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Abstract

Phylogenetic models, originally developed to demonstrate evolutionary biology, have been
applied to a wide range of cultural data including natural language lexicons, manuscripts,
folktales, material cultures, and religions. A fundamental question regarding the application
of phylogenetic inference is whether trees are an appropriate approximation of cultural evo-
lutionary history. Their validity in cultural applications has been scrutinized, particularly with
respect to the lexicons of dialects in contact. Phylogenetic models organize evolutionary
data into a series of branching events through time. However, branching events are typically
not included in dialectological studies to interpret the distributions of lexical terms. Instead,
dialectologists have offered spatial interpretations to represent lexical data. For example,
new lexical items that emerge in a politico-cultural center are likely to spread to peripheries,
but not vice versa. To explore the question of the tree model’s validity, we present a simple
simulation model in which dialects form a spatial network and share lexical items through
contact rather than through common ancestors. We input several network topologies to the
model to generate synthetic data. We then analyze the synthesized data using conventional
phylogenetic techniques. We found that a group of dialects can be considered tree-like
even if it has not evolved in a temporally tree-like manner but has a temporally invariant,
spatially tree-like structure. In addition, the simulation experiments appear to reproduce
unnatural results observed in reconstructed trees for real data. These results motivate fur-
ther investigation into the spatial structure of the evolutionary history of dialect lexicons as
well as other cultural characteristics.

Introduction

The similarity between the evolution of biological species and that of natural languages has
long been noted. Both Charles Darwin’s “Origin of Species” [1] and August Schleicher’s Indo-
European family trees [2] were published in the middle of the 19th century. Successful compu-
tational models to infer evolutionary history have been developed for biological data [3] and
then applied to languages. Such models can also be extended to other cultural elements includ-
ing manuscripts [4], folktales [5], material cultures [6], and religions [7]. With respect to
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language applications, phylogenetic models have been used to study the evolutionary histories
of Indo-European [8, 9], Austronesian [10], and Bantu languages [11, 12], among others.

In phylogeny, trees are the standard model. The tree model is characterized by a series of
branching events in which two or more copies of a node are created and subsequently evolve in
separate processes. Traits are passed from a common ancestor to its descendants as attribute
changes occur over time. In other words, the tree model explains the shared traits of descen-
dants by depicting common ancestors.

A fundamental question about the tree model is whether it is a suitable approximation of
evolutionary history. In particular, linguists have long questioned such models. Shortly after
the publication of Schleicher’s language trees, Johannes Schmidt proposed the rivaling wave
theory [13]. According to the wave theory, linguistic changes spread like waves from a center of
origin to its neighbors. This indicates that shared linguistic traits are a result of contact. Despite
the rise of computational phylogenetic models, linguists still consider the wave theory as a nec-
essary complement to the tree model [14, 15].

Several attempts have been made to model this contact as an additional layer over the tree,
where contact-induced changes are referred to as horizontal transmission. It is well known in
biology that horizontal gene transfer plays an important role in the evolution of prokaryotes
and it can also occur in eukaryotes [16]. An analogy in linguistics is the effort to explain the idi-
osyncratic position of Germanic languages within the Indo-European language-family tree
with regard to contact with distantly-related Italo-Celtic languages [17].

Even though most phylogenetic models do not take horizontal transmission into account,
several simulation studies have asserted their robustness with respect to horizontal transmis-
sion [18-21]. When horizontal transmission is added to a reference tree, phylogenetic models
can reconstruct the original tree with some degree of accuracy. Inferring a generalized graph
with horizontal transfer instead of using a tree remains a challenging task, despite some
attempts [22, 23]. Thus, a suitable compromise involves supplementing the reference tree with
edges representing horizontal transfer. This approach was originally proposed for prokaryote
evolutionary models but has also been applied to languages [24].

The computational models explained above assume tree-like evolution overall, even if hori-
zontal transmission is included. The validity of this fundamental assumption for linguistic appli-
cations has been questioned. For example, while the tree model may be applicable to large
language families such as Indo-European and Austronesian in which linguistic divergences
coincide with population expansion [9, 10], its applicability to groups of dialects or language
varieties that maintain high degrees of mutual intelligibility is dubious. It has been noted that
the tree model is insufficient for modeling dialects in contact [22, 25, 26]. Still, some publica-
tions show application of the tree model to particular groups of dialects including Japonic [27]
and Ainu [28]. Although [29] point out that the reconstructed Japonic tree is incompatible with
other linguistic evidence, its validity has not been analyzed from a computational point of view.

To highlight the obstacles to applying tree models to dialects in contact, we examine a
reconstructed tree for Japonic dialects. We exclude Ryukyuan dialects and show the mainland
portion of the tree in Fig 1 (hereafter the mainland portion of Japonic is simply referred to as
Japanese). Among several drawbacks of the resulting tree, it is particularly inconsistent that
modern Japanese dialects are interpreted as having been formed by a series of branching events
in the past 500 years. These branching events are unlikely to be explained by historical events
like mass migrations. If these purported branching events do not correspond to key events in
historic times, it seems too optimistic to expect that they correspond in prehistoric times. How-
ever, the date of the first branching event was associated with the arrival of the first farmers to
the Japanese archipelago [27]. It is almost certain that all of the data points considered (except
the northernmost point of Hokkaido) had Japanese speakers in the past 500 years without
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Fig 1. Maximum clade credibility tree of Japonic dialects. The horizontal axis gives the time before present. The number attached to each branch is the
posterior sample support ratio for the corresponding clade. The data were taken from Table s3 of Lee and Hasegawa [27]. We tried to replicate the original
experiments, but there are minor differences between Lee and Hasegawa’s and ours probably because of the random nature of the sampling process and
unexplained model configurations. These variances do not affect the overall results or our discussion.

doi:10.1371/journal.pone.0134335.g001
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massive population flows. In this example, it is clear that it is more consistent to keep all of the
data points intact in the recent past than to merge them into common ancestors.

If a branching structure does not adequately model the formation of modern dialects, how
should linguistic evolution be modeled? We believe that the answer lies in dialectology—dialect
geography in particular. Dialectologists have investigated the geographic distributions of lexical
and grammatical features [30, 31]. In fact, the main portion of Japonic lexical data used in phy-
logenetic analysis comes from this line of research [32]. While dialectologists occasionally offer
speculations about historical changes, the field study data are a current snapshot of distribu-
tions, since earlier states are not directly observable. Still, dialectology favors spatial interpreta-
tions over branching events to explain the progression to current distributions. For example, if
alexical term is observed at multiple isolated points, it is considered to have had a wider geo-
graphic distribution in the past [33], which is reminiscent of the wave theory.

Several dialectology studies attempting to track changes in traits among dialect groups have
been published. In these studies, a phenomenon known as dialect leveling has been investigated
extensively [34, 35]. Dialect leveling refers to the reduction of differences between dialects in
contact. Studies on dialect leveling have two significant limitations. First, the time scale of the
data is limited to the order of decades. Since most dialects have not been documented ade-
quately, dialectologists are forced to track the dynamics themselves. Second, identifying bor-
rowed terms between closely related dialects is generally difficult or impossible, with the
exception of certain individual lexical items. We conjecture that this is why the main research
focus has been on phonological variations rather than lexicons. For these reasons, our research
uses inferences from the field study snapshots rather than tracked changes.

We present a simple simulation model inspired by dialectological studies to explore the tree
model’s validity. The model we propose is a drastic departure from the tree model in that
branching events are essentially absent from this model. Instead, dialects form a spatial net-
work in which they share lexical terms through contact, rather than through common ances-
tors. The evolutionary dynamics are characterized by network topologies: some dialects are
more influential than others and some pairs of dialects are more distant than others. The net-
work topologies allow us to generate snapshots of lexical distributions. We then input this syn-
thetic data to phylogenetic models to analyze how they interpret the data. While these
simulation experiments are not aimed at definitively refuting the tree model as a viable struc-
ture for linguistic evolution, we do intend to demonstrate that exploring spatial structure is a
promising research direction.

Materials and Methods
Basic Vocabulary

In a phylogenetic model, each language is represented by a set of traits. We model languages with
concepts constituting the basic vocabulary [36, 37]. Words representing each basic concept are
assumed to be relatively stable. A basic vocabulary database is compiled by recording the words
that represent each basic concept in each target language. Next, cognates (words which have a
common origin) are determined for the group of target languages. For example, in Japanese dia-
lects, the concept “warm” is represented by “attage” in Aomori, “atatakai” in Tokyo, “nukui” in
Osaka and “nukka” in Fukuoka. The words for “warm” in Aomori and Tokyo are cognates. The
same is true for “warm” in Osaka and Fukuoka. The words deemed cognates are denoted by a 1
and a 0 is assigned where no cognate is found. This allows each language to be transformed into
a binary vector such as 10010. . .. The distance between a pair of languages is defined as the ratio
of digits that are different between the two vectors. Such binary vectors form the input to the
phylogenetic models. A language may have multiple cognates for a single concept.
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A disadvantage of this representation is that it ignores the fact that certain sets of cognates
bear the same concept. In the examples above, the concept “warm” is represented by two cog-
nates, but this can no longer be recovered from the binary vectors. To overcome this, we use
concept-based modeling to attach weights to cognates signifying the same concepts.

Simulation Model

We propose a simple simulation to model changes in dialect lexicons resulting from contact.
While a continuous-time framework is dominant in phylogeny, we adopt a discrete-time
model for simplicity. This model forms a Markov chain: the state at time t only depends on the
state at time £ — 1.

We consider a network of nodes, each of which represents a dialect. Fig 2 shows an example
of network topologies. Each node’s state is a set of cognates that represents a given concept. Let
Vi # () be the set of cognates for node i at time ¢ > 0. Here we assume that each dialect has at
least one cognate for the given concept. Each node behaves like an agent and stochastically
decides its next state depending on the neighboring nodes. Nodes in contact are connected by
edges, as illustrated in Fig 2. The network topology is time-invariant in most cases, but it can
be changed over time, as we will see below. Time-invariant topologies are the default choice
since we are unable to synthesize realistic data for historical population dynamics.

The degree of each node’s influence is controlled by two parameters: population and dis-
tance. In Fig 2, the numbers attached to nodes and edges denote populations and distances,
respectively. Let p; be node i’s population, and d;; = d;; be the distance between i and j. The
influence of node j on node i can be defined as

pj/(dij X dij) ifje N,
w, =< sp, ifj =i,

0 otherwise,

where N; is the set of nodes connected to node i (node i is not included in the set). A larger pop-
ulation leads to a greater influence on neighbors and influence decays with distance. Parameter
s controls the influence on the node itself. The directed graph in Fig 3 shows the degree of influ-
ence wj;.

The state of node i at time ¢ > 0 stochastically depends on the state of the network at time ¢ — 1.
The network state at time ¢ = 0 is given a priori. For simplicity, we assume that all nodes share the
same single cognate at time ¢ = 0.

1.0 0.5

Fig 2. Undirected graph of nodes.
doi:10.1371/journal.pone.0134335.g002
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Fig 3. Directed graph of nodes. We sets =2.0.
doi:10.1371/journal.pone.0134335.g003

Let C; be a set of candidate cognates within node 7 at time t. The candidates of V/ are the
power set of C; excluding the empty set:

V' e P(CH\D.

C! is constructed by combining a new cognate candidate with sets of cognates that node 7’s
neighbors had at time ¢ — 1.

C! = {newword} U U Vi

je{ihuN;

Here we assume that at most one new cognate appears in a node at each time step. A newly
introduced cognate (birth) is used only in a single node. Once a cognate disappears from all
nodes (death), it can never revive.

To prepare for a formal definition of the probability of the state of v € P(C!)\(), we give the
following score to each cognate ¢ € C:

D e wy/ IV if ¢ # newword,
e

)

bp, otherwise,

wscore(c) = {

where M;, = {] |je{i}UN, A ce Vjt’l}. In other words, M _is the set of neighboring

nodes, including i, that has c at time ¢ — 1. The score is directly proportional to the number of
nodes containing ¢ at time f — 1. The score of a new cognate is controlled by parameter b.
Next, we assign a score to the set of cognates V! = v:

sscore(v) = Z(wscore(c) - d‘”‘).

cev

Cost d > 1 is used to penalize a set with a larger number of cognates. Finally, the probability of
choosing V; = v is defined as:

exp (sscore(v))
Zvrep(q)\w exp (sscore(v'))

V! is chosen according to the distribution above. At each time step, this procedure is performed
for all nodes in the network.

The number of steps T'is pre-defined. In our experiments, we set T = 1,000. When the simu-
lation terminates, we obtain the distributions of cognates for one concept. We repeat this for all
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of the basic concepts in our list and form binary representations of the resulting cognate distri-
butions. We thus obtain binary representations of the dialects. Following the Swadesh list [36,
37], we use 100 basic concepts.

This model relies on several assumptions that might be violated in real data. It assumes that
for each concept, every dialect has one or more words that precisely refer to it. However, some
dialects may have no generic term for the concept (e.g., using different words when the concept
is used in reference to humans or animals). These words complement each other rather than
competing as the model assumes. Borrowings from external languages can usually be interpreted
as births. If the same cognate is borrowed multiple times, it violates the assumption that a cognate
comes into existence only once. New cognates do not necessarily emerge spontaneously and may
result from semantic shifts of existing words. Such semantic shifts can happen multiple times.
Despite these possible violations of the model assumptions, we contend that they are exceptions.

The proposed model is closely related to word-of-mouth communication, in which infor-
mation is passed over a network. While we model words themselves, previous studies have
worked on marketing and public opinion formation [38-40]. For this reason, existing publica-
tions focused mainly on maximizing the spread of influence. Thus, their simulation models
include some assumptions that are not suitable for modeling the spread of words. For example,
most of them only model the birth and spread of a trait, ignoring its death. By contrast, we con-
sider the death of a trait as an important aspect of linguistic evolutionary dynamics. In addi-
tion, they often focus on a single trait while we model a competition among several traits.

Another closely related research area is evolutionary game theory. In particular, our model
resembles an evolutionary graph, or evolutionary game involving spatial structure [41]. This
field focuses on modeling the strategy chosen by an individual from a population at some point
of time. Parameters given a priori include a number (typically two) of strategies and the corre-
sponding payoff matrix. Evolutionary graphs also have a network topology as a given parame-
ter. The research focus is on finding a small number of parameters that characterize the overall
evolutionary dynamics (e.g., the probability of a trait spreading over the entire population).
Words in our model can be seen as game strategies. It should be noted that, because of the
emergence of new words in our model, the number of strategies cannot be given a priori.

Network Topologies

We employ five network topologies in our simulation: GRID, STAR, TWOSTARS, BOTTLENECK and
Corony. Hereafter, undirected graphs are used to show populations and distances.

Grip (Fig 4A) is a grid of nodes with the equivalent population sizes. It is an example of a
spatially non-tree-like structure.

D 0® B

A E B c
C 1 |

G F 0 F

H 0B H

- E

001 o5 G

| 42 D

A

(B) (©)

Fig 4. Grip. (A) Network topology. We sets =4.0, b = 1.0 and d = 3.0. (B) NeighborNet. (C) Reconstructed tree.

doi:10.1371/journal.pone.0134335.9004
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doi:10.1371/journal.pone.0134335.g005
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Fig 6. BotTLENECK. (A) Network topology. We sets =4.0, b =0.1 and d = 3.0. (B) NeighborNet. (C) Reconstructed tree.
doi:10.1371/journal.pone.0134335.g006

In Star (Fig 5A), a node with a large population is surrounded by several small nodes.
They represent a politico-cultural center and peripheries, respectively. Unlike Grip, this
topology is spatially tree-like. Note that there is no bottleneck in the topology that can be
interpreted as a branching event. This challenges the phylogenetic model’s requirement to
construct a temporal tree.

BortLENECK (Fig 6A) contains a bottleneck between two groups of dialects. Unlike STaR, this
can be interpreted by a phylogenetic model as a branching event that occurs at the beginning
of the simulation. The key is that the two groups are not totally disconnected and keep in con-
tact on a small scale. We are interested in how this affects phylogenetic analysis.

TwoStars (Fig 7A) is a variant of STAR. Two centers, not just one, are presented to see how
the nodes in between are interpreted.

Corony (Fig 8A) undergoes a change in the network topology. The first 750 steps out of
1,000 steps are performed without node B (indicated by dashed lines). Then node B is copied
from node A, and the remaining 250 steps are performed. The replication can be interpreted as
a branching event by a phylogenetic model. Note that this network topology consists of two
dialect groups. Node B can be seen as a large colony of the western dialect group in the east.
Our focus is on how this affects phylogenetic inference.

Analytical Methods

We use phylogenetic methods to analyze the binary representations of dialects obtained
through our simulations. Following [26], we first assess the degree to which the data follow a
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Fig 7. TwoSTARs. (A) Network topology. We sets =2.0, b = 1.0 and d = 3.0. (B) NeighborNet. (C) Reconstructed tree.
doi:10.1371/journal.pone.0134335.9007

tree-like structure using the & score [42]. We thus obtain a real number between 0 and 1 inclu-
sive. Lower values indicate that the data are more tree-like. The basis of the J score is a quartet
of nodes x, y, u and v. Let d,, be the distance between x and y, and d,|., = dy,, + d,,,. Without

loss of generality, we assume djuy < dyyjyy < dyy|yy and define &y, as follows:
S o dxv\yu - dxu\yv

xyuv_d —d

xv|yu xy|uv

ulyv

Note that we set &y, = 0 if d.y|y = diulyy = dyyjyu- To illustrate the above, the distances between
nodes can be decomposed as shown in Fig 9. The box indicates non-tree-likeness. Here [; =
Avlyu = Axyurs o = diyjyu — Ay and Oy, = b/1. The quartet is perfectly tree-like if [, = 0. d,y,,,
is calculated for every possible quartet and is averaged to obtain the overall § score.

Unfortunately, there is no known statistical test that effectively compares two or more §
scores [26]. We thus compare the & scores of our synthetic data with those reported in existing
publications: 0.25 for Ainu dialects [28], 0.22 for Indo-European languages as a whole and 0.23
for Germanic languages, and 0.41 for the Polynesian branch of Austronesian languages [26].
We calculate the 6 scores for the Japonic dialects using supplementary information since they
are not reported [27]. We obtained 0.35 for the whole dataset and 0.39 for the modern main-
land dialects.

Next, we use NeighborNet [43] to visualize the relationship between dialects. NeighborNet
performs distance-based agglomerative clustering and constructs a network instead of a tree.
Non-tree-likeness is indicated by boxes. SplitsTree4 version 4.13.1 was used [44] for the
implementation.

8
=

OMIOPUOMEXW—

T

(A) (B) (C)

Fig 8. CoLony. (A) Network topology. We sets = 4.0, b = 0.1 and d = 3.0. (B) NeighborNet. (C) Reconstructed tree.
doi:10.1371/journal.pone.0134335.9008
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Fig 9. A diagram in which the distances between four nodes are decomposed.

doi:10.1371/journal.pone.0134335.g009

Finally, we apply a Bayesian phylogenetic model to the data. It is a generative tree model
that directly models evolutionary processes. For inference, samples are obtained from a poste-
rior distribution. We use maximum clade credibility trees to integrate multiple samples for
visualization. We use a stochastic Dollo model, in which the birth of a trait (a cognate in our
case) happens only once in the tree. This means that once a node loses a cognate, it will not be
recovered by a descendant. In the simulation model, however, a cognate that has disappeared
from a node can be revived through contact with neighboring nodes. The prior distribution for
the death rate of the Dollo model is an exponential distribution with a mean of 10>, We use a
Bayesian skyline prior and a strict clock model. Markov chain Monte Carlo sampling is per-
formed for 20 million steps. After the burn-in of the first 100,000 steps we collect a sample
every 1,000 steps. We use BEAST 1.8.0 to implement the above [45].

Results

As we expected, GRID is not tree-like. Its & score is 0.43. Its deviation from a tree-like structure
is confirmed in NeighborNet (Fig 4B). Node E, the center of the network topology is also cen-
trally located in the recovered structure. The four corners, which have less contact with neigh-
bors, are distantly positioned. The non-tree-likeness is also reflected in the reconstructed tree

(Fig 4C) as clades near the root are unstable.

Star is moderately tree-like with a d score of 0.28. NeighborNet (Fig 5B) recovers the spatial
structure. Node A, the center of the network topology is also centrally located in NeighborNet.
These results suggest that tree-likeness can result from a spatial tree structure, rather than just
temporal relationships. The reconstructed tree (Fig 5C) reinterprets this spatial structure as a
temporal structure. Spatially distant nodes are shown as having split at earlier stages.

BoOTTLENECK is very tree-like. Its & score is 0.15. NeighborNet (Fig 6B) recovers two dialect
groups. Among the group of nodes A-E, node E is closest to the group containing F, G and H.
The two dialect groups are also recovered in the phylogenetic tree (Fig 6C) but here node E is
interpreted as an outlier of the dialect group. The clustering of the node with an intermediate
state was delayed by the Bayesian phylogenetic model, just like simple agglomerative clustering.
We conjecture that a similar effect can explain the reconstructed phylogenetic tree for Ainu
dialects [28]. In this tree, Soya (Hokkaido’s northernmost point and the nearest point to Sakha-
lin) is treated as Hokkaido’s outlier. Our simulation study suggests that this could result from a
spatial structure rather than a temporal structure. This implication challenges Lee and Hasega-
wa’s conclusion that northern Hokkaido was the most likely homeland based on a joint infer-
ence of the geolocations of ancestral nodes. Soya, which is supposed to have split from the
Hokkaido group at the earliest time, might have contributed to the northward move of the esti-
mated geolocations of Proto-Hokkaido and Proto-Ainu.
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TwoSTaRs is tree-like with a & score of 0.19. NeighborNet (Fig 7B) does not appear tree-like
at first glance but the lower score is indicated by the long and thin boxes in the network. The
phylogenetic tree (Fig 7C) reconstructs two dialect groups. Note the locations of nodes K and
H. Although they are equidistant from the two centers in the network topology, they are clus-
tered into different groups. They are both outliers in their corresponding groups yet the recon-
structed tree is quite stable. This suggests that random effects have a considerable impact on
the overall result.

CoLony has a d score of 0.33, and is not tree-like. Nodes A and B, which split at a later stage,
are not distant in NeighborNet (Fig 8B). However, the reconstructed tree (Fig 8C) splits them
at a very early stage. Many posterior samples separate A and B at the earliest split, as indicated
by a relatively low support score of 0.68 for the I, B, K, ], E, D, A, and C clades. Thus, the inter-
pretation presented by the tree is that most nodes in the network were formed after the split of
A and B, even though they existed from the very beginning. This is a possible explanation for
the reconstructed tree of mainland Japanese dialects in Fig 1. The earliest split, except for pre-
modern languages, separates Tokyo from Kyoto despite the model’s assumption that they split
relatively recently [27]. At the time of the split, node B represented the western dialect group
and subsequently dominated the eastern lexicon of the neighboring nodes. This effectively
blurred the distinction between the two dialect groups, as demonstrated by the unstable recon-
structed tree. We conjecture the same occurrences for mainland Japanese dialects since Fig 1
partially fails to identify the distinction between Eastern and Western Japanese [46].

Discussion

The key findings of our simulation experiments are 2-fold. First, low J scores do not necessarily
indicate a temporally tree-like evolution. In fact, spatially tree-like structures account for the
low 6 scores. Second, some network topologies lead to apparently unnatural results observed in
the reconstructed trees of the real data. These results are sufficient to cast doubt on the applica-
bility of the temporal tree model to dialects. Still, we concede that more accurate evolutionary
scenarios than ours may exist. This motivates a further investigation of spatial structure in the
evolutionary history of dialect lexicons as well as other cultural traits.

Our future research will focus on two improvements. First, we have used the model only for
simulation purposes, but the model parameters should be inferred from real data. To make
such inferences tractable, we may require a more simplified model. Model parameters include
population, distance, and the number of steps. Agreement between these parameters and the
real data is still uncertain while phylogenetic models successfully employ time calibration and,
recently, inferences about geolocations. Second, we aim to undertake the challenge of defini-
tively determining the model that best fits the real data: the temporal tree, the spatial network,
or a hybrid model.

In addition to these main directions of research, the incorporation of linguistic hypotheses
deserves further study. For example, prestige is often cited as a key factor leading to borrowings
[14]. Such hypotheses should be tested with simulation experiments.

Another potential improvement involves replacing the node representing a dialect with a
network of individuals. In the current model, each node represents a dialect which is used by
multiple speakers. The asymmetry among dialects is controlled solely by the population param-
eter. This model design is based on descriptive linguistics, in which a language is chronicled for
a population rather than for individuals. This marks a sharp contrast with biology, where one
population can be represented by multiple DNA samples. Genetic variations within a popula-
tion provide important information for evolutionary history [47, 48]. We hypothesize that the
per-individual approach is not a preferred choice for linguistics for two reasons. First, we cannot
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expect a high degree of linguistic variation within a population since language is a communica-
tion medium. Clearly, speakers need to share lexical items for successful communication. Sec-
ond, describing a language is laborious and requires linguistic experts, and is therefore costly.
Given that real data are difficult to obtain, simulation experiments are a suitable alternative.

There are several matters to address in the current simulation model. Fig 10 depicts the dis-
tribution of survival times in STAR. We see that a large number of short-lived words are required
to allow some words to survive over long periods of time. This is because new words are often
quickly replaced by existing words surviving in neighboring nodes. In the current simulation
model, new words are less likely to enter nodes with larger populations. Since the probability
distribution is constructed using an exponential function, larger nodes have more skewed distri-
butions. New words generally have smaller scores and thus have much lower probabilities. How-
ever, once new words are accepted in a large node, they are likely to spread to surrounding
nodes. On the one hand, this phenomenon seems to be supported by the astonishingly diversi-
fied dialects of Ryukyuan, which have been spoken by a hundreds of small, isolated populations
[49]. On the other hand, despite its small population, Icelandic is known as a very conservative
language [50]. Thus, more evidence is required to support or refute our assumptions.

In Fig 1, we excluded Ryukyuan dialects from consideration since our constant contact
assumption may not be valid for the dialects of small, remote islands. Still, it is clear that con-
tact-induced changes cannot be neglected in studying the evolution of Ryukyuan. The split of
Ryukyuan from mainland Japanese is believed to predate Old Japanese (the language of central
Japan in the 8th Century) [51, 52]. This theory is based on a traditional comparative approach
focusing on regular sound correspondences. However, Ryukyuan dialects share a considerable
number of lexical items with mainland Japanese, including some grammaticalized words, even
though these terms postdate Old Japanese [53-55]. Thus, they were likely borrowed from
mainland Japanese dialects. Contact-based models like ours could aid in unraveling the myste-
rious evolution of Ryukyuan dialects.
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