46 and ZFHX3, that have not been implicated in ASD or

other neurodevelopmental disorders (Table S11D). CFAP46 en-

codes a cilia- and flagella-associated protein with high expres-

sion in the brain, and ZFHX3 encodes a transcription factor with

roles in the circadian system.71,72 One of the noncoding variants

mapped to an intron of TUBGCP2, which encodes a component

of the microtubule-organizing center. Mutations in TUBGCP2

result in neurodevelopmental phenotypes, including pachygyria,

microcephaly, and developmental delay (MIM: 618737).73 In

addition, we did not find any variants that were specific to our

cohort and common to the entire cohort that could be less than

fully penetrant and acting to sensitize the genetic background.
the 1000 Genomes project with K = 9 indicated two admixed populations in the

cohort are the Luhya in Webuye, Kenya (LWK) and the Toscani in Italy (TSI).

Table S9) with K = 3. While the LWK population is the most closely available

that clusters away from other African populations. Population abbreviations are
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Figure 2. Differential ancestry peaks between affected and unaffected individuals across the genome

Haplotypes were assigned to either LWK or TSI ancestry, and local ancestry analysis was performed to identify genomic regions that exhibit differential LWK/TSI

ancestry between affected and unaffected individuals. The absolute delta (abs(D)) represents the absolute value of the difference in percentage alleles of LWK

ancestry comparing affected and unaffected individuals. Variants under admixture peaks with deltaR 15% (shaded area) are presented in Table S11. Data points

are colored in red and blue for alternating chromosomes.
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Local admixture mapping identifies population-specific
ASD risk variants
We sought to investigate whether population-specific variants

were preferentially transmitted to affected offspring in our cohort.

We mapped alleles to either the LWK or the TSI reference popu-

lations and generated haplotype segments that are assigned to

one of the two reference populations for each individual across

all chromosomes. These haplotypes were used to construct

segments with markers that were assigned a value of 0, 1, or 2

to indicate the count of LWK-assigned alleles at each position.

The encoded alleles at each marker position were treated as ge-

notypes and analyzed using the transmission disequilibrium test

(TDT) in our cohort of trio and quad families. A quantile-quantile

(Q-Q) plot showed that the data are normally distributed (Fig-

ure S12). Correcting for multiple testing using the number of

ancestry haplotype switches (Table S12), the Bonferroni cor-

rected significance threshold was p = 3.323 10�4. We identified

755 genomic regions with differential transmission of alleles that

met this threshold (p < 3.323 10�4) (Table S13). Out of these re-

gions, there were 10 that had the highest TDTae statistic (LRT

>65), andwhere the LWK-assigned allelesweremore often trans-

mitted to affectedoffspring (Table 3). This suggests that theLWK-

assigned haplotypes for these regions, which are more often

transmitted to affected offspring, confer ASD risk. The 10 regions

included several known ASD and neurodevelopmental disease

genes, including ADSL, CREBBP, EHMT1, and GRIN1 (Table 3).

Of note, one of these regions located on chromosome 8 (chr8:

32,045,867-35,209,816) has an odds ratio (OR) = 11.31 (Tables 3

and S13). The region contains 10 genes, two of which, TTI2 and

UNC5D, have been previously reported in neurodevelopmental

disease, including ASD and intellectual disability. TTI2 encodes

Telo2-Interacting Protein 2, which functions in DNA damage

response and is a member of the Triple T complex, which regu-

lates telomere length and the abundance of phosphoinositide

3-kinase-relatedprotein kinases, key signalingmolecules in brain

development and function.74 Pathogenic recessive variants in
TTI2 cause a developmental disorder characterized by intellec-

tual disability and severe speech delay (MIM: 615541).48,74,75

Variants in the regulatory region upstream of UNC5D have been

identified in ASD, although the gene itself has not been strongly

linked to the disorder (SFARI Gene score of 3).76–78 UNC5D is a

receptor for the axon guidance molecule Netrin 1.79 Other genes

in the region include NRG1, which has been associated with

schizophrenia risk80,81 and encodes for the signaling protein

Neuregulin 1 with critical roles in cortical development, function,

and plasticity.82

DISCUSSION

We performed WGS in a cohort of 33 families of Ethiopian, Eri-

trean, and Kenyan descent. We discovered over 2.1 million pri-

vate variants in 129 individuals that have not been previously

reported. This is almost twice the number of variants per indi-

vidual compared with a recent report that identified 3.4 million

novel variants from WGS of 426 African individuals.23 By prior-

itizing rare variants that were either de novo or segregated with

ASD in the family under different modes of inheritance, we

identified potentially causative variants in known ASD genes,

neurodevelopmental disorder genes, as well as genes not pre-

viously associated with any disorder. The known genes

included high-confidence ASD genes CACNA1C, CHD7,

FMR1, and TCF7L2, among other neurodevelopmental disease

genes (e.g., CDH23, DLL1, RBMX). The missense variant iden-

tified in FMR1 maps to a region on the encoded protein

FMRPrequired for nuclear export83,84 and for its interaction

with RANBP9,85 a protein involved in many cellular processes,

including nuclear trafficking and microtubule nucleation,86,87

and potentially modulating FMRP RNA-binding properties.85

In addition, we identified noncoding variants in regulatory ele-

ments of known ASD genes (CTCF, MED13L, and PTPN11) (Ta-

ble 1). Sequencing studies in larger cohorts and additional

experimental validation will be required to establish causality
Cell Genomics 3, 100322, July 12, 2023 11



Table 3. Genomic regions where the African-assigned LWK alleles confer ASD risk

Region

number

Start

marker

End

marker Chromosome Start End Size (Mb) Genes

Known

ASD gene(s)

SFARI

score

Known

neurodevelopmental

disease gene(s)

1 10773 10905 2 153,362,927 155,354,991 1.99 6 GALNT13 2 –

2 4074 4167 9 73,274,607 74,655,760 1.38 5 – – –

3 590 978 11 5,199,208 8,602,452 3.40 98 APBB1 2 DCHS1, EIF3F

4 6177 6239 12 84,038,708 85,090,747 1.05 – – – –

5 2236 2384 22 38,038,060 40,816,749 2.78 68 ADSL, CACNA1I,

CSNK1E, SGSM3,

TNRC6B

1; 2; 2; 2; 2 PDGFB, PLA2G6,

SOX10

6 2823 2998 14 54,334,781 57,025,840 2.69 23 – – –

7 298 320 16 3,747,204 4,045,272 0.30 4 CREBBP 1 –

8 8808 8816 1 142,685,709 142,705,564 0.02 1 – – –

9 8973 9185 9 138,862,766 141,112,375 2.25 104 CACNA1B, EHMT1,

GRIN1, PNPLA7

2; 1; 1; 2 ABCA2, CACNA1B,

INPP5E, MAN1B1,

PMPCA

10 3504 3686 8 32,045,867 35,209,816 3.16 10 TTI2, UNC5D S; 3 –

TDT using alleles derived from local admixture analysis encoding African (LWK) or European (TSI) ancestry identified regions of the genome in which

the African-assigned LWK alleles were transmitted to affected offspring more frequently than the European-assigned TSI alleles (Bonferroni corrected

p < 3.32 3 10�4). The top 10 regions with TDTae statistic (LRT) >65 are shown. For SFARI score, S denotes syndromic genes.
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for the candidate genes that have not been previously linked to

disease (Table 2).

While individuals fromother regions inAfricaweresequencedas

part of the 1000G,19 no samples from Ethiopia were included in

either the 1000G19 or the HapMap projects.19,88 Previous work

genotyping individuals from Ethiopia has detected admixture

with a significant Eurasian ancestry contribution that is estimated

to result from genetic backflow into Africa, possibly from the

Levant region approximately 3,000 years ago.17,18 East Africa,

including Ethiopia, is an important region in the study of human

migration where ancient radiation events may have contributed

to the genetic makeup of other groups across the continent63

and more recent Eurasian admixture is likely to have contributed

to the Eurasian ancestry component in southern Africa.17 Since

East African populations, and in particular the Ethiopians, have a

proportion of Eurasian ancestry,18,62 we analyzed the WGS data

to determine genetic admixture in our cohort. We then performed

admixture mapping, which is a method for identifying disease-

causing variants in populations where the disease risk varies by

ancestry. It assumes that the frequency of the causal variant(s) dif-

fers between ancestral populations.89,90 Since the prevalence of

ASD ishigher inEastAfricanpopulations than inother populations,

we hypothesized that individuals from our cohort may harbor

unique ASD risk variants that are not found in other populations.

Although we hypothesized that this increased prevalence is due

to inherited genetic factors, we expect that the East African popu-

lation is still subject to the background factors driving baseline

prevalence of ASD in all populations, including de novomutation.

To investigate an inherited genetic component to ASD in our

cohort, we performed TDT analysis using markers coded for local

admixture ancestry.We identified 10 loci on chromosomes 1, 2, 8,

9, 11, 12, 14, 16, and 22 that are preferentially transmitted to

affected offspring (Table 3). Several genes in these regions are

known ASD and neurodevelopmental disease genes (e.g., ADSL,
12 Cell Genomics 3, 100322, July 12, 2023
CREBBP, EHMT1, and GRIN1) (Table 3). The finding indicates

that the alleles assigned to the LWK African reference population

confer risk, consistent with the idea that admixture mapping can

identify risk alleles that will be derived from the group with higher

prevalence for a phenotype. The LWK group is a modern-day

proxy for the ancestral admixed African genetic contribution,

which we cannot sample directly. Although prevalence studies

have not been carried out in Kenya, several studies point to an

increased prevalence of ASD in children born to East African par-

ents,8–11 consistent with our finding that the LWK-assigned seg-

ments confer risk.

Most of the diversity present in the human genome remains on

the continent of Africa, since populations that migrated out of Af-

rica over 50,000 years ago were comparatively small and carried

only a subset of the standing variation of the parent popula-

tions.60,61 The identification of variants in African populations

will lead to an understanding of common biological processes

that affect health and disease in all populations.25 Perhaps

most importantly, as genetics findings make their way into the

clinic, equity in healthcaredependson inclusionof all humanpop-

ulations.12–14 Current databases are biased toward populations

of European ancestry,91 giving an incomplete picture of human

diversity and inevitably failing to capture population-specific var-

iants and genetic backgrounds that aremedically relevant. Multi-

ple efforts have been undertaken and are currently underway to

sequence individuals from the thousands of diverse populations

inAfrica in order to provide amorecomplete understandingof hu-

man genetic diversity.12,16,22,92 Our study contributes to unravel-

ing the genetic underpinnings of ASD in an African population.

Limitations of the study
A key starting point in our investigation is the increased preva-

lence of ASD in children of East African ancestry. Another major

driver for our study is the diversity gap in existing genetic studies.
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Thus, we set out to investigate the genetic underpinnings of this

increased prevalence and to contribute to the ongoing efforts to

bridge the diversity gap. While an inherent limitation to our study

is the small size of the cohort we analyzed, we were able to

leverage the power of African genomics to inform a complex dis-

order. In future efforts, a larger sample size will enable further an-

alyses, including better cataloging of structural variation. In addi-

tion, we grappled with the complete lack of ASD prevalence

studies in the East African countries represented by our study

participants (Ethiopia, Eritrea, and Kenya). We therefore relied

on data from prevalence studies in immigrant populations, and

we discuss the potential limitation of this approach in the section

‘‘introduction.’’ The current work further emphasizes the need for

ASD genetics and prevalence studies in Africa, and it contributes

to the growing efforts aimed at understanding the genetics of

ASD and other neurodevelopmental disorders in Africa.
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L.C., Khera, A.V., Lowther, C., Gauthier, L.D., Wang, H., et al. (2020). A

structural variation reference formedical and population genetics. Nature

581, 444–451. https://doi.org/10.1038/s41586-020-2287-8.

34. OMIM, Online Mendelian Inheritance in Man. http://omim.org/.

35. Thormann, A., Halachev, M., McLaren, W., Moore, D.J., Svinti, V., Camp-

bell, A., Kerr, S.M., Tischkowitz, M., Hunt, S.E., Dunlop, M.G., et al.

(2019). Flexible and scalable diagnostic filtering of genomic variants us-

ing G2P with Ensembl VEP. Nat. Commun. 10, 2373. https://doi.org/10.

1038/s41467-019-10016-3.

36. Cheung, I., Shulha, H.P., Jiang, Y., Matevossian, A., Wang, J., Weng, Z.,

and Akbarian, S. (2010). Developmental regulation and individual differ-

ences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc.

Natl. Acad. Sci. USA 107, 8824–8829. https://doi.org/10.1073/pnas.

1001702107.

37. Ernst, J., Kheradpour, P., Mikkelsen, T.S., Shoresh, N., Ward, L.D., Ep-

stein, C.B., Zhang, X., Wang, L., Issner, R., Coyne, M., et al. (2011). Map-

ping and analysis of chromatin state dynamics in nine human cell types.

Nature 473, 43–49. https://doi.org/10.1038/nature09906.

38. Markenscoff-Papadimitriou, E.,Whalen, S., Przytycki, P., Thomas, R., Bi-

nyameen, F., Nowakowski, T.J., Kriegstein, A.R., Sanders, S.J., State,

M.W., Pollard, K.S., and Rubenstein, J.L. (2020). A chromatin accessi-

bility atlas of the developing human telencephalon. Cell 182, 754–

769.e18. https://doi.org/10.1016/j.cell.2020.06.002.

39. Tuncay, I.O., Parmalee, N.L., Khalil, R., Kaur, K., Kumar, A., Jimale, M.,

Howe, J.L., Goodspeed, K., Evans, P., Alzghoul, L., et al. (2022). Analysis

of recent shared ancestry in a familial cohort identifies coding and non-

coding autism spectrum disorder variants. NPJ Genom. Med. 7, 13.

https://doi.org/10.1038/s41525-022-00284-2.

http://refhub.elsevier.com/S2666-979X(23)00090-3/sref11
http://refhub.elsevier.com/S2666-979X(23)00090-3/sref11
http://refhub.elsevier.com/S2666-979X(23)00090-3/sref11
http://refhub.elsevier.com/S2666-979X(23)00090-3/sref11
http://refhub.elsevier.com/S2666-979X(23)00090-3/sref11
https://doi.org/10.1186/s13023-022-02391-w
https://doi.org/10.1016/j.medj.2022.05.010
https://doi.org/10.1038/s41588-019-0379-x
https://doi.org/10.1038/s41588-019-0379-x
https://doi.org/10.1038/nature11632
https://doi.org/10.1038/nature11632
https://doi.org/10.1038/nature13997
https://doi.org/10.1038/nature13997
https://doi.org/10.1016/j.ajhg.2012.05.015
https://doi.org/10.1073/pnas.1313787111
http://refhub.elsevier.com/S2666-979X(23)00090-3/sref19
http://refhub.elsevier.com/S2666-979X(23)00090-3/sref19
http://refhub.elsevier.com/S2666-979X(23)00090-3/sref19
http://refhub.elsevier.com/S2666-979X(23)00090-3/sref19
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/ng.3592
https://doi.org/10.1038/ng.3592
http://refhub.elsevier.com/S2666-979X(23)00090-3/sref22
http://refhub.elsevier.com/S2666-979X(23)00090-3/sref22
http://refhub.elsevier.com/S2666-979X(23)00090-3/sref22
http://refhub.elsevier.com/S2666-979X(23)00090-3/sref22
https://doi.org/10.1038/s41586-020-2859-7
https://doi.org/10.1038/s41588-018-0273-y
https://doi.org/10.1038/s41588-018-0273-y
https://doi.org/10.1016/j.cell.2017.09.037
https://doi.org/10.1016/j.cell.2017.09.037
https://doi.org/10.1038/s41588-022-01104-0
https://doi.org/10.1038/s41588-022-01104-0
https://doi.org/10.1126/science.1138659
https://doi.org/10.1371/journal.pcbi.1004873
https://doi.org/10.1371/journal.pcbi.1004873
https://doi.org/10.1093/nar/gkn835
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1002/(SICI)1096-8628(19960329)62:3&lt;247::AID-AJMG9&gt;3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1096-8628(19960329)62:3&lt;247::AID-AJMG9&gt;3.0.CO;2-Q
https://doi.org/10.1038/71743
https://doi.org/10.1038/s41586-020-2287-8
http://omim.org/
https://doi.org/10.1038/s41467-019-10016-3
https://doi.org/10.1038/s41467-019-10016-3
https://doi.org/10.1073/pnas.1001702107
https://doi.org/10.1073/pnas.1001702107
https://doi.org/10.1038/nature09906
https://doi.org/10.1016/j.cell.2020.06.002
https://doi.org/10.1038/s41525-022-00284-2


Article
ll

OPEN ACCESS
40. Splawski, I., Timothy, K.W., Sharpe, L.M., Decher, N., Kumar, P., Bloise,

R., Napolitano, C., Schwartz, P.J., Joseph, R.M., Condouris, K., et al.

(2004). Ca(V)1.2 calcium channel dysfunction causes a multisystem dis-

order including arrhythmia and autism. Cell 119, 19–31. https://doi.org/

10.1016/j.cell.2004.09.011.

41. Bolz, H., von Brederlow, B., Ramı́rez, A., Bryda, E.C., Kutsche, K.,

Nothwang, H.G., Seeliger, M., del C-Salcedó Cabrera, M., Vila, M.C.,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects and specimens
All human studies were reviewed and approved by the institutional review board of the University of Texas Southwestern Medical

Center (UTSW). Families were recruited either from the Dallas Fort Worth area or nationally in the US, all belonging to a community

of individuals with East African ancestry, and written informed consent was obtained from all study participants. The majority of

enrolled families were Ethiopian (20/33), Eritrean (9/33), or both (3/33), and one family was Kenyan (1/33). In addition to East African

ancestry, inclusion criteria included a diagnosis of autism spectrum disorder (ASD) by a neurologist, child psychiatrist, or psychol-

ogist. Patients with genetically defined syndromes, specifically Fragile X syndrome, Angelman syndrome, Rett syndrome, or Tuber-

ous sclerosis complex, were excluded from study participation. All patients enrolled in the study received a diagnosis of ASD from

their referring clinicians who performed physical and behavioral assessments and administered the standard autism diagnostic mea-

sures (ADOS, ADI-R, and DSM-V). With the exception of one father with possible signs of ASD (coded as unknown phenotype in our

analyses), none of the parents had a diagnosis of ASD. Blood samples were collected from all available family members by peripheral

venipuncture. Genomic DNA was isolated from circulating leukocytes using AutoPure (Qiagen, Hilden, Germany) according to the

manufacturer’s instructions.

Clinical information
A standardized medical questionnaire was collected from each participating family (33). For the following clinical description, three

records were excluded due to incomplete information (3/36 probands). Of the 33 probands where the medical questionnaire was

complete, all but one family had prenatal care, and 8/33 reported pregnancy-related complications including gestational diabetes

(4/33), hyperemesis gravidarum (1/33), infections (2/33), and twin gestation with hypertension (1/33). Complications within the im-

mediate postnatal period included jaundice (2/33), feeding problems or vomiting (4/33), and one case with atrial and ventricular

septal defects and heart murmur (1/33). All probands were born full term except for three, which included the twins (born at

29 weeks gestation) and one late preterm birth at 36 weeks gestation (delivery complicated by placental abruption). The mean

birth weight for the cohort is 3,442.1 g (SD 653.3 g) and most were born via Cesarean section (18/33). Three of the probands

also had seizures, two with seizures reportedly controlled on monotherapy and one who continues to have seizures in sleep

most nights. One proband also reported alopecia. Hearing problems (1/33) and vision problems (2/33) were rarely reported. Con-

stipation was frequently reported (7/33) and six probands were reportedly on restrictive diets, mostly gluten-free and casein-free.

Most were not taking any prescription medications (22/33) and only four were prescribed psychotropic medications commonly

used to manage behavioral problems in ASD. All 36 probands were diagnosed with ASD, and comorbidities included language

and speech abnormalities, developmental delay, and cognitive deficits among others (Figure S2). The age at diagnosis was avail-

able for 20/36 probands, and it ranged from 6 months to 7 years (mean of 2.825 years, median of 3 years, and mode of 3 years),

with the exception of two probands diagnosed at 15 and 19 years of age. Furthermore, 26/33 probands were receiving special

education services through the public school system. Of the 33 families reviewed, six families reported a family history of ASD

(inclusive of the three multiplex families), one family reported a mother with language delay, and one family reported a father

with signs of ASD but with no clinical diagnosis of ASD.

METHOD DETAILS

Whole genome sequencing and data processing
Whole genome sequencing was performed on an Illumina NovaSeq 6000 platform (San Diego, California). DNA quality and quantity

were assessed using a Qubit High Sensitivity Assay (Thermo Fisher Scientific, Waltham, Massachusetts) and gel electrophoresis.

Between 100 ng and 1 mg of DNA was used for genomic library preparation using the Illumina TruSeq DNA Library Prep Kit according

to the manufacturer’s protocol and libraries were pair-end sequenced (150 bp read lengths). The genomes were processed following

the best practices recommended by the Broad Institute.96 Reads were aligned to the human reference genome version

GRCh37/hg19 using the Burrows-Wheeler Aligner (BWA, version 0.7.10).95 Duplicate reads were removed using Picard (version

1.117). Local realignment, quality recalibration, and variant (single nucleotide variants (SNVs) and insertions or deletions (indels))

detection were performed using the Genome Analysis Toolkit (GATK; version 3.3).96 All reported variants passed filtering according

to GATK96 best practices. Depth was calculated using samtools100 depth and coverage was assessed using custom scripts. The

percent coverage at 1X, 4X, 10X, 20X, 30X, and 40X was calculated as the number of base pair positions sequenced to a given depth

divided by the total number of bases sequenced.

Variant call format (VCF) files for SNVs and indels were annotated with ANNOVAR94 using allele frequencies from the 1000

Genomes project (1000G),19 the Genome Aggregation Database (gnomAD; v2.1.1),20 the Greater Middle East Variome project

(GME),21 and the Human Heredity and Health in Africa project (H3Africa).22,23 Annotated VCF files were uploaded into an SQL data-

base for working storage and analysis. Genome data was stored and analyses were performed on the Texas Advanced Computing

Center (TACC) high-performance computing servers, a resource of the University of Texas (Austin, TX).
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Variant filtration
Variants were quality filtered in SQL with a PASS designation in the GATK pipeline,96 a genotype quality (GQ) score ofR30, and 10%

total read depth%100. Rare variants were defined as those withminor allele frequencies (MAF) < 1% in 1000G,19 gnomAD,20 GME,21

and H3Africa.22,23 Novel variants were defined as variants that are not found in the four aforementioned public datasets. Private var-

iants were defined as novel variants that occurred only in a single individual in our cohort.

De novo variants were defined as heterozygous private variants present in affected individuals (absent from the genome of either

the father, the mother, or the sibling(s) when available). To minimize potential false positive de novo calls, we applied additional

filtering steps, requiring that de novo variants have the following criteria: (i) GQ = 99, (ii) alternate allele depth (AD-Alt)R 10, (iii) refer-

ence allele depth (AD-Ref)R 10, (iv) 0.3% AD-Alt/read depth (DP)% 0.7, (v) SOR%1.5, QDR 10, Mapping Quality (MQ)R 59, Qual-

ity R999, (vi) �1.4% ReadPosRankSum %3.0, (vii) length(Alt) % 50, and length(Ref) % 50. Compound heterozygous variants in

offspring were defined as inherited heterozygous coding (exonic or splice site) variants that occurred within the same gene and

that were present in heterozygous form in one parent but not the other. Compound heterozygous variants occurring in unaffected

siblings in the same compound form as the affected individual were excluded. All compound heterozygous variants were filtered

for AD-Alt R10, AD-Ref R10, and 0.3 % AD-Alt/DP % 0.7. Inherited homozygous variants were required to be present in heterozy-

gous form in both the father and themother, excluding variants that are homozygous in either one of the parents or unaffected siblings

when available, on the assumption of full penetrance. X-linked variants were required to be present in a male offspring, heterozygous

in the mother, and absent from the father.

Noncoding variant annotation
Custom SQL and Python scripts were used to annotate noncoding variants with three datasets: (1) chromatin state segmentation

from nine human cell lines,37 (2) maps of histone H3K4me3 mark in human prefrontal cortex (PFC) from 11 individuals,36 and (3) pre-

dicted developmental brain enhancers from fetal brain samples.38 The columns in Table S7 derived from each dataset were denoted

as ENCODE, uMass, and CBA, respectively. Additional details are presented in Table S14. Variants that were found within a peak in

the uMass dataset were marked as ‘‘predicted human brain promoter’’ variants. Predicted human brain promoter variants that were

absent from regions with ‘‘1_Active_Promoter’’ prediction in any one of the 9 non-neuronal cell lines in the ENCODE dataset were

marked as ‘‘predicted human brain-specific promoter’’ variants. Variants that were found within a predicted regulatory element

(pRE) region in the CBA dataset were marked as ‘‘predicted human brain enhancer’’ variants. Predicted human brain enhancer var-

iants that were absent from regions with ‘‘4_Strong_Enhancer’’ or ‘‘5_Strong_Enhancer’’ prediction in any of the 9 non-neuronal cell

lines in the ENCODE dataset were marked as ‘‘predicted human brain-specific enhancer’’ variants.

Variant prioritization
Rare variants that are de novo, compound heterozygous, inherited homozygous, or X-linked, were considered to be possibly path-

ogenic if they met the following criteria: (1) splice site variants, (2) exonic variants with a predicted protein effect of frameshift indels,

nonframeshift indels, stopgain, stoploss, or unknown effect, (3) exonic nonsynonymous SNVs that were predicted to be damaging by

at least 1 of the following 9 algorithms used: SIFT,103,104 PolyPhen-2 HumVar,105 LRT,106 MutationTaster2,107 MutationAssessor,108

FATHMM,109 PROVEAN,110 MetaSVM,111 and MetaLR.111 PolyPhen-2 HumVar was chosen over PolyPhen-2 HumDiv because the

former is more appropriate for Mendelian variants with drastic effect as we expect for ASD, while the latter is appropriate for common

variants of smaller effect size.

Possibly pathogenic variants were compared to the list of genes implicated in ASD from the Simons Foundation Autism Research

Initiative (SFARI) Gene 2018 database29 (using the 2022 Q2 release), the Gene2Phenotype (G2P) Developmental Disorders (DD)

Panel,35 and a list of neurodevelopmental disease genes.4 Variants were also screened for any phenotypic association in G2PDD

(confidence categories ‘‘definitive’’ and ‘‘strong’’)35 and the Online Mendelian Inheritance in Man (OMIM) database.34 Gene expres-

sion data was obtained from the Genotype-Tissue Expression (GTEx) portal.112 The GTEx Project was supported by the Common

Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. Gene

constraint was assessed using pLI, LOEUF, and Z scores from gnomAD.20

To prioritize candidate disease variants, we considered the following criteria: (1) segregation with phenotype in the family: we

excluded variants that were present with the same genotype in unaffected siblings and prioritized variants that were present with

the same genotype in affected siblings; (2) protein effect: we prioritized loss of function (LoF) variants and nonsynonymous SNVs

with high probability of deleteriousness based on scores from prediction tools, including the 9 algorithms mentioned above, in addi-

tion to VEST,113,114 CADD,115 fitCons,116,117 GERP++,118 phyloP,119 phastCons,119 and SiPhy120; (3) gene constraint: we prioritized

variants within geneswith higher pLI, lower LOEUF, and higher Z scores; (4) gene expression: we prioritized variants within geneswith

higher expression in the brain; (5) disease association: we prioritized variants within genes that had a SFARI Gene29 score of 1, 2, 3, or

S, or were associated with a neurodevelopmental phenotype as annotated by OMIM34; (6) ClinVar121 clinical significance annotation

when available.

For noncoding variant prioritization, we sought additional verification of regulatory element prediction. Brain-specific enhancer and

promoter variants were visualized using a UCSC genome browser101 track of brain cell-type specific proximity ligation-assisted

ChIP-seq (PLAC-seq) data from Nott et al.122 PLAC-seq identifies long-range chromatin interactions at promoters and enhancers.

We marked variants as linked to a certain gene if the enhancer region where the variant is located (based on the ChIP-seq and
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ATAC-seq data from the aforementioned UCSC genome browser tracks) was linked to the promoter of the target gene in the PLAC-

seq data. Noncoding variants that were verified to be within brain-specific enhancers or promoters of genes with known brain-rele-

vant functions were prioritized as candidate disease causing.

Burden analysis
The burden of rare LoF and predicted damaging missense variants was analyzed by comparing categories of variants identified in

affected versus unaffected individuals. LoF variants were defined as variants that are exonic or splice site predicted to result in a

frameshift indel, a stopgain or stoploss, or splicing error. Missense variants were defined as nonsynonymous exonic or splice

site. Missense damaging variants were defined as nonsynonymous SNVs that were predicted to be damaging by at least 5 of the

9 algorithms described above under variant prioritization. Comparisons were made between affected and unaffected genomes in

the above categories for all rare variants, including homozygous variants to evaluate biallelic damaging allele burden.123

Copy number variant (CNV) analysis
We used CNVkit28 to detect CNVs based on read depth in affected samples relative to the average read depth in unaffected samples

in the same family as controls. Since CNVkit28 only uses sequencing read depth information without considering variant heterozy-

gosity information, it is relatively insensitive to call heterozygous CNVs and cannot confidently infer whether a CNV is de novo or

not. We used GISTIC2.030 on segmented files generated from CNVkit28 to further evaluate the significance of the amplified and

deleted segments between the affected and unaffected samples. The criteria included a threshold for copy number amplification

and deletion of 0.1, confidence level of 99%, and FDR of 0.05. CNVs in affected individuals that overlap with ASD CNVs annotated

in SFARI Gene29 (2022 Q2 release) were identified using R Bioconductor package regioneR.99 Significance of the overlap was tested

by performing an overlap permutation test, also using regioneR.99 CNVs were annotated with population allele frequencies from gno-

mAD structural variant (SV) v2.1 database.33

Assessment of runs of homozygosity
PLINK version 1.90b6.1198,124 was used for all analyses. VCF files were converted into PLINK format using vcftools version 0.1.13.102

The cohort was assessed for relatedness using PLINK-genome. Autosomal variants were filtered for Hardy-Weinberg equilibrium

(p < 0.001), MAF >5%, and maximum missing genotype rate of 25%. Runs of homozygosity (ROHs) were identified in PLINK using

a sliding window analysis with a 100 base pair window size, allowing for 30 heterozygous variants and 30missing genotypes per win-

dow in accordance with previously described methods.125 The resulting segments were then filtered using a percent homozygosity

(PHOM) threshold of 75%. ROH summary statistics were calculated for 125 samples, excluding samples from three individuals who

were outside a family unit and one proband with <90% coverage. Percentage of genome within ROHs was estimated as the ratio of

total ROH length to total autosomal bases sequenced at 1X.

Heterozygosity
Percent heterozygosity in the cohort was determined by dividing the number of heterozygous calls as determined by GATK96 variant

calling by the number of sequenced bases. The number of sequenced bases was determined by using samtools100 depth. For the

1000G19 samples PLINK files were created (PLINK version 1.90b6.11)98,124 and the number of heterozygous calls was determined by

using –het in PLINK. The output gives the observed number of homozygous calls and the total number of genotypes for each sample.

The number of heterozygous calls was determined by subtracting the number of homozygous calls from the total number of

sequenced genotypes. This was divided by the total number of sequenced bases which was determined using samtools100 depth.

For subpopulations ASW, CHB, CHS, and MXL, we were unable to calculate heterozygosity since only exome sequencing data are

available for these four subpopulations.

Principal component analysis
Principal component analysis (PCA) was carried out in PLINK version 1.90b6.1198,124 using Phase 3 1000G19 data. PCA input files

from our samples were pruned to remove variants with MAF <5%, missing genotype rate greater than 5%, and pruned for linkage

disequilibrium (LD) with an r2 threshold of 0.2 using PLINK –indep-pairwise 50 5 0.2. Triallelic and palindromic variants were also

removed. The set of variants that remained was extracted from the 1000G19 dataset and these were merged with our cohort dataset.

PCA was run in PLINK using the –pca flag and the first two principal components were plotted in R. PCA for African groups was car-

ried out using publicly available data which included genotypes from the 1000G19 African samples and additional African samples

(see Table S9 for details). Analysis was performed for unrelated individuals using data from either pedigree founders (parents) or un-

related offspring. Ancient samples and samples that could not be confirmed as modern-day were removed from analysis.

Admixture analysis
Global ancestry admixture analysis was carried out using ADMIXTURE version 1.3.0.93 The variant dataset was pruned to remove

variants with MAF <5%, missing genotype rate greater than 5%, and pruned for LD with an r2 threshold of 0.1 using PLINK –in-

dep-pairwise 50 10 0.1. ADMIXTURE was run on our cohort for values of K from 2 to 20 and the minimum cross validation error

was identified at K = 2 (Figure S9A). The value of K which yields the smallest cross validation error value is taken to be the best
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approximation of the actual number of ancestral populations. Our pruned dataset was merged with the 1000G19 genotypes and

ADMIXTURE was run on the merged dataset, again using values of K from 2 to 20 and the minimum cross validation error for the

merged dataset was identified at K = 9 (Figure S9B). We then merged our pruned dataset with publicly available data which included

genotypes from the 1000G19 African samples and additional African samples (see Table S9 for details). ADMIXTURE was run on the

resulting dataset for values of K from 2 to 20. The minimum cross validation error for this dataset was identified at K = 3 (Figure S9C).

For each analyzed sample, the proportion of ancestry from each presumed population was determined from the Q file output from

ADMIXTURE.

Local ancestry was analyzed using LAMP-LD version 1.097 assuming two-way admixture based on the minimum cross validation

error determined with ADMIXTURE. The two most closely related reference populations from the 1000G19 were the LWK (Luhya in

Webuye, Kenya) and the TSI (Toscani in Italy). PLINK files with genotypes for the LWK and TSI groups were merged with genotypes

from our cohort and the resulting set was pruned to remove variants with missing genotype rate greater than 5%. From this pruned

dataset, our cohort samples, an LWK reference dataset, and a TSI reference dataset were extracted for input into LAMP-LD. Chro-

mosomes were analyzed independently. A total of 209,999 markers were analyzed. Output files were analyzed using a custom Py-

thon pipeline.

LAMP-LD assigns segments to one of the reference populations determined in global admixture analysis to be closest to the

ancestral admixed population. The number of ancestral switches is a function of the number of recombination events since the

two admixed populations encountered each other. More recent admixture will result in larger blocks of ancestry and thereby fewer

ancestry switches. Older admixture will result in decay of LD blocks and a larger number of ancestry switches. The mean number of

ancestry switches per chromosome was determined by counting the number of ancestral segments per chromosome for each indi-

vidual and taking the average for the cohort. LAMP-LD output was analyzed using a custom Python pipeline.

The percentage of African and European ancestry as determined by assignments to LWK or TSI reference groups, respectively,

was calculated for affected and unaffected offspring by summing the number of LWK assigned alleles for each marker and dividing

by the number of offspring in each group. To catalog admixture peaks, segments were identified that had a difference in percent LWK

ancestry (absolute value of delta, abs(D)) of 15 percentage points or greater. The Manhattan plots were generated with a custom Py-

thon script using the Pandas126 and Matplotlib127 libraries. For extracting variants from admixture peaks (Tables S11C and S11D),

since the analysis was run with a sparse marker set, we expanded the regions of interest up until the position of the first neighboring

marker on either side. All variants within these peaks were extracted in SQL for further analysis.

LAMP-LD output at each allele was converted to a genotype-like format where eachmarker is coded based on assigned ancestry.

Markers were coded as having 0, 1, or 2 alleles from the LWK reference population. We used TDTae128 to perform a likelihood-based

transmission disequilibrium test (TDT) in our cohort of families that consist of parents and at least one affected offspring per family.

We selected TDTae to run this analysis because it can extract allele transmission information even if one parent is missing, as is the

case in some of the families in our cohort. Unaffected siblings and second-degree relatives were included in the analysis when avail-

able. TDTae analysis was performed under dominant, recessive, and multiplicative models using default parameters and the GLHO

(Gordon Liu Heath Ott) error model.129 For each marker, the TDTae statistics (also known as LRT values, given by the formula -2[Lo-

gLike(H1)-LogLike(H0)]) obtained from the three models were compared, and the model that resulted with the highest LRT value was

selected for further analysis. Since the markers for the analysis were generated from haplotypes and are not independent, we used

the mean number of ancestry switches (Table S12) to approximate the number of independent tests in order to correct for multiple

testing.130 Using this method, the Bonferroni corrected significance threshold was p = 3.32x10�4. A quantile-quantile (Q-Q) analysis

of the TDTae p values was performed and plotted using the R package qqplotr.131,132
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