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Abstract

B cells from mice deficient in mismatch repair (MMR) proteins show decreased ability to un-
dergo class switch recombination in vitro and in vivo. The deficit is not accompanied by any
reduction in cell viability or alterations in the cell cycle in B cells cultured in vitro. To assess
the role of MMR in switching we examined the nucleotide sequences of Spu-Sy3 recombina-
tion junctions in splenic B cells induced in culture to switch to IgG3. The data demonstrate
clear differences in the sequences of switch junctions in wild-type B cells in comparison with
Msh2-, Mlh1-, and Pms2-deficient B cells. Sequences of switch junctions from Msh2-deficient
cells showed decreased lengths of microhomology between S and Sy3 relative to junctions
from wild-type cells and an increase in insertions, i.e., nucleotides which do not appear to be
derived from either the Sp or Sy3 parental sequence. By contrast, 23% of junctions from
Mih1- and Pms2-deficient cells occurred at unusually long stretches of microhomology. The
data indicate that MMR proteins are directly involved in class switching and that the role of

Msh? differs from that of Mlh1 and Pms?2.
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Introduction

Upon activation, B cells expressing IgM and IgD undergo
Ig isotype (class) switching to express IgG, IgE, or IgA.
Class switching occurs by a DNA recombination event that
results in exchanging the constant region of the Ig heavy
chain, without changing the antibody variable region. This
process changes the effector functions of the antibody but
does not affect antigen-binding specificity. Class switch re-
combination (CSR) occurs by an intrachromosomal dele-
tional recombination between switch (S) sequences located
upstream of the constant region genes (for a review, see
reference 1).

S sequences consist of tandem repeats of short (20-80
bp) consensus elements, extending from 1 to 10 kb in
length, and CSR can occur at any site within the S regions
(2). Although the S regions have short elements in common,
e.g., GGGGT or GAGCT, the S regions of different heavy
chain genes (isotypes) difter too much to undergo homolo-
gous recombination. Instead, CSR is thought to occur by a
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type of nonhomologous end joining (NHE], reference 3).
Ku70, Ku80, and DNA-PK, proteins known to be impor-
tant for NHE], are essential for normal CSR (4-6). This
hypothesis is supported by the fact that one often observes
short bits of microhomology at the S-S junctions, which is
typical of NHE]. However, whether these microhomolo-
gies play a role in the recombination is unknown as their
presence may simply be due to shared sequence elements
among S regions (2).

An interesting feature of S recombination junctions is
the presence of nucleotide substitutions, deletions and in-
sertions, which has led to the proposal that CSR occurs by
a process involving error-prone DNA synthesis (2, 7). The
mutations appear quite similar to those due to somatic hy-
permutation of antibody variable regions, and these two
processes have many other similarities. Both CSR and so-
matic hypermutation occur during antigen activation of B
cells and require transcription; both appear to be initiated
by double-strand breaks (8-10), and both require activa-
tion-induced deaminase (11).

Recently, mismatch repair (MMR) proteins have been
shown to be involved in both CSR and somatic hypermu-
tation. MMR proteins in eukaryotes fall into two classes: (i)
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the MutS homologs (Msh1-6) which recognize DNA mis-
matches, loops, and other distortions, and (i1) the MutL ho-
mologs (Pms1, Pms2, and Mlh1 in mammals) which bind
to MutS homologs bound to DNA (for a review, see refer-
ence 12). It is well established that MMR proteins have ad-
ditional roles besides the correction of nucleotide substitu-
tions and small insertions or deletions created by DNA
synthesis errors (12). Msh2, Msh6, Mlh1, and Pms2 are in-
volved in, but not required for, somatic hypermutation
(13-16). In the absence of these proteins, the frequency of
somatic hypermutation is decreased. In addition, some
MMR proteins have roles in homologous DNA recombi-
nation. MMR proteins have been shown to prevent re-
combination between homeologous sequences (sequences
that are homologous, but not identical) (for a review, see
reference 17). Msh 2 and 6 have been shown to bind to
Holliday junctions (18) and Mlh1l and Pms2 are found
bound to chromosomes undergoing meiosis in spermato-
gonia. In addition, Mlh1 mice and male Pms2 mice are
sterile (19, 20). DSB repair in yeast requires removal of
nonhomologous DNA segments adjacent to the break be-
fore the break can be repaired. Msh2 and Msh3 are re-
quired for this end-processing if 30 nts or more of such
heterologous sequences are present, and their role is to re-
cruit an endonuclease complex (Rad1/XPF and Rad 10/
ERCC1) to excise the heterologous 3’ single-strand tail
(21, 22).

By testing the ability of splenic B cells from mice defi-
cient in three MMR proteins, Msh2, Mlh1 and Pms2, to
undergo CSR in culture, we have previously shown that
MMR proteins are required for optimal switching in these
cultures, although they are not essential (23). Depending
on the particular isotype, switch recombination is reduced
by two to fourfold. MMR -deficient B cells proliferate as
well as wild-type B cells and are no more susceptible to
apoptosis than wild-type B cells in these cultures. Experi-
ments in which the effect of Msh2 deficiency was exam-
ined during in vivo immune responses also showed a deficit
in class switching, and the deficit was somewhat greater us-
ing this approach (24, 25).

To begin to determine the role of MMR in switch re-
combination, we examined the Si-Sy3 junctions in B cells
induced to switch to IgG3 in culture. We have compared
the junctions obtained from Msh2-, Mlh1- and Pms2-defi-
cient mice with junctions obtained from wild-type litter-
mates. Our results demonstrate that all three MMR pro-
teins are involved in CSR, but that Msh2 appears to be
involved at a different step from Mlh1 and Pms2. Msh2,
but not Mlh1 and Pms2, may be involved in processing the
ends after DSB formation, while Mlh1 and Pms2 may be
involved in stabilizing the recombination complex before
DNA ligation.

Materials and Methods

Mice. Mice made deficient in Pms2 or Mlh1 by gene target-
ing were obtained from R.M. Liskay, Oregon Health Sciences
University, Portland, OR (19, 20). Msh2-deficient mice were

obtained from W. Edelmann and R. Kucherlapati, Albert Ein-
stein College of Medicine, Bronx, NY (26). Mouse strains were
carried as heterozygotes and wild-type littermates were used as
controls. The background strains are 129 and C57Bl/6.

B Cell Isolation and Cultures. B cells were isolated from
spleens by depletion of RBCs by lysis in Gey’s solution for 5 min
on ice and by depletion of T cells with a cocktail of anti-T cell
reagents, anti-CD4 (GK1.5), anti-CD8 (3.168), and anti-Thy1
(HO13.4 and J1J10), followed by anti-rat k-chain mAb
(MAR18.5) and guinea pig complement (Pelfreeze Biochem).
Viable cells were isolated by flotation on Ficoll/Hypaque gradi-
ents (0 = 1.09). 10° B cells were cultured at 2 X 103 cells per
milliliter in 6-well plates for 4 d in RPMI 1640 (BioWhittaker),
with 10% FCS (Hyclone), 2 mM L-glutamine, 100 U/ml penicil-
lin, 100 pg/ml streptomycin (all from GIBCO BRL), and 1X
MEM nonessential amino acid solution, 1 mM sodium pyruvate,
and 5 X 1075 M 2-mercaptoethanol (all from Sigma-Aldrich).
LPS (50 pg/ml, Escherichia coli 055:B5; Sigma-Aldrich) was added
at the initiation of culture.

PCR Amplification of Su-Sy3 Junctions and Germline S and
Sy3 Segments.  Genomic DNA was isolated from B cells, either
resting or cultured with LPS for 4 d. Cell pellets were incubated
with proteinase K (0.5 mg/ml), RNaseA (100 pg/ml), and SDS
(0.5%) in STE (0.1 M NaCl, 20 mM Tris, 1 mM EDTA) for 2 h
at 37°C, followed by 3—4 extractions with phenol/chloroform
(1:1) and precipitation with 0.3 M sodium acetate, pH 7, and eth-
anol. DNA was wound out on glass rods and resuspended in TE,
pH 8. The germline Sy3 segment was amplified by PCR from
resting purified B cells from WT (129 X B6) mice for comparison
to Sw-Sv3 junctions from cells induced to switch to IgG3. Ex-
pand HiFidelity Taq polymerase (Roche Laboratories) was used
with the following primers: g3—1 (5'CAGGCTAAGATGGATG-
CTACAGGG-3") (MUSIGHANA 404-427) and g3-2 (5"TAC-
CCTGACCCAGGAGCTGCATAAC-3") (MUSIGHANA 2603—
2628) to amplify the 2.22-kb fragment of germline Sy3. Spu-Sy3
junctions were amplified by PCR using Expand Long Template
Taq polymerase (Roche Laboratories) and the primers w3-H3
(5’AACAAGCTTGGCTTAACCGAGATGAGCC-3") and g3-2
(above). The germline S sequence was deduced by comparing
the sequences of a large number of Sp-Sy3 junctions from wild-
type mice. For the sequence analyses, the wild-type sequences
from the corresponding littermates were used.

Cloning, Identification, and Sequence Analysis of PCR Products.
PCR products were cloned into the vector pGEM®-T Easy
(Promega) using blue/white screening for inserts. DNA was
isolated from white colonies using QIAprep spin miniprep kit
(QIAGEN). Inserts of the proper size for germline S and Svy3
segments were sequenced and compared with the correspond-
ing germline 129 X B6 or BALB/c sequences. Clones contain-
ing Sp-Svy3 junction inserts of varying sizes were chosen to op-
timize the identification of unique junctions. For Msh2 clones,
colonies containing inserts were identified by colony hybrid-
ization using the germline BALB/c S 1.8-kb HindIII frag-
ment. Sequence analysis of the cloned inserts was performed,
using standard T7 and SP6 primers, by the UMass Nucleic
Acid Facility using an ABI 377 DNA sequencer and Big Dyes.
Sequences were aligned using the Clustal program of MacVec-
tor 6.5.3. Alignments were generally obvious, although in a
few cases more than one alignment was possible due to the
repetitious nature of the repeats and occasional internal dele-
tions. In these cases, alignments were optimized to reduce nu-
cleotide differences between the germline and recombinant
sequences. The sequences which had to be aligned by minimiz-
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ing mutations are WT28 (Sy3), WT44 (Sw), Msh195 (Sv3),
and M1h124 (Sp).

Results

To obtain Sp-Sy3 junctions for nucleotide sequence
analysis, splenic B cells from wild-type or MMR -deficient
mice were cultured with LPS to induce switching to IgG3
(23). On day 4, genomic DNA was isolated and Su-Svy3
junctions were amplified by PCR using a primer located at
the 5’ end of Sy and a primer located at the 3" end of Sy3.
PCR products were cloned and plasmids containing inserts
of various sizes were chosen for sequence analysis. The nu-
cleotide sequences of the junctions obtained from wild-
type littermates of Mlh1- and Pms2-deficient mice are
shown in Fig. 1. The upper sequence in each set is the cor-
responding unrearranged, or germline, Sp sequence (la-
beled 129 X B6 Sm), or if not available for the particular
junction shown, then from the BALB/c Sp sequence
(GenBank locus MUSIGCD09). The third sequence of

each set is the unrearranged Sy3 sequence from IgM™ cells
of wild-type littermates (labeled 129 X B6 Sg3), or if not
available, the BALB/c Sv3 sequence (GenBank locus MU-
SIGHANA). The middle sequence shows the segment sur-
rounding the Sp-Sy3 junction, with the junction either
marked as a vertical line (if there is no microhomology at
the junction) or enclosed with a box to indicate nucleotides
that may have been derived from either the Sp or Sy3 seg-
ments, i.e., the microhomology at the junction. One junc-
tion appears to have a short insert that does not correspond
to either parental sequence (WT3-16), although alterna-
tively, it could have two mutated nucleotides adjacent to a
junction with 0 nucleotides of microhomology. As shown
in Fig. 1, the sequences from wild-type B cells generally
show 0 to 4 nucleotides of identity at the Sp-Svy3 junc-
tions, although one sequence (WT1-87) has 7 nucleotides
of identity.

Although the recombinant S junctions have nucleotide
substitutions and small deletions or insertions typical of
switch recombination junctions, these clones are PCR prod-
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ucts so it 1s not clear if all of the mutations were introduced
during switching. Furthermore, we did not observe any
clear differences in mutation frequency among the sequences
obtained from WT or the three MMR -deficient B cells.

Sp-Sv3 junctions obtained from Msh2-deficient B cells
are shown in Fig. 2. These sequences show shorter ele-
ments of microhomology at the junctions than WT (P =
0.004), usually 1 or 2 nts of identity, ranging up to 3 nts at
most. In addition, 19% (6 of 32) have short inserts or nu-
cleotide mutations at the junctions. Although WT junc-
tions also have inserts (Fig. 1, and reference 2), the fre-
quency of inserts in Msh27/~ junctions was significantly
higher than the WT frequency (P = 0.002).

The Sp-Sv3 junctions obtained from Mlh1-deficient B
cells, shown in Fig. 3, differ from the sequences of both
Msh27/~ and of wild-type B cells. Although 78% of these
sequences have junctional microhomologies of 4 nts or less,
similar to wild-type junctions, 22% of them show =5 nts of
microhomology at the S junctions, extending up to 14 nts
of identity. The junctions from Pms2-deficient B cells have
the same feature, with 24% showing junctional micro-

homology of 5 or more nts, extending up to 11 nts (Fig. 4).
Table I presents a summary of the microhomology analyses.
These data suggest that Mlh1 and Pms2 are also involved in
CSR, but that their role differs from the role of Msh2.

Discussion

The finding that the sequences of Su-Sy3 junctions dif-
fer between Msh2-deficient and wild-type B cells suggests
that Msh2 is involved in the recombination process itself.
One attractive possibility is that Msh2 is involved in DNA
end-processing, similar to its role in DSB repair in yeast.
In this model, single-strand DNA ends produced after
DSB formation and during the alignment of the donor and
acceptor S regions would be clipped off by an endonu-
clease recruited by Msh2 (presumably as a heterodimer
with either Msh3 or Msh6). In yeast DSB repair, the re-
cruited endonuclease is a complex of Rad 1 and 10 (ho-
mologs of mammalian XPF and ERCC1). We have previ-
ously described this model (Fig. 5 in reference 23). In the
absence of Msh2, lack of this type of end-processing might
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Figure 3. Sp-Sy3 junctions from Mlh1-deficient B
cells. Note that the boxes include single nts that are not
identical with both the Sp and Sy3 sequences which
are included only if they are preceded by 2 or more
identical nts. The numbers of identical nts indicated to
the right of each sequence do not count these non-
identical nts within the boxed regions. In the Mlh 69
sequence, the Spu segment adjacent to Sy3 had under-
gone inversion. This has been observed previously (ref-
erence 2). Sequences were obtained from 5 cultures
from 2 mice.

Figure 4. Sp-Svy3 junctions from Pms2-deficient
B cells. Sequences were obtained from 4 cultures
from 2 mice.



Table I.

Lengths of Microhomologies at Sp-Sy3 Junctions in MMR-deficient Cells Differ from Junctions in Wild-Type Cells

Percentage of junctions with indicated length of microhomology

Mouse =2 bp =5 bp =8 bp =10 bp P value? Nbr of sequences
%

Wild-type 44 3 0 32

Mlh1~/~ 41 22 13 9 0.035 23

Pms27/~ 40 24 16 16 0.047 25

Msh~/~ 19 0 0 0.004 32

sSignificance of difference in length of microhomology from WT, using Student’s one-tailed f test.

lead to reduced microhomology at the junctions. We
found a decrease in microhomology at the junctions from
Msh2-deficient cells compared with wild-type: twofold
fewer junctions with 2 or more nts of identity (19 vs. 44%,
Table I) and an increase in frequency of insertions at the
junctions (19 vs. 3%, Figs. 1 and 2). Perhaps the insertions
and mutations observed at the Sw-Sy3 junctions in the ab-
sence of Msh2 are due to a lack of normal processing of
ends. Inability to properly process DNA ends could re-
duce the efficiency of switching, and this reduction could
vary depending on the sequence of the particular down-
stream S region.

The sequences of the Su-Svy3 junctions from Mlh1- and
Pms2-deficient mice are similar to each other. About one-
fourth of the junctions from these B cells show unusually
long microhomologies, which suggests that these proteins
are not performing the same function as Msh2. Mlh1 and
Pms2 form a heterodimer and therefore it is reasonable
that a deficiency in either of these proteins has the same
phenotype. The MIh1-Pms2 heterodimer is known to
bind to Msh2-Msh6 and to Msh2-Msh3 heterodimers
bound to DNA mismatches. The Mlh1-Pms2 heterodimer
has been shown to greatly increase the affinity and thereby
stabilize the binding of Msh2-Msh3 when bound to mis-
matches (27). In addition, it has been recently shown that
the yeast Mlh1-Pms1 heterodimer (yeast Pms1 is equiva-
lent to mammalian Pms2) can directly bind DNA in the
absence of the Msh2 heterodimer. Interestingly, the het-
erodimer has two DNA binding sites and thus can bind to
two different DNA molecules simultaneously (28). Con-
sistent with these data, our sequencing results suggest that
MIh1-Pms2 might stabilize a recombination intermediate
and that in the absence of this heterodimer, increased sta-
bility might be provided by increased lengths of micro-
homology. The increased lengths of microhomology also
suggest that Mlh1 and Pms2 are probably not involved in
processing the single-strand ends. If they were, one might
predict that in their absence the lengths of microhomolo-
gies might decrease. This conclusion is in agreement with
the lack of requirement for yeast Mlh1 and Pms1 (equiva-
lent of mammalian Pms2) in DNA end-processing in DSB
repair (21).

It was previously reported that Sp-Sy3 and Sp-Sa
junctions in Msh2-deficient B cells occur more frequently
at the consensus elements GAGCT and GGGGT than do
junctions from wild-type cells (24). We could not exam-
ine this in our data set, because nearly all of the wild-type
and Msh27/~ switch junctions we obtained occurred in or
near the S tandem repeats, presumably because our 5" Sp
primer is located near the beginning of the tandem re-
peats. We also examined the location of junctions within
the Sy3 consensus repeats and found no difterence in the
frequency of recombination within the Sy3 SNIP and
SNAP elements (8) in wild-type and MMR-deficient
mice (data not shown).

In conclusion, the sequences of the Su-Sy3 junctions
from MMR -deficient mice indicate that these proteins are
involved in the recombination process itself and that Msh2
has a different role from Mlh1 and Pms2. It is possible that
Msh2 is present at the stage of alignment of the two S re-
gions, perhaps recruiting an endonuclease to process the
DNA ends and also attracting Mlh1-Pms2 to stabilize the
recombination intermediate. In the absence of Mlhl or
Pms2, we hypothesize that Msh2 could still recruit endo-
nuclease for end-processing, but the recombination com-
plex would be less stable, with the result that recombina-
tion intermediates with longer stretches of microhomology
would be favored.
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