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Abstract

The nuclear speckle-type pox virus and zinc finger (POZ) protein (SPOP), a representative substrate-recognition
subunit of the cullin-RING E3 ligase, has been characterized to play a dual role in tumorigenesis and cancer
progression. Numerous studies have determined that SPOP suppresses tumorigenesis in a variety of human
malignancies such as prostate, lung, colon, gastric, and liver cancers. However, several studies revealed that SPOP
exhibited oncogenic function in kidney cancer, suggesting that SPOP could exert its biological function in a cancer
type-specific manner. The role of SPOP in thyroid, cervical, ovarian, bone and neurologic cancers has yet to be
determined. In this review article, we describe the structure and regulation of SPOP in human cancer. Moreover, we
highlight the critical role of SPOP in tumorigenesis based on three major categories: physiological evidence (animal
models), pathological evidence (human cancer specimens) and biochemical evidence (downstream ubiquitin substrates).
Furthermore, we note that SPOP could be a promising therapeutic target for cancer treatment.
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Introduction
Protein degradation is critical for maintaining cellular
homeostasis, and abnormal accumulation of proteins
may lead to various diseases including human cancers
[1]. There are two major proteolytic pathways that are
conserved in eukaryotes: lysosomal-mediated proteolysis
and proteasome-mediated degradation [2]. By promoting
protein ubiquitination and degradation, the ubiquitin
proteasome system (UPS) is responsible for the destruc-
tion of approximately 80% of intracellular proteins,
thereby regulating an array of biological processes in-
cluding cell proliferation, apoptosis, invasion and metas-
tasis [3–5]. It is well accepted that UPS-mediated
protein degradation is composed of two discrete steps:
(1) a substrate protein is labeled by a single ubiquitin
protein (monoubiquitination) or multiple ubiquitin mol-
ecules (polyubiquitination); (2) the ubiquitinated sub-
strate is subsequently degraded by the 26S proteasome

complex [6]. Biochemically, the first step of protein ubi-
quitination is achieved through three unique and con-
secutive enzymatic reactions, which are catalyzed by a
ubiquitin-activating E1 enzyme, a ubiquitin-conjugating
E2 enzyme and a ubiquitin-protein E3 ligase [7]. Mech-
anistically, ubiquitin is activated by the E1 enzyme in an
ATP-dependent fashion. Then, the active form of ubi-
quitin is conjugated to the E2 enzyme, after which it is
transferred to the specific target substrate depending on
the E3 ligase involved [7]. Hence, E3 ligases are crucial
for determining the substrate specificity for degradation
(Fig. 1) [8].
The human genome encodes more than 600 putative

E3 ligases [9], among which the cullin-RING E3 ligase
(CRL) complex family is the largest and consists of eight
members including CRL1, CRL2, CRL3, CRL4A, CRL4B,
CRL5, CRL7 and CRL9 [10, 11]. Generally, the CRL E3
ligases are composed of a cullin (Cul) protein as the
scaffold protein, a RING-box protein (RBX1 or RBX2)
that is essential for recruiting the E2 enzyme, a
substrate-recognition subunit (SRS) and an adaptor pro-
tein (SKP1, elongin B/C or DDB1) that links the SRS to
the complex [12]. Interestingly, CRL3 contains only
three primary components including the Cul-3 protein,
the RBX1 protein and a Bric-a-brac-Tramtrack/Broad
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(BTB) protein, and the BTB protein serves as both the
SRS and the adaptor protein for substrate binding within
this complex (Fig. 2) [13, 14]. The nuclear speckle-type
pox virus and zinc finger protein (SPOP), a representa-
tive SRS of CRL3, has been greatly explored for its dual
functions in tumorigenesis [15, 16]. Therefore, in this re-
view, we will mainly describe the structure and regula-
tion of SPOP and discuss the role of SPOP in
tumorigenesis on the basis of three major categories:
physiological evidence (animal models), pathological evi-
dence (human cancer specimens) and biochemical evi-
dence (downstream ubiquitin substrates). We will also

note that SPOP is a promising therapeutic target for
cancer treatments.

Structure of SPOP
SPOP was first discovered in 1997 by Nagai and his col-
leagues and harbors a typical POZ domain [17]. After that,
accumulating evidence has elucidated the structure of
SPOP. Structurally, the SPOP protein comprises an N-
terminal MATH domain, an internal BTB/POZ domain, a
BACK domain, a 3-box domain and a C-terminal nuclear
localization sequence (NLS) (Fig. 3) [18, 19]. The MATH
domain of SPOP plays a central role in selectively recog-
nizing and recruiting substrates, and the majority of muta-
tions are located in this domain [18]. This domain
specifically recognized short linear motifs of substrates
that serve as the specific SPOP-binding (SB) motifs. In
turn, the substrate proteins require the existence of a pre-
requisite SB 5-residue motif φ-π-S-S/T-S/T (φ-nonpolar;
π-polar amino acid), termed the SPOP-binding consensus
(SBC) [18]. Moreover, the BTB domain is primarily in-
volved in SPOP dimerization as well as Cul-3 binding.
Specifically, an α3-β4 loop consisting of 10 amino acid
residues in the BTB domain is crucial for this binding
[20–22]. The BACK domain serves as a second place to
mediate dimerization [19]. Furthermore, the 3-box do-
main, a pair of α-helices stretching beyond the BTB
domain, has also been suggested to enhance the
SPOP-Cul-3 interaction [23]. The dimerization inter-
face in the BTB and BACK domains and the C-
terminus work independently and form higher-order
SPOP oligomers [24], which augments the E3 ligase
activity by increasing the substrate avidity and the ef-
fective concentration of the E2 enzyme [23].

Fig. 1 UPS-mediated protein degradation. Ubiquitin is activated by the E1 enzyme in an ATP-dependent fashion. Then, the active form of
ubiquitin is conjugated to the E2 enzyme, after which it is transferred to a specific target substrate depending on the E3 ligase involved. E3
ligases are crucial for determining the substrate specificity for degradation

Fig. 2 Cul-3 structure is illustrated. CRL3 contains three primary
components including a Cul-3 protein as the scaffold protein, a
RING-box protein (RBX1) that is essential for recruiting the E2
enzyme, and a Bric-a-brac-Tramtrack/Broad (BTB) protein; the BTB
protein serves as both a substrate-recognition subunit (SRS) and the
adaptor protein for substrate binding within this complex
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Tumor suppressive role of SPOP in cancers
Multiple studies have determined that SPOP could sup-
press tumorigenesis in several types of human malignan-
cies, including prostate, lung, gastric, liver, colon and
endometrial cancers (Fig. 4, Table 1).

Prostate cancer (PrCa)
PrCa is a common diagnosed cancer among men world-
wide [80]. SPOP was reported as a frequently mutated
gene in PrCa by Kan et al. in 2010 [52]. After that,
whole-genome as well as exome sequencing analyses
have revealed SPOP mutations in primary prostate neo-
plastic tumors but not in matched normal prostate tis-
sues [53, 54]. SPOP mutations (such as Y87, F102, S119,
Y123, F125, K129, W131, F133 and K134) often occur in
the MATH domain of SPOP (Fig. 3) [54], and these mu-
tations have been identified as an early event in the

development of genomic instability and tumorigenesis in
PrCa [55–58]. Notably, a number of animal models have
been generated to explore the physiological role of SPOP
in the development of PrCa and prostate tumorigenesis.
For instance, homozygous deletion of SPOP (SPOP−/−)
in zebrafish showed impaired brain, eye and body devel-
opment that was largely rescued via microinjection of
SPOP mRNA [58]. Furthermore, SPOP−/− mice died be-
tween embryonic day 18.5 and postnatal day 1 [59].
Blattner et al. constructed a prostate-specific SPOP-
F133 V mutation-carrying transgenic mouse and found
that PrCa was developed in part due to the activation of
the PI3K/mTOR and AR signaling pathways as well as
the loss of PTEN [60]. Additionally, the PrCa-derived
SPOP-F133 V mutation selectively damaged the
homology-directed repair function mediated by wild-
type SPOP (wt-SPOP) [58]. Clinical data showed that

Fig. 3 SPOP structure is illustrated. The SPOP protein comprises an N-terminal MATH domain, an internal BTB/POZ domain, a BACK domain, a 3-
box domain and a C-terminal nuclear localization sequence (NLS). The MATH domain of SPOP selectively recognizes and recruits substrates and
includes key amino acid residues such as Y87, F102, Y123, W131 and F133

Fig. 4 The tumor suppresssive role of SPOP in human cancers. SPOP suppresses tumorigenesis and progression via regulation of cell growth,
apoptosis, migration, invasion and drug resistance by targeting its downstream substrates in several types of human malignancies, including
prostate, lung, gastric, liver, colon and endometrial cancers
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SPOP mutations and downregulation were detected in
human PrCa tissues, and these mutations were also
tightly correlated with a worse prognosis in patients with
PrCa [61]. More importantly, extensive biochemical evi-
dence has further indicated that SPOP functions as a
tumor suppressor by promoting the degradation of
oncogenic substrates in PrCa, including SRC3 [62], AR
[63], TRIM24 [64], c-Myc [65], DEK [66], SENP7 [67],
EglN2 [68], ATF2 [69], Cdc20 [70], ERG [71, 81], BRD4
[72–74], PD-L1 [75] and cyclin E1 [76]. Due to the many
publications and space limitations, we will not describe
the tumor suppressive role that SPOP plays by promot-
ing the ubiquitination and degradation of its substrates
in PrCa in detail. Therefore, we sincerely apologize to

some researchers for not citing their important and
meaningful papers.

Lung cancer (LC)
LC is one of the leading causes of cancer-related death
in the world [82]. Downregulation of SPOP has been ob-
served in non-small cell LC (NSCLC) tissues compared
with normal tissues at both the transcriptional and
translational levels [83]. Furthermore, the level of SPOP
was confirmed to be associated with several clinicopath-
ologic parameters, and a decrease in SPOP was consid-
ered a predictor of poor prognosis in patients with
NSCLC, suggesting that SPOP could be a potential
tumor suppressor in LC [83]. The sirtuin (SIRT) family

Table 1 SPOP plays a role in several types of human malignancies by targeting its downstream substrates

Cancer type Physiological evidence
(animal models)

Pathological evidence
(human cancer specimens)

Biochemical evidence
(downstream ubiquitin
substrates)

Functions Ref

BC N/A Mutation, reduced
expression

c-Myc, SRC-3, PR Suppression of
tumorigenesis

[25–27]

CC N/A Increased expression,
deletion mutant

None Suppression of CC
tumorigenesis

[28]

CRC N/A Mutation, reduced
expression

Gli2, HDAC6 Inhibition of proliferation
and migration, promotion
of apoptosis and inhibition
of tumorigenesis

[29–31]

EC Conditional knockout
SPOP–/–; infertility
phenotype with
reduction in PRs
in the uterus

Mutation, reduced
expression

BRD2, BRD3, BRD4, ERα Inhibition of growth,
suppression of EC
tumorigenesis, enhanced
sensitivity to BET inhibitors

[32–36]

GC N/A Decreased expression Gli2 Inhibition of proliferation,
migration and GC
tumorigenesis

[37]

Glioma N/A SNPs, reduced expression None Suppression of glioma
tumorigenesis

[38, 39]

HCC Subcutaneous tumor
model (SPOP-
overexpression;
tumor suppressive role)

Mutation, decreased
expression

SENP7 Inhibition of migration
and invasion, and HCC
tumorigenesis

[40–42]

KC Injection with transfected
HEK293 cells (SPOP-cyto,
tumorigenesis)

Overexpression Daxx, DUSP7, Gli2, PTEN Inhibition of cell apoptosis,
promotion of cell proliferation
and ccRCC tumorigenesis.

[43–46]

LC N/A Decreased expression FADD, SIRT2 Inhibition of growth,
suppression of LC
tumorigenesis

[47, 48]

OC N/A Deletion mutant None Suppression of OC
tumorigenesis

[49, 50]

OS N/A Decreased expression None Suppression of OS
tumorigenesis

[51]

PrCa Transgenic (expressing
SPOP mutants);
conditional knockout
SPOP−/−); systemic
knockout (embryonic
lethal)

Mutation, decreased
expression.

AR, ATF2, BRD4, cdc20,
c-Myc, cyclin E1, DEK,
EgIN2, ERG, PD-L1, SENP7,
SRC-3, TRIM24.

Inhibition of PrCa
development and
progression

[52–76]

TC N/A Mutation None Suppression of TC tumorigenesis [77–79]
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of NAD-dependent protein lysine deacylases has been
reported to participate in multiple biological processes
such as transcription regulation, metabolism and DNA
repair [84–86]. Notably, one group showed that SPOP
promoted the proteasomal degradation of SIRT2 by
binding to it, thus suppressing the growth of NSCLC
cells [47]. Moreover, this ability was inhibited by muta-
tion of SPOP in NSCLC cells. Furthermore, compared
with the normal cells, NSCLC cell lines had elevated
SIRT2 and reduced SPOP levels [47]. Fas-associated pro-
tein with death domain (FADD) is the key adaptor pro-
tein that transmits extrinsic apoptotic cell death signals
by recruiting complexes of caspase 8 to death receptors
[87, 88]. Emerging evidence has also shown that FADD
expression is involved in tumorigenesis and cancer pro-
gression. For example, overexpression of FADD might
serve as a biomarker in head and neck squamous cell
carcinoma [89]. Furthermore, a high level of FADD pro-
tein has also been reported to be associated with poor
outcome in LC, suggesting that it could become a potent
prognostic biomarker in LC patients [48, 90]. Luo et al.
found that SPOP directly bound to FADD and promoted
its ubiquitination and degradation, blocking the develop-
ment of NSCLC [48]. Therefore, SPOP exerts anticancer
effects by targeting FADD in LC. Interestingly, an onco-
genic role of SPOP in LC has also been indicated re-
cently [91]. SPOP was found to be widely expressed in
different LC cell lines. Conversely, knockdown of SPOP
by shRNA in LC cells led to DNA damage repair defects,
increased cell apoptosis and sensitization to irradiation
under DNA damage conditions [91]. Therefore, in-depth
investigation is essential to determine the role of SPOP
in LC.

Gastric cancer (GC)
GC is one of the leading causes of cancer-related death
worldwide and has a poor response to current chemother-
apy [80]. The sonic hedgehog (Shh) signaling pathway is
crucial for growth control and patterning during embry-
onic development and adult homeostasis [92]. Glioma-
associated oncogenic (Gli) proteins are the main effectors
of the Shh pathway, including Gli1, Gli2 and Gli3 [93, 94].
Among the three Gli proteins, Gli2 is the principal tran-
scriptional activator that regulates Shh signaling in skin
development and tumorigenesis. One study revealed that
Gli2−/− mice displayed hair morphogenesis defects similar
to those of Shh−/− mice [95]. Furthermore, a high level
and increased activity of Gli2 in the epidermis is sufficient
to promote the formation of basal cell carcinoma and
maintain tumor growth [96, 97]. Moreover, upregulation
of Gli2 protein was detected in GC specimens and Gli2
was also correlated with lymphovascular invasion in GC
[98]. One group showed that the expression of SPOP was
much lower in GC tissues than in adjacent normal tissues,

while a high level of SPOP was negatively associated with
poor clinicopathologic outcome [37]. Additionally, overex-
pression of SPOP significantly inhibited growth, metasta-
sis, and colony formation in vitro. Mechanistically, using
immunofluorescent staining, it was observed that eleva-
tion of SPOP accelerated the degradation of Gli2 without
affecting its synthesis via intracellular interactions in GC
cells [37]. However, whether SPOP functions as a tumor
suppressor in GC should be further validated with more
studies in the future.

Hepatocellular carcinoma (HCC)
HCC arises in patients as a consequence of long-
standing preexisting liver illness, including viral hepatitis,
alcohol abuse, and metabolic disease [99]. A previous
study revealed using exome sequencing that SPOP was
heterozygously mutated in one hepatoblastoma case and
that it may normally play a tumor suppressive role in
hepatoblastoma [40]. In addition, Huang et al. found a
reduction in SPOP expression in HCC tissues and a low
level of SPOP was associated with a high grade and
intrahepatic metastasis in patients with HCC [41]. More-
over, in vitro experiments revealed that SPOP sup-
pressed the growth and migration of HCC cells in part
through blockade of ZEB2 expression [41]. Furthermore,
one group also confirmed that the expression of SPOP
was downregulated in HCC specimens and suggested
SPOP as a predictor of poor prognosis for HCC patients
[42]. Mechanistic studies implied that SPOP promoted
the ubiquitin-mediated degradation and proteolysis of
SENP7 by recognizing and binding to it, which eventu-
ally decreased the level of vimentin and attenuated the
metastasis of HCC cells [42]. In addition, experiments
on subcutaneous tumor mouse model also confirmed
the inhibitory effect of SPOP on liver and lung metasta-
ses in HCC [42]. Overall, these studies indicate that
SPOP might be a potential tumor suppressor in HCC.

Colorectal cancer (CRC)
CRC is the third most frequent cancer in the Western
hemisphere and the incidence increases with increasing
age [100]. Numerous studies have explored the role of
SPOP in tumorigenesis and progression in CRC. Fre-
quent downregulation of SPOP was detected in CRC tis-
sues compared with paired adjacent normal tissues at
both the mRNA and protein levels, and this downregula-
tion was also significantly related to clinicopathologic
parameters such as poor differentiation, distant metasta-
sis, and high TNM stage [29]. Furthermore, a decrease
in SPOP expression might serve as a potent predictive
factor of poor prognosis for patients with CRC according
to Kaplan-Meier survival analysis. In an in vitro study,
overexpression of SPOP dramatically inhibited the pro-
liferation and migration of CRC cells via upregulation of
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E-cadherin and downregulation of vimentin, MMP2, and
MMP7, while this process was reversed by silencing of
SPOP [29]. Moreover, one study also found that SPOP
ablated MMP2 expression in CRC cells by suppressing
the SP1 phosphorylation and nuclear translocation that
was involved in the PI3K/Akt signaling pathway [101].
Histone deacetylase 6 (HDAC6) belongs to the HDACs
family and is prominently involved in carcinogenesis and
cancer progression [102, 103]. Numerous studies have
found that high expression of HDAC6 exists in several
human cancers and is associated with a significantly
poor prognosis in diseases such as breast cancer [104]
and PrCa [105]. HDAC6 contains two functional cata-
lytic domains and deacetylates many nonhistone onco-
genic proteins [103]. For example, HDAC6-mediated
deacetylation leads to activation of HSP90 and promotes
the binding of client proteins to HSP90 including AR,
which enhances the activity of AR and suppresses its
degradation [106, 107]. Additionally, the elevation of
HDAC6 induced by P62 (also known as sequestosome-1,
SQSTM1) promotes the epithelial-mesenchymal transi-
tion (EMT) process and impairs autophagic flux, facili-
tating the growth, migration and invasion of prostate
cancer cells [108]. EMT is a reprogramming process in
which epithelial cells take on mesenchymal phenotype
after stimulation with EMT inducers [109]. The cells will
lose the features of polarized immotile epithelial cells and
obtain motile mesenchymal cell characteristics, leading to
enhancement of migration and invasiveness [109]. More-
over, the expression of E-cadherin is decreased, while the
levels of several mesenchymal markers including vimentin,
Twist, ZEB1, ZEB2, and Slug are upregulated [109]. More
importantly, multiple agents have been confirmed to exert
their anticancer effects by inactivating and downregulating
HDAC6 in PrCa cells [110–113]. It has been noted that
SPOP specifically interacts with HDAC6 and promotes its
polyubiquitination and degradation in human 293 T cells
[30]. Notably, the growth and migration of SPOP-depleted
colon cancer cells was partly reversed through knockdown
of HDAC6 [30]. In line with the studies above describing
the tumor suppressive function of SPOP in CRC, Zhi et al.
showed that SPOP accelerated the ubiquitination and deg-
radation of Gli2 by directly binding and interacting with it
in CRC cells, enhancing the apoptotic signals of cells via a
decrease in Bcl-2 and blocking the progression of CRC
[31]. These results indicate that SPOP is a tumor suppres-
sor in CRC, and it accomplishes this role by promoting
the ubiquitination-mediated degradation of HDAC6 and
Gli2.

Endometrial cancer (EC)
EC is the sixth most commonly diagnosed cancer in
women worldwide [80], and multiple studies have been
conducted to explore the function of SPOP in the

tumorigenesis of EC. Hence, we will mainly discuss how
SPOP plays a role in EC in this section. Recently, a
SPOP−/− mouse model was generated and exhibited an in-
fertility phenotype with a reduction in progesterone recep-
tors (PRs) in the uterus [114]. In addition, based on
artificially induced decidualization and steroid hormone-
processing mouse models, researchers have demonstrated
that SPOP is required for embryonic implantation and for
endometrial decidualization [115]. Collectively, these find-
ings support a crucial role for SPOP in regulating normal
uterine function. However, several genomic analyses have
provided evidence that SPOP is frequently mutated in hu-
man EC [32–36], indicating that wild-type SPOP may act
as a tumor suppressor in this disease. Zhang et al. discov-
ered that estrogen receptor-α (ERα) is a specific substrate
for SPOP, and ERα is also considered a main promoter of
EC and facilitates the tumorigenesis of EC [36]. The SPOP
protein accelerated the ubiquitin-mediated degradation of
ERα by recognizing specific domains that contained abun-
dant Ser/Thr (S/T)-rich degrons, and this action was re-
versed via the knockdown of SPOP by siRNAs in EC cells
[36]. However, intriguingly, a recent study suggested that
three BETs (BRD2, BRD3 and BRD4) were preferentially
degraded by EC-related SPOP mutation and enhanced the
sensitivity to BET inhibitors in EC cells [73]. Therefore,
the definitive role of SPOP in the carcinogenesis of EC re-
mains to be further elucidated in the future.

Oncogenic role of SPOP in kidney cancer (KC)
In contrast to the tumor-suppressive role of the SPOP
protein in many human cancers described above, the
oncogenic function of SPOP has been confirmed in KC.
Studies have shown that SPOP is significantly upregu-
lated in renal cell carcinoma (RCC) tissues at both the
transcriptional and translational levels [43–45], and this
upregulation was positively associated with cancer me-
tastasis in patients with RCC [45]. In contrast, the malig-
nant behaviors of RCC A498 and ACHN cells were
reversed after SPOP knockdown using siRNA, as mani-
fested by apoptosis induction, migration inhibition and
increased sensitivity to sorafenib [116]. The SPOP pro-
tein has been identified as a nuclear protein in human
normal embryonic 293 (HEK293) cells, whereas it has
shown to be predominately transferred and accumulated
in the cytoplasm of RCC cells under hypoxia [46]. Fur-
thermore, Li et al. constructed stable polyclonal HEK293
cells transfected with cytoplasmic SPOP (cyto-SPOP)
and found that 80% of nude mice injected with HEK293-
cyto-SPOP developed tumor xenografts subcutaneously
whereas no tumor growth was produced in the control
groups [46]. Biochemically, cyto-SPOP promoted the
ubiquitination and degradation of several tumor sup-
pressors (including PTEN, DUSP7, Daxx and Gli2) in
the cytoplasm, facilitating proliferation and inhibiting
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apoptosis in RCC cells [46]. Taken together, these find-
ings suggest that SPOP plays an oncogenic role in KC
cells via its cytoplasmic accumulation, resulting in deg-
radation of tumor suppressive substrates of SPOP (Fig. 5,
Table 1).

SPOP functions to be determined in tumorigenesis
Breast cancer (BC)
BC is one of the most common malignancies and is the
second cause of death among women in the world [117].
One group reported that SPOP mediated the ubiquitina-
tion and degradation of c-Myc in triple-negative BC
(TNBC) both in vitro and in vivo, while this process
could be prevented by the lncRNA LINC01638, which
interacted with c-Myc and subsequently promoted the
expression of metadherin (MTDH) and Twist1 [25].
Moreover, Li et al. demonstrated that SPOP destabilized
SRC-3 by hastening its polyubiquitination and proteaso-
mal degradation in a phosphorylation-dependent man-
ner in BC cells, thereby significantly reducing the levels
of some molecules involved in SRC-3-mediated onco-
genic signaling such as IGF-1 and MMP-2 [26]. In
addition, knockdown of SPOP by shRNA promoted the
proliferation and invasion of BC cells and elevated the
cancer growth rate in a tumor xenograft mouse model,

and these results were greatly influenced by upregulation
of the SRC-3 oncoprotein [26]. For the majority of
women with BC, tumor tissues show biological expres-
sion of receptors for estrogen and progesterone, hor-
mones that are known to promote the growth and
proliferation of cancer cells [118, 119]. PRs are member
of the sex steroid receptor family, which modulates the
function of sexual organs in a ligand-dependent manner,
and PR has two coexpressed isoforms (PRA and PRB)
[120]. There is compelling evidence suggesting that pro-
gesterone and PR play a crucial role in the development
of BC [121, 122]. Gao et al. revealed that SPOP targeted
PR for ubiquitin-mediated proteolysis and inhibited the
PR transactivation induced by progesterone, S phase
entry, and ERK1/2 activation, indicating that PR could
be a bona fide substrate of SPOP in human BC [27].
Hence, these studies recommend that SPOP serves as a
tumor suppressor by regulating the degradation of its
substrates in BC. Breast cancer metastasis suppressor 1
(BRMS1) is a member of a subclass of the metastasis
suppressor family, and its repressive effects on distant
metastasis have been observed in several human cancers
including BC [123, 124]. Intriguingly, one group sug-
gested that BRMS1 may be a promising substrate that
could be ubiquitinated and degraded by interacting with
SPOP in BC cells [125]. Furthermore, deletion of SPOP
dramatically promoted the expression of BRMS1 and de-
creased the level of OPN and uPA targeted and inhibited
by BRMS1 in BC cells, suggesting that SPOP can also
exert an oncogenic role in BC tumorigenesis and pro-
gression (Fig. 6) [125].

Cervical cancer (CC) and ovarian cancer (OC)
Although the prevalence of CC and OC survivors is on
the rise due to improved outcomes after therapy, these
diseases have also represented a serious threat to
women’s health [126]. However, studies focusing on the
role of SPOP in the tumorigenesis of CC and OC are
still lacking. Only one group indicated that overexpres-
sion of the SPOP protein was essential for the apoptosis
of HeLa cells, while this proapoptotic function was
countered by ablation of SPOP [28]. Furthermore, one
study used a tissue microarray to reveal a deletion mu-
tant of SPOP in the majority of OC tissues that was not
found in normal ovarian tissues, and this deletion mu-
tant was correlated with high histological type and grade
in OC [49]. Similarly, Jiang et al. identified several novel
mutations in OC cell lines and tissues through wholeex-
ome sequencing, including mutations in SPOP [50].
Thus, more studies should be carried out to clarify the
function of SPOP in these two cancers and identify sev-
eral potential substrates of SPOP during the carcinogen-
esis of CC and OC.

Fig. 5 The oncogenic role of SPOP in kidney cancer. SPOP serves as
an oncoprotein in kidney cancer by promotting the ubiquitination
and degradation of PTEN, DUSP7, Daxx and Gli2, thus facilitating
proliferation and inhibiting apoptosis in RCC cells
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Thyroid cancer (TC)
TC is the most common endocrine malignancy world-
wide [127], consisting of papillary (75–85%), follicular
(10–20%), medullary (~ 5%) and anaplastic carcinomas
(< 5%) [128]. Among the four types of TCs, only follicu-
lar thyroid carcinoma (FTC) has a benign counterpart
named follicular thyroid adenoma (FTA). In fact, it has
been widely accepted that FTA precedes FTC and has a
favorable prognosis compared to FTC [129]. In this sce-
nario, FTA originating from the thyroid follicle pene-
trates the tumor capsule and finally leads to the
formation of FTC [130]. A few studies have investigated
the genetic alterations responsible for the progression of
FTA to FTC in recent years. Yoo et al. first identified
the somatic mutation of SPOP-P94R in both minimally
invasive FTC and FTA, and the mutations were con-
firmed by polymerase chain reaction (PCR) and Sanger
sequencing assays [77]. Moreover, one group also found
SPOP mutations in both FTC and FTA by conducting
whole-exome sequencing and copy number profiling
[78]. In addition, the results of evolutionary age analyses
further showed that FTA genomes were as old as FTC
genomes, implying the stability of the follicular thyroid
tumor genomes during the transition from FTA to FTC
[78]. Interestingly, one recent study found that adeno-
matoid nodules shared few overlapping gene mutations
and expression patterns with coincidental papillary thy-
roid carcinoma (PTC) and the mutation of SPOP only
existed in adenomatoid nodules [79]. Further studies
should be performed in the future to explore several po-
tential substrates of SPOP involved in the tumorigenesis.

Glioma and osteosarcoma (OS)
The function of SPOP has also been reported in glioma
and osteosarcoma. Glioma is one of the most common
primary brain tumors and has a high mortality world-
wide [131]. A previous genome-wide linkage study re-
vealed a series of single nucleotide polymorphisms
(SNPs) in SPOP located on 17q12–21.32, and these
SNPs may play an important role in gliomagenesis and
cancer progression [38]. Furthermore, molecular studies
found that SPOP was markedly downregulated in glioma
samples compared to normal brain tissues, and low

expression of SPOP displayed a potential for indicating
poor prognosis in patients with glioma [39]. Conversely,
overexpression of SPOP significantly suppressed glioma
cell migration and invasion in vitro [39]. OS is a primary
bone malignancy that predominantly occurs in children
and adolescents [132]. Chen et al. showed that the ex-
pression of SPOP was decreased in both OS cell lines
and clinical tissues [51]. Moreover, the migratory and in-
vasive abilities of OS cells were dramatically enhanced
after silencing of SPOP, whereas the anticancer effect
was rescued by restoring the expression of SPOP, which
negatively modulates the PI3K/Akt/NF-κB signaling
pathway [51].

Regulation of SPOP
The function of SPOP is regulated at different levels, in-
cluding genetic alteration, and transcriptional, transla-
tional and post-transcriptional modifications (PTMs).
Genetic alterations of SPOP, including mutation and aber-
rant expression, have been extensively observed in various
human cancers and are discussed in the above text [133].
In addition, studies with regard to the PTMs of SPOP are
still lacking. Therefore, in this section, we will mainly
focus on transcriptional and translational regulation as
well as other emerging mechanisms that modulate the
biological functions of SPOP in physiological and tumori-
genic processes. Reportedly, SPOP is a direct transcrip-
tional target of hypoxic stress and hypoxia-inducible
factors (HIFs) in clear cell renal carcinoma (ccRCC) [46].
In ccRCC cells, SPOP mRNA and protein levels are ele-
vated under hypoxic conditions. Additionally, hypoxia is
sufficient to induce the cytoplasmic accumulation of
SPOP, which promotes the ubiquitin-mediated degrad-
ation of several tumor suppressors (Daxx, PTEN, DUSP7,
and Gli2) and leads to tumorigenesis in kidney cancer
[46]. Methylation, a common modification of DNA cata-
lyzed by a family of DNA methyltransferase enzymes, dir-
ectly regulates the transcription of SPOP by affecting its
promoter [31, 134]. Zhi et al. indicated that hypermethyla-
tion of the specific CpG sites within the SPOP gene pro-
moter region decreased the transcriptional activities of
SPOP, thereby causing the progression and metastasis of
CRC [31]. Several miRNAs have also been identified to be

Fig. 6 The dual roles of SPOP in breast cancer. SPOP might serve as a tumor suppressor or oncoprotein in breast cancer by regulating the
degradation of its various substrates, but this role requires further validation
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involved in the regulation of SPOP in human cancers. For
example, miR-145 and miR-543 reduced endogenous
SPOP levels in human CRC, BC, CC, HCC and GC cells
by directly targeting a conserved putative binding site in
the 3′-untranslated regions (3′-UTRs) of SPOP tran-
scripts, promoting the invasion and migration of cancer
cells [135, 136]. Additionally, one group independently
showed that SPOP might be a new target of miR-372 and
miR-373. Specifically, miR-372 and miR-373 enhanced the
stemness of CRC cells and induced a poor differentiation
status in CRC by inhibiting SPOP expression [137]. More
recently, Zhang et al. also reported that miR-373 pro-
moted the proliferation, invasion, and migration of oral
squamous cell carcinoma (OSCC) cells by negatively regu-
lating the expression of SPOP [138].
Liquid-liquid phase separation (LLPS) of proteins is an

emerging and important mechanism for regulating the
function of SPOP [139, 140]. During this process, mul-
tiple membraneless compartments are formed, through
which enzymes and substrates are concentrated and pro-
tein degradation is enhanced [139]. Studies have shown
that the SPOP protein exists in various nuclear bodies
including nuclear speckles, promyelocytic leukemia
(PML) bodies, DNA damage loci, and other substrate-
containing bodies [17, 19]. Recently, Bouchard et al.
found that localization of SPOP-substrate complexes in
membraneless organelles triggered by LLPS was essential
for SPOP-mediated ubiquitination and the subsequent
degradation of specific substrates in cells [140]. Con-
versely, tumor-associated SPOP mutations disrupted
LLPS and SPOP-substrate accumulation, thus inhibiting
ubiquitin-dependent proteolysis of downstream proteins.

SPOP as a therapeutic target
Since evidence has indicated oncogenic or suppressive
roles of the SPOP protein depending on the specific can-
cer types, the SPOP protein could function as a novel
therapeutic target for treating human cancers. Structur-
ally, the SPOP protein can selectively bind to specific
substrates by recognizing their SPOP-binding consensus
(SBC) motif [18, 141]. On this basis, Quo et al. per-
formed a computational screening and identified 109
small molecule inhibitors that disrupted the interactions
between SPOP and its substrates [142]. Among these
molecules, compound 6a showed the potential for com-
peting with the puc_SBC1 peptide to bind to SPOP,
while compound 6b was found to exert a strong inhibi-
tory activity in disrupting the SPOP-PTEN and SPOP-
DUSP7 interaction and blocking the downstream PTEN/
Akt pathway in vitro, inhibiting the proliferation of
A498 ccRCC cells [142]. Subsequent cellular thermal
shift assay (CETSA) analysis further verified that com-
pound 6b stabilized the substrates of SPOP in ccRCC
cells [142]. Because the SPOP protein has context-

dependent functions in different cancer types, future
studies should focus on designing tissue- or cell-specific
cancer drugs.

Conclusions and perspectives
In conclusion, SPOP plays a dual role in the develop-
ment and progression of human cancer by targeting its
various substrates. Due to the oncogenic role of SPOP in
kidney cancer, SPOP inhibitors are necessary for the
suppression of SPOP to treat kidney cancer. To take ad-
vantage of the tumor suppressive role of SPOP in pros-
tate cancer and other cancers, one alternative approach
is to modulate the upstream effectors of SPOP, leading
to the upregulation of SPOP. For example, downregula-
tion of miR-145 and miR-543 could increase the SPOP
level, and inhibit the migration and invasion of cancer
cells [135, 136]. Downregulation of miR-372 and miR-
373 could lead to upregulation of SPOP and subsequent
inhibition of stemness in CRC cells [137].
Since most studies focus on the function and molecu-

lar mechanisms of SPOP in prostate cancer, the detailed
role of SPOP in other tumors must be explored. Condi-
tional engineered mouse models are important for deter-
mining the function of SPOP and the mechanism by
which SPOP contributes to tumorigenesis and progres-
sion. Systematic approaches are needed to screen the
substrates of SPOP in human cancer. It is also important
to determine the reason why SPOP exhibits a dual role
in certain tissues. Overall, further exploration is required
to discover a rationale for designing therapeutic strat-
egies using SPOP inhibitors or promoters for human
cancer patients.
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