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Abstract: During recent decades, metal oxide semiconductors (MOS) have sparked more attention in
various applications and industries due to their excellent sensing characteristics, thermal stability,
abundance, and ease of synthesis. They are reliable and accurate for measuring and monitoring
environmentally important toxic gases, such as NO2, NO, N2O, H2S, CO, NH3, CH4, SO2, and CO2.
Compared to other sensing technologies, MOS sensors are lightweight, relatively inexpensive, robust,
and have high material sensitivity with fast response times. Green nanotechnology is a developing
branch of nanotechnology and aims to decrease the negative effects of the production and application
of nanomaterials. For this purpose, organic solvents and chemical reagents are not used to prepare
metal nanoparticles. On the contrary, the synthesis of metal or metal oxide nanoparticles is done by
microorganisms, either from plant extracts or fungi, yeast, algae, and bacteria. Thus, this review aims
at illustrating the possible green synthesis of different metal oxides such as ZnO, TiO2, CeO2, SnO2,
In2O3, CuO, NiO, WO3, and Fe3O4, as well as metallic nanoparticles doping.

Keywords: biological synthesis; green chemistry; metal oxide nanoparticles; metallic nanoparticles;
gas sensors

1. Introduction

In recent years, the population growth and rapid expansion of industries, especially in
textiles, leather, steel, and dyes manufacturing, has led to noticeable negative effects on
the environment and health implications [1,2]. These challenges require environmentally
sustainable policies and solutions for modification, reduction, and prevention of emissions.
Therefore, the demand for alternative ways to synthesize nanoparticles has drawn signifi-
cant interest worldwide, which has caused the development of green nanobiotechnology
or the green nanotechnology concept. These biological methods are eco-friendly with a
minimum impact on human health, living organisms, and the environment [3].

Green chemistry is based on 12 principles [4,5] that include:

• Reducing waste/by-product.
• Synthesis of chemicals and products with higher safety.
• Design of chemical synthesis with lower toxicity.
• Utilization of renewable and environmentally precursors.
• Use of effective catalysts.
• Reduce essential derivatization.
• Production of green products with the maximum proportion of raw materials (atom

economy).
• Control and decrement of pollution using less toxic chemicals.
• Increase of energy efficiency by the synthesis at room temperature with low pressure.
• Usage of solvents and reaction conditions with a higher level of safety, such as water,

ethanol, acetone, and methanol.
• Design to degradation of unrecycled materials at the end of the useful life.
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• Choose the suitable substance for the chemical process to minimize the possibility of
accidents such as explosions, fires, etc. [6].

Classical chemical and physical approaches involve high energy consumption and
the use of toxic solvents and chemicals during the process, which results in environ-
mental concern [7]. In contrast, the green synthesis of nanoparticles requires non-toxic,
environment-friendly, and safe reagents [4] to produce simple, cheap, and more stable
nanoparticles [8]. To this aim, plants or plant extracts and various microorganisms such as
algae, bacteria, yeast, and fungi are used. Finally, to synthesize nanoparticles by biological
method, proteins, enzymes, sugars, flavonoids, phenols, etc., function as the reducing and
stabilizing agents [9]. A comparison between traditional chemistry and green chemistry is
depicted in Figure 1.

Figure 1. Comparison of green synthesis and traditional synthesis methods. Elaboration from Ref. [10].

Gas sensors have gained considerable importance for environmental and industrial
atmosphere monitoring in the last years [11]. Gas sensing techniques are based on resistance
measurement, gas and liquid chromatography, electrochemical and optical methods, as
well as acoustic waves. Nevertheless, some sensors have several disadvantages: they are
energy and time-consuming, large in size, expensive, and present slow response and low
selectivity [12,13]. Therefore, special attention has been paid to chemoresistive sensors,
which consist of metal oxides, conductive polymers, and carbon-based materials [14].
Among these materials, semiconducting metal oxides have been extensively explored and
studied because they can have various valences, morphologies, and physical-chemical
features [15]. They are more complex than pure metals, with bonding changing from ionic to
highly covalent and metallic. Therefore, metal oxide nanoparticles are gaining considerable
attention from industry to be used in various applications, including catalytic processes,
electronics, sensors, magnetic storage media, and solar energy conversion [16,17]. Metal
oxide semiconductors such as ZnO, CuO, Fe3O4, In2O3, and SnO2 have been extensively
applied for the detection of volatile organic compound (VOC) gases and environmentally
hazardous gases like NO2, NO, N2O, H2S, CO, NH3, CH4, SO2, and CO2 owing to their
high sensitivity, low cost, thermal stability, easy production, etc. [18,19].

This review paper encompasses a detailed study of green synthesis methods and
their merits and demerits. The application of green synthesized metal and metal oxide
nanoparticles is mentioned hereunder. This paper also provides possible biological sources
for the synthesis of the nanoparticles. In addition, the gas sensing mechanism of n- and
p-type metal oxide semiconductors (MOS) sensors are comprehensively explained. Finally,
this work also gives an insight into the effect of morphology and structure of MOS on their
sensing performance. Furthermore, current literature will focus on comprehensive findings
during recent developments in the biosynthesis of semiconductor metal oxides, namely,
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ZnO, CuO, Fe3O4, In2O3, WO3, Ce2O3 via plant extract, and bacteria, fungi, and algae to
use in gas sensing applications.

2. Green Synthesis of Nanoparticles (NPs)

Findings have demonstrated that special attention has been given to replace traditional
physical and chemical methods for synthesizing metal and metal oxide nanoparticles with
biosynthesis processes termed green synthesis or biological methods [20,21]. In general,
there are two principal methods for the synthesis of nanoparticles named the “top-down”
and “bottom-up” methods [22], as presented in Figure 2.

In the top-down approach, nanoparticles are produced by reducing the size and
decomposing the bulk materials into fine particles [23] through various physical and
chemical routes such as lithography [24], sputtering [25], thermal evaporation [26], pulsed
laser ablation [27], photoreduction techniques [28], chemical etching [29] and mechani-
cal (milling, and grinding) [30]. Nevertheless, the imperfection of the produced surface
structure is mentioned as the main disadvantage of this technique [31]. In the bottom-up
method or self-assembly method, the nanoparticles are synthesized by joining smaller
units such as atoms and molecules [32,33] via chemical vapor deposition (CVD) [34], sol-
gel [35], co-precipitation [36], hydrothermal synthesis [37], electrodeposition [38], radiation-
induced [32], pyrolysis [39] and wet chemical routes [40,41]. However, there are some
challenges when using these methods, including high energy consumption, long reaction
time, use of hazardous and toxic substances, and non-eco-friendly by-products.

Figure 2. Top-Down and Bottom-Up approaches for synthesizing nanoparticles, (1) Microbial;
(2) Plant; (3) Biomimetic; (4) Algae. Elaboration from Ref. [24].

As shown in Figure 2, the green synthesis method is categorized as a bottom-up ap-
proach. Different mechanisms are involved in this process, including micro-organic content
based mechanism, plant extract mediated mechanism, microwave-based synthesis, vitamin-
based green synthesis, photo-catalysis, hydrothermal mechanism, ultrasound-based syn-
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thesis, magnetic synthesis, various solvents/catalysts in greener routes, supercritical fluids
(SC), and ionic liquids (ILs) [42].

In contrast to the chemical reduction process, in the biosynthetic route, plant extracts
are a replacement for expensive and toxic reagents. Some merits and drawbacks of the
green synthesis method are summarized in Table 1.

Table 1. Advantages and disadvantages of the green synthesis method. Elaboration from Ref. [43].

Green Synthesis Method

Merits Drawbacks

• Environmentally friendly process
• Controlled shape and size of NPs
• Without contamination compared to the

traditional process
• Prevention of wastes/by-products
• Decrease derivative products
• Without the requirement of high energy,

temperature, and pressure
• Renewable materials are easily accessible
• Large scale production of NPs
• Degradable chemical products
• Cost-effective and easy implementation
• In-process monitoring
• Reduced cases of accidents

• Limited applications in the industry
• Increase risks of NPs entering the body

leading to inhalation problems and
lethal diseases

• Limited studies have been conducted on
the bioaccumulation of NPs and their
toxicity in the environment

Moreover, green synthesized metal and metal oxides nanoparticles have various
applications in antimicrobial, biomedical, targeted drug delivery, and sensors, as presented
in Table 2.

Table 2. Applications of green synthesized metal and metal oxide nanoparticles. Elaboration from
refs. [42,44].

Metal/Metal Oxide Nanoparticles Applications

Silver (Ag), Gold (Au), Platinum (Pt),
Palladium (Pd), Copper (Cu)

Antimicrobial, Fuel cells, Catalysts, Sensor,
Drug delivery

Aluminum oxide (Al2O3) Antimicrobial, Sensor

Cerium oxide (CeO2) Antimicrobial, Biomedical, Drug delivery,
Anticancer

Titanium oxide (TiO2) Catalyst, Sensor, Electronic, Anticancer,
Antifungal, Cosmetics

Copper oxide (CuO) Antimicrobial, Sensor, Drug delivery
Zinc oxide (ZnO) Catalyst, Antimicrobial, Sensor, Drug delivery

Nickel oxide (NiO) Biomedical, Sensor, Photocatalytic,
Antibacterial, Antifungal

Iron oxide (Fe3O4) Antimicrobial, Sensor, Drug delivery

2.1. Biological Sources for Green Synthesis of Nanoparticles

Traditional physical and chemical methods for synthesizing metallic nanoparticles
need high energy, highly toxic reducing, and stabilizing agents leading to detrimental
effects on both humans and sea life. In contrast, the green synthesis of these particles
includes a one-step, cost-effective, and eco-friendly approach that can initiate the reaction
with low energy. The biological routes to synthesize metal and metal oxide nanoparticles
have been focused on reducing agents such as bacteria, fungi, yeast, algae, and plant
extracts considered in biocompatible and large-scale production [5,45].
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2.1.1. Bacteria-Mediated NPs Generation

Bacterial species have been extensively studied in commercial biotechnological ap-
plications, including bioremediation, bioleaching, and genetic engineering due to their
relatively facile manipulation [46,47]. It is found that bacteria are a good candidate for
preparing metallic and novel nanoparticles [42]. In particular, Prokaryotes and Actino-
mycetes have been widely utilized to synthesize metal and metal oxide nanoparticles.
Certain bacteria with specific shapes and sizes, such as Bacillus cereus, Lactobacillus casei,
Aeromonas species, Pseudomonas proteolytica, Escherichia coli, etc., can be used to synthesize
silver-based nanomaterials by biological reduction [46]. Moreover, some other bacteria
agents such as Shewanella alga, Bacillus subtilis 168, Plectonema boryanum UTEX 485, and
Rhodopseudomonas capsulata were applied for the synthesis of gold nanoparticles [48].

2.1.2. Fungi-Mediated NPs Generation

Biosynthesis of metal and metal oxide nanoparticles using fungal species is considered
an efficient method to generate monodispersed NPs with suitable morphologies. In com-
parison with other organisms, fungi are better biological agents for synthesizing NPs (such
as silver and gold) due to their intracellular enzymes, proteins, and reducing components
on the surface of their cell. Mainly, they have the ability to produce a larger number of
NPs with respect to bacteria. The formation mechanism of metal nanoparticles can be
explained by an enzymatic reduction in fungal cells or their cell wall [49–51]. The use of
fungal extracts for synthesizing nanoparticles has several benefits over bacterial extracts.

Fungal extracts for the synthesis of NPs have a significant advantage over bacterial
extracts. They are economically viable, have large-scale production and easy extraction, are
eco-friendly, and possess a large surface area. Additionally, it has been reported as a good
source of metabolites and enzymes with the ability to reduce bulk salts into elemental ions,
which are essential for nanoparticle synthesis [52]. The green synthesis of nanoparticles via
a microbe-mediated route is displayed in Figure 3.

Figure 3. Microbe-mediated synthesis of nanoparticles. Elaboration from Ref. [53].

2.1.3. Yeast-Mediated NPs Generation

Yeasts are known as unicellular microorganisms in eukaryotic cells, and only 1500 species
have been identified. Numerous studies have been conducted on the synthesis of nanopar-
ticles and nanostructures using a variety of yeast species through yeast-reducing enzymes
intracellularly or extracellularly. For example, gold and silver nanoparticles were synthe-
sized using a silver-tolerant yeast strain and Saccharomyces cerevisiae broth [54–56].

2.1.4. Algae-Mediated NPs Generation

Algae is rarely used as a biofactory for synthesizing metallic NPs [57,58].
Singaravelu et al. [59], for the first time, produced extracellular gold nanoparticles with
high stability by applying a marine alga (Sargassum wightii). Furthermore, they reported
the green synthesis of palladium and platinum nanoparticles using their metallic chloride-
containing salts. Fawcett et al. [60] investigated the green synthesis of three metal oxide
nanoparticles, copper oxide, ferric oxide, and zinc oxide, via marine algae.
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2.1.5. Plants-Mediated NPs Generation

Among biological components, plants have attracted tremendous attention to the
synthesis of nanoparticles. Their excellent properties include inexpensive cost, stability,
simplicity, safety handling, low energy consumption, low consumption of toxic chemicals,
rapid reaction time, and a wide range of biomolecules. Typically, plants have excellent
potential to reduce metallic salts into nanoparticles due to some biomolecules such as
carbohydrates, proteins, and coenzymes. Various parts of plants also have the ability to
accumulate heavy metals inside their parts. Moreover, the plant extracts can control the
synthesis of nanoparticles to obtain well-defined morphologies and size using only one
step with a high yield synthesis [22]. Therefore, extensive attention has been paid to the
biosynthesis of nanoparticles using various parts of plants such as leaves, roots, flowers,
and fruits as a facile, efficient, cost-effective, and alternative route to traditional production
methods [53]. Gold and silver were the first biosynthesized nanoparticles using plant
extract [58,61–63].

3. Factors Affecting on Green Synthesis of Nanoparticles (NPs)

Different parameters affect the characteristics of biosynthesized nanoparticles and con-
trol their stability [64], including pH value [65], calcination and reaction temperature [66],
concentration [67], pressure, solvent type, and contact time [68]. The pH of the reaction
medium has a key role in nanoparticle formation. Different concentrations of hydrogen
ions cause diversity in the shape and size of nanoparticles. It was found that larger particles
can be produced at lower acidic pH values. Rod-shape Au nanoparticles were produced
using Avena sativa at pH 2 and 3 with particles size of 25–85 nm and 5–20 nm, respectively.
In comparison, spherical silver nanoparticles were synthesized by Cinnamomum zeylanicum
bark extract at a higher pH value.

Temperature plays a stimulating effect in the synthesis of metallic nanoparticles
owing to its impact on the shape and size of NPs. Synthesis of gold nanoparticles using
Cymbopogon flexuosus leaf extract at lower reaction temperature led to the formation of
nanotriangles particles, while spherical nanoparticles and triangle nanoparticles formed at
higher reaction temperature [64].

Pressure has a remarkable effect on the synthesis of metallic nanoparticles due to its
impact on their size and shapes. Some studies [69] have reported that, at ambient pressure
conditions, the metal ions reaction occurs at a faster rate.

The time duration of incubation for the reaction of nanoparticles significantly affects their
quality, morphology, and characteristics. Incubation of nanoparticles for a long time can cause
aggregation or shrinkage, leading to a decrement in the potential of nanoparticles [64].

Nevertheless, the main factor is the presence of phytochemicals such as ascorbic acids,
phenols, carboxylic acids, terpenoids, amides, flavones, aldehydes, ketones, etc. [70,71],
which naturally exists in plant extracts. These mentioned components reduce metal salts to
metal nanoparticles [45].

4. Gas Sensing Mechanisms

Chemoresistive sensors are the most extensively utilized gas sensors based on metal-
oxides nanostructure [72]. These materials are semiconductors, and nonstoichiometry
determines their main charge carriers, as perfectly stoichiometric compounds are too
resistive [73]. The n-type semiconductivity is due to the formation of anions (oxygen)
vacancies or to the substitution with higher valence cations which increase the number of
free electrons [74,75]. On the contrary, the p-type semiconductivity can be attributed to
holes generated either by the addition of interstitial anions or the substitution with lower
valence cations [75]. Based on the electronic structure, metal oxide semiconductors can be
categorized into two types as follows [76]:

• transition-metal oxides (like hematite, cobalt tetraoxide, nickel oxide, titanium oxide,
tungsten oxide, etc.),
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• non-transition-metal oxides, including pre-transition-metal oxides (such as alumina,
magnesium oxide, etc.) and post-transition-metal oxides (zirconia, tin (IV) oxide, etc.).

The electronic structure controls the gas sensitivity of metal oxides. The pre-transition-
metal oxides are seldom used for gas sensors due to their wide band gap and disability
in the formation of both electrons and holes. In contrast, the gas sensing application of
the transition-metal oxides and post-transition-metal oxides is guaranteed by electronic
configurations [76]. Typically, the gas molecules adsorption on the sensing material’s
surface is the operating principle of gas sensors based on metal oxide semiconductors. At
100–500 ◦C, when the sensor is exposed to air, oxygen molecules adsorb onto the surface
of the material. The chemisorption of oxygen from the gas phase creates extrinsic surface
acceptor states (O2

−, O2−, and O−), immobilizing the conduction band electrons from
the regions near the surface of the semiconductor [77]. The oxygen species on the surface
of metal oxide can be physically or chemically adsorbed in function of the temperature.
Below 150 ◦C, the molecular form dominates, and O2

− is physically absorbed (Equation (1)),
whereas, above this temperature, the ionic species O− (Equation (2)) and O2− (Equation (3))
prevail, at temperatures below 250 ◦C and above 450 ◦C, respectively [77].

O2 (ads) +
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Figure 4. The electronic core-shell structures formation in metal oxide semiconductors: (a) n-type;
(b) p-type. Reprinted from Ref. [78] with permission of Sensors & Actuators: B. Chemical, 2014.

The gas sensing behavior of n-type and p-type MOS are different in function of the
target gases, as listed in Table 3 [79].

In the case of n-type MOS semiconductors, the outer resistive shell is responsible
for the sensor resistance when this sensor is exposed to air. Nevertheless, if samples are
exposed to a reducing gas (Figure 5), the reaction between the ionic oxygen species and
the gas will occur. Subsequently, the captured electrons will be released in the conduction
band, leading to a decrement of the material resistance. On the contrary, if any oxidizing
gas is introduced, the material will be further oxidized, and the thickness of the EDL, as
well as the resistance of the material, will further increase. In addition, if the grain size of
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the sensing material is less than twice the Debye length (LD, Equation (4)), the EDL will
extend to the entire material, and then the electrical change (and thus, the sensor response)
will be maximum.

LD =

√
εKBT
q2ND

(4)

where: ε is the dielectric constant, kB is the Boltzmann’s constant, T is the absolute temper-
ature in Kelvin, q is the elementary charge, and ND is the net density of dopants (either
donors or acceptors).

Table 3. The gas-sensing performance of n-type and p-type MOS towards reducing and oxidizing
gases.

Type and Examples
of MOS

Reducing Gases (H2, CO,
CH4, Ethanol, and Acetone)

Oxidizing Gases (O2,
O3, NOx, SO2)

Dominant
Charge Carrier Response

n-type (ZnO, SnO2, TiO2,
WO3, In2O3, etc.) Decreasing the resistance Increasing the

resistance Electrons

• Sn = Rg/Ra
(Oxidizing gases)

• Sp = Ra/Rg
(Reducing gases)

p-type (Cu2O, Co3O4,
Cr2O3,

Mn3O4, NiO, etc.)
Increasing the resistance Decreasing the

resistance Holes

• Sn = Rg/Ra
(Reducing gases)

• Sp = Ra/Rg
(Oxidizing gases)

S: Sensor response; Ra: Sensor resistance in air; Rg: Sensor resistance in the mixture of target gas and air.

P-type semiconductors present an opposite behavior with respect to n-type ones. In
this case, both the resistive core and the p-type shell determine the conductivity of the
sensing materials [80]. Nevertheless, if the particles of MOS are larger than twice the
thickness of the HAL, any slight change in the concentration of holes in the shell layer due
to electron-hole recombination will not change significantly the resistance value. Therefore,
the conduction of p-type semiconductors mainly occurs within semiconducting shells.

Figure 5. A schematic for the change of sensor resistance when exposed to the reducing gas in the
cases of n–type and p–type metal oxide semiconductor sensors. Reprinted from Ref. [81].

A metal-oxide semiconductor gas sensor contains a sensing layer, two or more elec-
trodes, and a heater to react with the target gas, detect the resistance changes, and provide
operating temperature, respectively [82,83]. The sensor response is defined in Table 3 based
on the type of metal oxides and target gases. The response and recovery time are expressed
as the time the sensor takes to obtain 90% of the total resistance change in the case of target
gas adsorption and desorption, respectively [79]. Some other parameters such as selectivity,
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operating temperature, and stability are remarkable parameters of gas sensors. At a specific
working temperature, the MOS sensors present various responses toward different target
gases [84]. Thus, with resistive semiconductor gas sensors, the chemical selectivity can
be obtained by operating the sensor at different temperatures [84]. A sensor with good
selectivity means that it is able to detect the target gas even in a mixture of gases. According
to the reported studies, MOS-based gas sensors are mainly able to detect a gas owing to the
change in the electrical signal caused by the gases [85].

5. Metal Oxide Nanoparticles (MO NPs)

Extensive efforts have been provided to convert metal salts into metal oxides using
plant extracts (Figure 6) [86]. One of the significant aspects of the use of plants for integrat-
ing nanoparticles is the biological variety of plant extracts, as well as the easy access to
numerous phytochemicals in different plant portions. Additionally, the produced nanopar-
ticles present enhanced features and applications with suitable manipulation. Therefore,
most demand has been focused on green nanotechnology [22,87].

Figure 6. Green synthesis of metal oxide using various plants portions and microorganisms. Elabora-
tion from Ref. [86].

Table 4 shows the biological synthesis of metal oxide nanoparticles using different
biological agents.

Table 4. Synthesis of metal oxide nanoparticles (MO NPs) from various bio species.

Plants Name/Part MO NPs Shape Of NPs Size of NPs (nm) Ref.

Persia americana/seed

SnO2

Flake-like 4 [88]
Annona squamosa/peel Spherical 27.5 [89]
Aspalathus linearis/leaf Quasi-spherical 2.5–11.40 [90]

Catunaregam spinosa/root Spherical 47 [91]

Eupatorium odoratum
(Chromolaena odorata)/leaf

CuO

Spherical - [92]

Hylotelephium telephium/ flower Spherical 83 [93]
Coriandrum sativum L./seed Irregular 18.2 [94]
Punica granatum/fruits peel Spherical 10–100 [95]

Bifurcaria bifurcata/Alga Spherical 5–45 [96]
Olea europaea/ leaf Nanobullets - [97]

Hibiscus sabdariffa

CeO2

Spherical 3.9 [98]
Aloe vera/leaf Spherical 2–3 [99]

China rose/flower petal Nanosheet 7 [100]
Curvularia lunata/fungus Spherical 5–20 [101]

Watermelon/fruit - 36 [102]

Kappaphycus alvarezii/seaweed

Fe3O4

Spherical to agglomerate 11–20 [103]
Carica papaya/leaf Spherical to agglomerate 33 [104]

Plantain/peel Spherical <25 [105]
Syzygium cumini/seed Spherical to agglomerate ~14 [106]

Sargassum muticum/Alga Cubic 18 ± 4 [107]
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Table 4. Cont.

Plants Name/Part MO NPs Shape Of NPs Size of NPs (nm) Ref.

Catharanthus roseus/leaf

TiO2

Clustered and irregular 25–110 [108]
Mangifera indica/leaf Spherical, Oval to agglomerate 30 ± 5 [109]

Bacillus amyloliquefaciens/bacterium Spherical 15.23–87.6 [110]
Annona squamosa/fruit peel Spherical 23 ± 2 [111]

Aeromonas hydrophila/bacterium Spherical 28–54 [112]

Nyctanthes arbortristis/flower

ZnO

Agglomerates 12–32 [113]
Beta vulgaris/root Agglomerates ~52–76 [114]

Sargassum muticum/Alga Hexagonal 3–57 [115]
Moringa oleifera/leaf Spherical ~6–10 [116]
Carissa edulis/fruit Agglomerates 50–55 [117]

Vernonia amygdalina/ leaf

NiO

Octahedral - [118]
Raphanus sativus/root - 34.89 [119]

Limonia acidissima/ fruit Spherical ~23 [120]
Nigella sativa/Seed Spherical, agglomerated 10–50 [121]

Microbacterium sp. MRS-1/Bacteria Flakes 100–500 [122]

Hypocrea lixii/Fungi Spherical 1.25–3.8 [123]

Rhodotorula mucilaginosa/Yeast Spherical 5.5 [124]

Red marine algae/Algae Uniform, smooth and
non-spherical 32.64 [125]

Fusarium solani/Fungus

WO3

Nanoflakes Thickness (40) length (~300) [126]
Moringa oleifera/aqueous extracts Spherical 10 [127]

Spondias mombin/leaf
Spherical (pH = 1) 10–13

[128]Purely hexagonal (pH = 4) 12–14
Hexagonal–spherical (pH = 7) 13–16.7

With the development of technology and increasing demand for precise information
in different fields, sensors have drawn interest in various applications, including aerospace,
medical diagnosis, ocean exploring, industrial manufacturing, bioengineering, and envi-
ronmental protection [129]. A wide range of metal oxide materials, including zinc oxide,
titanium dioxide, tin (IV) oxide, indium (III) oxide, copper (II) oxide, nickel (II) oxide, and
iron (II, III) oxide, have been considered as promising materials for detecting hazardous
and polluting gases such as H2, NH3, NO2 as well as biosensing of glucose, hydrogen
peroxide, etc. In addition, it has been proven that metal oxide composites consisting of
two or more metal oxides can increase gas sensor sensitivity [130]. Table 5 illustrates the
various metal oxide composites and mixed metal oxides used as a sensor for detecting
different gases.

Table 5. Metal oxides for application in gas sensors. Elaboration from Refs. [19,79,131].

Target Gas Metal Oxide Composites and Mixed Metal Oxides

CO SnO2-Co3O4; SnO2-Fe2O3; SnO2-Mn2O3; In2O3-SnO2; In2O3-Ga2O3; In2O3-Co3O4; (Pt, Pd, Au)-loaded WO3
H2 In2O3-SnO2; SnO2-CuO; SnO2-ZnO; SnO2-TiO2; TiO2-NiO; In2O3-ZnO

NH3 SnO2-MoO3; SnO2-Fe2O3; ZnO-CuO; ZnO-MnO2; α-Fe2O3-ZnO; TiO2-CuO; TiO2-Cr2O3; h-WO3
NOx ZnO-SnO2; ZnO-CdO; ZnO-Al2O3; In2O3-ZnO; In2O3-SnO2; Fe2O3-SnO2; SnO2-NiO; WO3; WO3-TiO2

Ethanol α-Fe2O3-SnO2; α-Fe2O3-ZrO2; α-Fe2O3-TiO2; α-Fe2O3-In2O3; α-Fe2O3-CuO; In2O3-ZnO; In2O3-SnO2;
SnO2-CuO; SnO2–TiO2; SnO2-NiO; SnO2-ZnO; Co3O4-ZnO; TiO2-CuO

VOCs SnO2-ZnO; SnO2-In2O3; SnO2-CuO; SnO2-NiO; Fe2O3-SnO2; α-Fe2O3-NiO; Co3O4-ZnO; ZnO-CuO
CH4 In2O3-SnO2; In2O3-SnO2-TiO2; SnO2-CaO; WO3
O3 In2O3-Fe2O3; In2O3-NiO; In2O3-ZnO-SnO2; In2O3-SnO2

H2S SnO2-CuO; SnO2-Ag2O; ZnO-CuO; WO3-CuO; Fe2O3-SnO2; CdO–In2O3; (Pt, Au, Au–Pt)-loaded WO3
CO2 BaTiO3-CuO-La2O3; CuO-CuxFe3−xO4; SnO2-La2O3; ZnO; WO3-TiO2
SO2 TiO2-V2O5; V2O5-WO3-TiO2; SnO2-NiO; WO3; Pt-WO3
Cl2 NiFe2O4; ZnFe2O4; In2O3-Fe2O3
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Effect of Morphology and Nanostructure of MOS on Gas Performance

The morphology of metal oxide semiconductors leads to their unique characteristics
that are critical for their further applications, such as gas sensing. The synthesis approach
mainly controls the morphology and structures of materials. Therefore, the selection of
the preparation method is determinant to obtain the sensing materials with desirable
properties such as morphology, grain and particle size, the crystal and electronic structures,
the network connection, and physical characteristics (bandgap) [132].

As well-known and previously discussed, in metal oxide semiconductors, the elec-
tronic transfer occurs with the surface adsorption and desorption of gas molecules, leading
to a change in conductivity. Hence, the shape and size of nanostructures have a significant
role in these changes. Sensing materials with a larger surface area possess more active sites
for adsorption and reaction of gas molecules. If the material’s structure includes some
conductive channels, these facilitate electron transmission and improve electron mobility,
leading to faster response/recovery speed. In addition, nanosheet structures have demon-
strated high potential in gas sensing applications due to the large specific surface area and
extremely thin nanosheets. Another significant factor in the adsorption of the target gas is
the porous morphology [130]. Indeed, the porous channel structure presents a transmission
path for the target gas and provides large pores. Therefore, porous channels improve the
diffusion of gas molecules in metal oxide gas sensors by providing a large surface area and
consequently increasing the number of active sites for gas molecules adsorption.

Despite the unique merits of one (1D) and two dimensional (2D) structures, they
present higher stresses and inevitably agglomerate that are harmful to the stability of the
sensor. In comparison, 3D structures such as 3D flower-like morphology overcome these
disadvantages and inherit the benefits of 1D and 2D structures like high specific surface
area. Besides these, the solid structure consists of one adsorption layer. In contrast, the
hollow structure has two adsorption layers, both inside and outside, so that sensors can
achieve more active sites for target gas adsorption with better gas sensitivity [130].

Researchers have studied the influence of various morphologies on the gas sensing
performance of ZnO [133–135]. For example, Godse et al. [136] prepared ZnO nanorods
and investigated the sensing performance under NO2 gas. The ZnO nanorods exhibited
great gas sensitivity with a sensor’s response of 70% and response and recovery times of
16 s and 200 s, respectively, toward 5 ppm of NO2. Van Duy et al. [137] synthesized zinc
oxide nanosheets with a thickness of 15 nm and a sensor’s response of 76% under 0.5 ppm
NO2. Nevertheless, other scholars prepared porous ZnO nanosheets with a porosity of
about 16% and an average pore size of 60 nm that showed a response of 2.93% under
0.5 ppm NO2 [133]. Li et al. [138] synthesized three kinds of typical ZnO microstructures:
rods, flowers, and pyramids. They reported that the dominant facets for ZnO rods, flowers,
and pyramids were (100) plane, (0001) plane, and (101) plane, respectively (Figure 7a–i).
The ZnO with the morphology of micro flowers exhibited the highest response (83%), the
best selectivity to triethylamine (TEA) as well as short response/recovery times (8 s/23 s,
respectively) at the operating temperature of 280 ◦C (Figure 7j,k).

Facet-controlled synthesis is one of the most promising strategies to develop high-
performance sensors, because some facets with higher surface energy, dangling bonds and
densities of atoms respect to others usually show a much higher chemical activity. To this
aim, Yang et al. [139] synthesized anatase titanium dioxide hierarchical microspheres (HTS,
Figure 8a–d) using a hydrothermal method. They studied the effect of various morpholo-
gies such as nano TiO2 microspheres (HTS-a, Figure 8e) and mirror-like plane-covered TiO2
microspheres (HTS-b, Figure 8f) on the sensing performance. The FESEM and HRTEM
images showed (Figure 8a–d) that the microspheres of HTS were exposed with (001) and
(101) facets on the surface. Concerning HTS-a and HTS-b, the HTS sample exhibited ex-
cellent sensing performance of 14.6 to 100 ppm to acetone vapor with a lower working
temperature of 280 ◦C along with a rapid response/recovery speed and an excellent selec-
tivity (Figure 8g–j). In addition, the response of HTS-based sensor to 100 ppm of acetone
was much higher respect to when under 100 ppm ethanol, H2, NH3 and H2S (Figure 8j).



Sensors 2022, 22, 4669 12 of 46

Wang et al. [140] prepared three different kinds of copper oxide powders: cube, truncated
octahedron, and octahedron, using a hydrothermal method and investigated their sensing
performance. Ascorbic acid was used as the reducing agent and polyvinylpyrrolidone
(PVP) was added in different amounts to control the microstructure of both synthesized
octahedron powders. The obtained samples had a highly regular polyhedral structure with
approximately 250 nm, 450 nm, and 400–600 nm in sizes for the cube, octahedron, and
truncated octahedron of Cu2O, respectively (Figure 9a,b,c).

Figure 7. (a–c) TEM image, corresponding HRTEM image and SAED pattern of ZnO rod; (d–f) TEM
image, corresponding HRTEM image and SAED pattern of ZnO flower; (g–i) TEM image, correspond-
ing HRTEM image and SAED pattern of ZnO pyramid; (j) Gas sensitivity of ZnO versus working
temperature towards 50 ppm of triethylamine; (k) Selectivity comparison of ZnO sensors under 50 ppm
of various target gases at 280 ◦C, Reprinted from Ref. [138] with permission of Elsevier Ltd., 2017.

The sensing response of the three obtained Cu2O sensors were evaluated in the
presence of 200 ppm CO at different working temperatures (Figure 10a). The maximum
CO response value was obtained by Cu2O-octahedron (19.7) at 90 C which was 3.6 and
1.8-times higher than that of the Cu2O-cube (5.4) and Cu2O-truncated octahedron (10.7).
Besides these, the Cu2O-octahedron particles-based gas sensor exhibited a response of
13.9 to 100 ppm of CO, whereas the sensing responses towards C2H2 and H2 were negligi-
ble (Figure 10b). The response to different concentrations of CO (1 to 800 ppm) showed
that all sensor responses enhanced with increasing the CO concentration (Figure 10c). Fur-
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thermore, the authors reported a response of 1.9 for the Cu2O-octahedron particles-based
sensor toward 1 ppm CO at 90 ◦C (Figure 10d). According to the obtained results and
excellent linear dependence of response on the CO concentration, they suggested that the
sensors based on Cu2O-octahedron particles are promising candidates to low concentration
CO detection. Last, but not least, the relationship between the surface catalytic properties
of the exposed crystal planes and surface composition/structure of various Cu2O particles
is of fundamental importance to understand the sensing reactions from the point of view of
materials’ chemical activity.

Figure 8. (a,b) FESEM images and (c,d) TEM image of HTS; (e) FESEM images of HTS-a; (f) HTS-b;
(g) Response of three TiO2 sensors versus various working temperatures to 100 ppm acetone; (h) Gas
response of HTS under different concentrations of acetone at 280 ◦C; (i) Response of the three TiO2

sensing materials to 10–2000 ppm of acetone; (j) Selectivity of HTS for the detection of 100 ppm of
various target gases, Reprinted from Ref. [139] with the permission of Elsevier Ltd., 2017.
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Figure 9. TEM images of: (a) Cu2O-cube; (b) Cu2O-octahedron; (c) Cu2O truncated octahedron,
Reprinted from Ref. [140], with the permission of Elsevier Ltd., 2017.

Figure 10. (a) The relationship of working temperature and CO-sensing response of three Cu2O
particle-based sensors to 200 ppm CO; (b) Sensor responses of Cu2O sensors to 100 ppm of CO,
H2, and C2H2 at 90 ◦C; (c) Response versus CO concentration of Cu2O sensors at 90 ◦C; (d) The
corresponding sensor response curves to CO concentration from 1 to 100 ppm; The straight line show
fits the data. Reprinted from Ref. [140] with the permission of Elsevier Ltd., 2017.

Matovic et al. [141] prepared the nanoparticle WO3 (Figure 11a) with two crystal
types (monoclinic phase γ-WO3 and hexagonal phase h-WO3). These Authors reported
a sensor response of 450 to 1 ppm NO2 at room temperature. The enhanced sensor
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response was attributed to the electron and hole transfer from h-WO3 to the γ-WO3
phase. Zhang et al. [142] reported a sensitivity of 101.3% and response/recovery times of
125/231 s, respectively, for WO3 nanofibers (Figure 11b) toward 3 ppm NO2. In another
study, WO3 porous nanosheet arrays (Figure 11c) with a thickness of 20 nm exhibited a
high response of 460% under 10 ppm NO2 at 100 ◦C [143]. The WO3 hollow sphere sensor
obtained a significant sensing performance towards sub-ppm NO2 [144]. The experimental
results showed a sensor response of 1.5~26% in the range 50 ppb~1 ppm of NO2 at room
temperature, which was attributed to the large specific surface area, high concentration
of oxygen vacancy, and hollow structure. Liu et al. [145] synthesized a nanomesh as-
sembled from WO3 nanowires (Figure 11d) to detect low concentrations of NO2 at lower
temperatures. They reported a sensor response of 1.25% to 50 ppb NO2 at 160 ◦C.

Figure 11. SEM images of: (a) WO3 nanoparticles; (b) WO3 nanofibers; (c) WO3 hollow nanosheet
array; (d) WO3 nanomesh, reprinted from Refs. [141–143,145], with permission of Elsevier Ltd., (b,c).

6. Green Synthesis of Metal Oxide Semiconductors
6.1. Zinc Oxide Nanoparticles (ZnO NPs)

The investigation of zinc oxide nanoparticles has increased because of their vast ap-
plications in solar cells, photovoltaic, drug delivery systems, gas sensors, field emission
devices, coating, electrochemical, antibacterial, capacitors, and cosmetics [22,146,147]. ZnO
is an n-type semiconducting metal oxide (SMO) having piezoelectric and pyroelectric
characteristics, long life, as well as high sensitivity to various target gases. The ZnO
nanoparticles present different semiconducting features as they possess high exciton bond-
ing energy and a wide bandgap with 60 meV and 3.37 eV, respectively. These characteristics
have made ZnO important to extensively apply as a gas sensing material in houses and
industrial environments to detect toxic, dangerous, explosive, and greenhouse gases [148]
and for air quality assessment. The ZnO NPs can have various morphologies such as
nanoflower, nanorod, nanoflake, nanobelt, nanosheets, and nanowire.

A wide range of studies has been conducted on green synthesized ZnO NPs in biomedi-
cal applications, gas sensing, purification of water, and optical devices [149,150]. Numerous
investigations have dealt with the green synthesis of ZnO NPs using various plants, bacte-
ria, fungus, algae, etc. (Figure 12). Several studies have reported the biological synthesis
of ZnO via fungi (Fusarium keratoplasticum A1-3, Aspergillus terreus) [151,152] and bacteria
(Halomonas elongata IBRC-M 10,214, Sphingobacterium thalpophilum) [153,154]. Furthermore,
Sanaeimehr et al. [155] obtained ZnO nanoparticles with a particle size of 30–57 nm by
Sargassum muticum algae extraction.
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Figure 12. Synthesis of ZnO NPs by using various biological species. Elaboration from Ref. [156].

Sabir et al. [157] reported the synthesis of ZnO NPs using milky latex of Calotropis procera,
rice as soft biotemplate, and leaf extract of various plants such as Coriandrum sativum,
Calotropis gigantea, Acalypha indica. Recently, Kumar et al. [158] successfully synthesized
biodegradable and green chitosan/PVP (GHP) polymeric substrates using a facile and
low-cost solvent casting method. Subsequently, ZnO film was deposited on the GHP
substrate through an easy drop-casting technique. These Authors reported 24% and 46%
sensor response against 0.5% and 2% H2 gas, respectively, at an operating temperature
of 150 ◦C. Their experiments demonstrated the repeatability properties of GHP/ZnO
towards 0.5% H2 gas at 150 ◦C with a repeatable sensor response over three cycles. Jadhav
et al. [86] developed sensors for hybrid vehicles with the green synthesized ZnO and SnO2
powders. They prepared hexagonal and spherical/hexagonal ZnO nanoparticles from zinc
nitrate hexahydrate using Aloe vera and Young Harbara Plant Leaves (YHPL), respectively.
Figure 13 exhibits the gas sensing performance for ZnO-Aloe vera, SnO2-Papaya, and
ZnO-CAL (YHPL).

Figure 13. Comparison of response/recovery time (in second) and temperature (in ◦C) for ZnO-Aloe
vera, SnO2-Papaya, and ZnO-CAL (YHPL). Reprinted from Ref. [86] with permission of Emerald
Publishing Ltd., 2021.

Sensing properties of ZnO-Aloe vera showed the response time, recovery time, and
sensitivity of 8–10 s, 230–250 s, and 48%, respectively, toward liquefied petroleum gases
(LPG) in the operating range from 225 to 375 ◦C, while ZnO-CAL (YHPL) was used to
detect NO2 gas with response time, recovery time, and sensitivity of 140–150 s, 150–200 s,
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and 38.2%, respectively, in the temperature range from 220 to 240 ◦C. Moreover, the
LPG gas sensing properties showed the response time, recovery time, and sensitivity of
5–10 s, 25–50 s, and 56.25%, respectively, for SnO2-Papaya in the operating range from
200 to 250 ◦C.

Furthermore, scientists have studied ZnO nanoparticles in the biosensing field too.
Alam et al. [157] synthesized NiO-CuO-ZnO nano metal oxides using a solution of
Centella asiatica plant extract as a green fuel by combustion approach and examined their
photocatalytic properties. The sensing ability of these metal oxides was also investigated as
a glucose sensor. The ZnO nanoparticles were synthesized by Carica papaya seed extract and
studied as an electrochemical biosensor for the detection of silymarin by Sharma et al. [159].
In another study, the sensing characteristics to ethanol of ZnO NPs were investigated by
Joshi et al. [160] using Ixora coccinea leaf extract as a capping agent. The response time and
recovery time were found equal to 24 s and 47 s, respectively, in the presence of 200 ppm of
ethanol vapor.

Recently, in 2022, Nagar et al. [161] investigated the selectivity of the ZnO NPs sensors
in the presence of alcohol, acetone, ammonia, and humidity. Hexagonal-shaped ZnO
particles were obtained from zinc acetate dihydrate, soda, and Parthenium hysterophorus leaf
extract. The presence of certain enzymes and proteins in the leaf extract acted as reducing,
capping, and stabilizing agents for ZnO NPs. When dissolved in leaf extract, zinc acetate
formed complex agents with proteins and enzymes, then, nucleation started and led to
reverse micelle, which later reduced and formed NPs. Finally, ZnO NPs precipitated in the
micelles’ core after NaOH addition. Enzymes and proteins in the leaves extract prevented
clustering by shielding ZnO NPs [162–164]. From Raman and XPS investigations, the au-
thors showed that the prepared powder was crystalline, oxygen deficient and possessed Zn
interstitials, as well as a hexagonal wurtzite structure. They found also that the synthesized
sensor was highly selective for the detection of ammonia at 80 ◦C (Figure 14).

Figure 14. Selectivity of the synthesized sensor towards various test gases. Reprinted from Ref. [161]
with permission of Elsevier Ltd., 2022.

Furthermore, the sensor response was also assessed in various concentrations of NH3,
including 0.5, 1, 2, 5, and 10 ppm, as shown in Figure 15. At 0.5 ppm concentration, despite
the sensor being active, it did not present a noticeable response. Moreover, the sensor
characteristics were measured for 2 and 10 ppm of NH3 with response time and recovery
time (7 s, 8 s) and (8 s, 14 s), respectively. Based on their experimental results, although the
sensor response was approximately 300% at 10 ppm ammonia concentration, its recovery
time was quite long (14 s). Hence, they reported excellent sensor characteristics at 5 ppm of
NH3 with a response value of 2.5 and response/recovery time of 5 s and 8 s, respectively.
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Figure 15. ZnO sensor response to ammonia gas in function of: (a) time and different gas concentra-
tion; (b) gas concentration. Reprinted from Ref. [161] with permission of Elsevier Ltd., 2022.

Joshi et al. [160] studied the gas sensing characteristics of biosynthesized ZnO NPs
using Ixora coccinea leaf extract (IC), zinc acetate dihydrate, and soda. A less aggregated ZnO
powder was obtained due to the presence of IC extract acting as a capping agent. However,
the crystallite size was comparable (23.08 nm for ZnO NP with IC and 22.02 nm for ZnO
NP without IC). The authors compared the ethanol vapor sensing of ZnO samples with and
without IC at various working temperatures towards 40–800 ppm of test gas. They found
that the optimum temperature for both samples was 285 ◦C (Figure 16a). By increasing
the ethanol concentration up to 800 ppm, there was a linear increment in the gas response
(Figure 16b) up to an operating temperature of 285 ◦C. The sensor response was 28.7 and
37.4 for synthesized ZnO under 800 ppm of ethanol with and without IC, respectively.
This difference in the gas response can be attributed to the change of morphology for
synthesized samples from ZnO highly clustered to less aggregate clustered ZnO with and
without IC, respectively. The response and recovery times reported were (24 s and 47 s)
and (21 s and 27 s) for ZnO, with and without IC, respectively (the inset in Figure 16b).

Zhao et al. [165] successfully prepared Ag-coated ZnO nanoparticles using a green
synthesis method based on Tribulus terrestris leaf extract. The Ag nanoparticles ranged from
6 to 10 nm in diameter. The results showed the superior ethanol sensing properties of the
synthesized Ag-coated ZnO nanoparticles at room temperature: the resistance values of
pure ZnO sensor decreased continuously from 2.5 MΩ to 1.25 MΩ following two straight
lines with different slopes, while the resistance values of Ag-coated ZnO sensor dropped
down linearly from 0.5 MΩ to 0.24 MΩ in the range 0–20 ppm. Goutham et al. [166] syn-
thesized ZnO nanoparticles applying two approaches, i.e., green synthesis (from Aloe vera
extract and zinc nitrate) and chemical synthesis (solution combustion method with zinc
nitrate and glycine) and compared their sensing performance towards various concentra-
tions of LPG gas at different working temperatures. In addition, they investigated the
structure of synthesized particles by field emission scanning electron microscope (FE-SEM).
They found that the green synthesized ZnO nanoparticles (Figure 17a,b) were randomly
distributed in spherical morphology while chemically synthesized zinc oxide powder was
spherical in nature (Figure 17c,d) with a particles size of 50–60 nm for both prepared ZnO.
The size of synthesized particles improved the physical adsorption of a high amount of
gas analyte molecules on the surface, which caused changes in the electric resistance of the
sensing film.

Furthermore, the results demonstrated that the green synthesized ZnO showed max-
imum current change at 1000 ppm of LPG. As shown in Figure 18a, with increasing the
concentration of LPG up to 1000 ppm, the sensitivity and response of the sensor increased
with respect to the working temperature. Moreover, the effect of temperature on the
sensitivity of the prepared sensors was evaluated in the range from room temperature
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to 350 ◦C (Figure 18b). It can be seen that both the chemical-ZnO and bio-ZnO sensors
showed the maximum sensitivity at 250 ◦C for 1000 ppm of LPG. The authors reported
that the chemically synthesized ZnO sensor presented similar sensing characteristics as the
biosynthesized ZnO. Although, the biosynthesized ZnO sensor showed a lower sensitivity
compared to the chemically synthesized one (Figure 18b).

Figure 16. The gas-sensing performance of ZnO film: (a) at various temperatures; (b) various gas
concentrations. Reprinted from Ref. [160].
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Figure 17. FE-SEM micrographs of zinc oxide nanoparticles: (a,b) biologically synthesis; (c,d) chemi-
cal synthesis. Reprinted from Ref. [166] with permission of Elsevier Ltd., 2017.

Figure 18. (a) Sensing response of chemical-ZnO and bio-ZnO devices towards various concentrations
of LPG; (b) the effect of temperature on the sensitivity of the chemical- and bio-ZnO devices towards
1000 ppm of LPG. Reprinted from Ref. [166] with permission of Elsevier Ltd., 2016.

A list of studies dealing with ZnO NPs has been summarized in Table 6.

Table 6. A brief summary of green-synthesized zinc-oxide as gas sensors.

Material Structure/Synthesis
Method

Target Gas/Concentration
(ppm) Operating T (◦C) Response

(%) Ref.

ZnO-CAL (YHLP) Spherical and hexagonal LPG

100 14

[86]

200 22.5
230 31.05
300 21.9
400 11
500 5.8
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Table 6. Cont.

Material Structure/Synthesis
Method

Target Gas/Concentration
(ppm) Operating T (◦C) Response

(%) Ref.

ZnO film/drop-casting H2/0.5%
150

24
[158]H2/2% 46

ZnO film/precipitation

Ethanol vapor/40

-

5.4

[160]

Ethanol vapor/80 5.56
Ethanol vapor/120 6.22
Ethanol vapor/160 9.94
Ethanol vapor/400 13.63
Ethanol vapor/800 28.7

ZnO thin film/- NH3/600 150 ~57 [167]

ZnO@ZIF-8 Core-Shell /DGC
H2/50 - 0.9

[168]H2/100 2.4

ZnO hexagonal/-

NH3/0.5

80

~1.07

[161]
NH3/1 ~1.2
NH3/2 ~1.5
NH3/5 ~2.5
NH3/10 ~3.0

YHLP: Young Harbara Leaves Plant; LPG, Liquefied petroleum gas; DGC: Dry Gel Conversion.

6.2. Titanium Oxide Nanoparticles (TiO2 NPs)

Titanium dioxide, or titania, is one of the most widely synthesized metal oxide nano-
materials due to its excellent and versatile features. Titanium dioxide is commonly applied
in medicine, water, and air purification as a photocatalyst due to its potential oxidation
strength, long-term stability, and non-toxicity [169,170]. The TiO2 NPs have also been
utilized in high-power Li-ion batteries [171] and in sensing applications, for example, for
the detection of volatile chemicals and gases, as well as chemical oxygen demand sensors
and biosensors for biological substances.

Plant extracts have been reported as effective sources in the synthesis of TiO2 NPs
with antimicrobial potential [172], and solar cell ability [173] or photocatalytic activity [174].
Titanium dioxide NPs with different structures and sizes have also been achieved in recent
years via microbes, and through fungal-mediated synthesis; TiO2 NPs with a 28–54 nm
particle size were synthesized through Aeromonas hydrophila (bacteria) in ref. [112]. A study
performed by Rajakumar et al. evidenced that fungi were beneficial for synthesizing TiO2
NPs due to their biodegradable nature [175]. Researchers have also obtained spherical TiO2
NPs using Planomicrobium sp. and Aspergillus niger with the size of 73–100 nm [176,177].

However, the synthesis of NPs via plant-mediation leads to more stable products
than with microbe-mediated synthesis [178]. In addition, leaves are richer in metabolites,
thus, they are more widely used to produce extract [53]. In 2022, Sagadevan et al. [53]
summarized biosynthesized TiO2 NPs through plant extract and microbes (fungi and
bacteria): clustered or polydispersed, spherical, quasi-spherical, oval, or tetragonal par-
ticles ranging from 2 to 150 nm can be obtained in function of the selected precursors.
For example, tetragonal TiO2 NPs with a particle size of 47 nm were synthesized using
leaf extracts of Ledebouria revoluta (African hyacinth). While, spherical TiO2 NPs were
obtained through Hibiscus rosa-sinensis (flower), Acanthophyllum laxiusculum (root), and
Cicer arietinum L. (seed) with the particle size in the range of 7–25 nm [171,179,180].

6.3. Cerium Oxide Nanoparticles (CeO2 NPs)

Cerium oxide is a rare earth n-type semiconducting material with high crystallographic
stability (up to its melting point, 2700 ◦C), high exciton binding energy, and wide bandgap
energy from 3.0 to 3.2 eV, and UV wavelength at around 370 nm [98]. Because it can switch
between its oxidation states, it can be widely used as a catalyst, gas sensor, energy storage,
cosmetics, etc. [181]. Cerium oxide is also gaining considerable attention from researchers
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as a sensor for the detection of humidity and various gases such as NH3 [182], H2 [183],
CH2O [184], and NO2 [185]. Extensive efforts have been focused on the green synthesis of
CeO2 NPs using an eco-friendly, cost-effectiveness, time-saving, and high-yield approach
without producing toxic residues. Cerium oxide nanoparticles have been green synthesized
using alga, extracellular compounds of fungi, and plant extracts (leaves, stem, seeds, etc.).
For example, CeO2 NPs were produced with an average particle size of 22 nm using an
aqueous extract of Acorus calamus and cerium nitrate in ref. [186].

Porous cerium oxide nanoparticles were first synthesized using Mimosa pudica plant
leaf extract and cerium nitrate in a study conducted by Kulkarni et al. [151] to detect
humidity. They found that the resistance of the CeO2 sensor decreased when exposed to
10–90% of relative humidity (RH). The response of the CeO2 sensor is shown in Figure 19a.
The response time was reported from 33 s to 12 s against 10% RH and 90% RH, respectively.
Moreover, recovery time varied between 15 s for 10% RH and 59 s for 90% RH. The linear
fitted response regarding humidity is illustrated in Figure 19b.

Figure 19. (a) Ce2O gas sensing performance towards humidity (10–90%); (b) linear fitting of response.
Reprinted from Ref. [181].

6.4. Iron Oxide Nanoparticles (Fe3O4 NPs)

In recent years, the environment has been polluted by fertilizers and pesticides [187,188].
Thus, magnetic nanoparticles attracted tremendous regard to the restoration of the envi-
ronment, including cleaning the atmosphere, soil, sedimentary rocks, groundwater, and
surface water [5]. Due to their high specific surface area, they act as “super-absorbents”
in the case of many contaminants to convert them into non-toxic compounds. The most
common natural iron oxide is magnetite Fe3O4 with an inverse spinel structure [43]. The
unique features of iron oxide nanoparticles make them widely utilized in various fields,
namely: superparamagnetic, magnetic resonance imaging, catalysis, gas sensing, optics,
water purification, lithium-ion batteries, biomedical applications, etc. [5,44].

Magnetite nanoparticles (Fe3O4 NPs) were biologically synthesized using brown
seaweed, Carica papaya, Ocimum sanctum, monocotyledons, and dicotyledons plants [3].
Extensive efforts have been focused on fabricating Fe3O4@ZnO core-shell nanoparticles
(45–64 nm in size) using Azadirachta indica (neem) leaf extracts (AI leaves) with ferrous
sulfate, ferric nitrate nonahydrate, zinc chloride and sodium hydroxide in ref. [189,190].
Different biosynthesis based on starch (a hydrophilic polymer that is an effective dispers-
ing and stabilizing agent), sodium alginate, ascorbic acid (Vitamin C; to reduce transi-
tion metal salts), amino-acids (L-lysine, L-glutamic acid, L-glutamine, L-arginine, and
L-cysteine), synthetic tannic and gallic acid and co-precipitation or hydrothermal synthesis
were reviewed in ref. [159]. Lu et al. [191] prepared spherical Fe3O4 nanoparticles with an
average size of about 12.5 nm using D-glucose as the reducing agent and gluconic acid
(oxidized glucose) as a stabilizer and dispersant, respectively. Iron reducing bacteria are
also commonly used to synthesize iron nanomaterials, as well as fungi, algae, plant extracts
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(green tea, containing polyphenols, eucalyptus, carob leaf, mango, rose, oregano, curry
leaves, and others), fruit extracts, and seed extracts (Syzygium cumini) [159]. Moreover,
a study by Salehzadeh et al. [192] was conducted on the synthesis of Ag/Fe3O4 using
Spirulina platensis algae extraction.

Ananthi et al. [193] synthesized iron oxide nanoparticles (Fe3O4) using ferric nitrate
nonahydrate and a natural tannic acid (extracted from green tea, used as a capping agent)
assisted combustion approach followed by calcination. To determine the working tempera-
ture, the resistance of the sensor was measured at various temperatures from 50 to 400 ◦C
towards 1000 ppm of ethanol. As shown (Figure 20a), by increasing the temperature up to
400 ◦C, there was a steady decrease in the sensor’s resistance, which reached a minimum
value at approximately 200 ◦C, considered the operating temperature. Figure 20b shows
the sensor response towards various ethanol concentrations at 200 ◦C for as-prepared and
350 ◦C annealed samples. Interestingly, both specimens demonstrated a similar sensor
response variation in the presence of ethanol. The maximum sensor response was obtained
in the presence of 1000 ppm of ethanol, and the sensor response reached 0.72 and 0.68 for
the annealed and as-prepared specimens, respectively. Moreover, the authors investigated
the sensor response of the samples toward 1000 ppm of four different gases, including
ethanol, acetone, H2, and CO, at 250 ◦C (Figure 20c). Concerning the other gases, the
specimens exhibited a strong sensor response towards ethanol and acetone, although a
higher sensor response was obtained for ethanol. The response time and recovery time
reported were about (48 s and 46 s) and (32 s and 30 s) for the as-prepared and annealed
samples, respectively, for 1000 ppm of ethanol at 250 ◦C (Figure 20d).

Figure 20. Gas sensor performance for synthesized (Fe3O4 NPs), (a) The effect of temperature on the
sensor resistance of the as-prepared and annealed samples; (b) the sensor response towards various
ethanol concentrations at 200 ◦C; (c) the sensor response of the samples under 1000 ppm of different
gases; (d) the response and recovery time of samples to 1000 ppm of ethanol at 250 ◦C. Reprinted
from Ref. [193] with permission of Elsevier Ltd., 2022.

Karaduman et al. [104] developed trace-level methane gas detection using γ-Fe2O3
nanoparticles. They used FeCl2 and Fe(NO3)3 (in a stoichiometric ratio of 2:1 (Fe3+/Fe2+))
extracts of the Ficus carica and Euphorbia amygdaloides plants labeled as γ-Fe2O3–FF NPs and
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γ-Fe2O3–EU, respectively. The response of synthesized sensors was evaluated for 100 ppm
of methane in the range of temperature from 25 to 190 ◦C (Figure 13). By increasing
the temperature, the response of γ-Fe2O3–EU was almost constant, while γ-Fe2O3–FF
presented the highest response (36 at 150 ◦C, Figure 21a). Moreover, the sensor’s response
was enhanced with increased gas concentration (Figure 21b). Based on the experimental
results, γ-Fe2O3–FF presented an acceptable response above 50 ◦C towards all methane
concentrations. However, the maximum response was obtained at 150 ◦C, considered
the optimum operating temperature to detect CH4 with rapid sensing characteristics.
In contrast, γ-Fe2O3–EU showed a 15% response versus 1 ppm of methane at 150 ◦C.
Therefore, γ-Fe2O3–FF demonstrated a higher response, better selectivity, and shorter
response/recovery time with respect to γ-Fe2O3–EU.

Figure 21. The gas response of the γ-Fe2O3–EU and γ-Fe2O3–FF NPs: (a) towards 100 ppm of
CH4 as a function of working temperature (25–190 ◦C); (b) responses of the γ-Fe2O3–FF versus
gas concentrations. Reprinted from Ref. [104] with permission of Springer Science Business Media,
LLC, 2017.

Cao et al. [194] prepared perovskite iron yttrium oxide (FeYO3) microspheres from iron
nitrate nonahydrate, yttrium (III) nitrate hexahydrate, citric acid monohydrate, C19H42BrN
(CTAB) and the inner white part of orange peels using hydrothermal ‘green synthesis’
to detect ethanol. The sensing characteristics of the FeYO3 sensor were measured in
the presence of 25 ppm of ethanol versus various testing temperatures (290–390 ◦C). By
increasing the temperature, the sensor response gently increased and reached a maximum
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value of 7.32 at 330 ◦C with the response and recovery times of 30 s and 56 s, respectively.
Moreover, the authors measured the sensor response at 330 ◦C under ethanol concentrations
from 1 to 200 ppm. It was found that the response of the FeYO3 sensor sharply increased
by increasing the concentration of ethanol up to 70 ppm. In addition, the synthesized
sensor possessed a low detection limit of 1 ppm of ethanol with a response value of 2.38.
The selectivity to ethanol at 330 ◦C was reasonably good (the sensor response was about
7.2 under 25 ppm ethanol while it was equal to ca. 6 when exposed to 25 ppm methanol).
Bangale et al. [195] successfully fabricated nanocrystalline CdFe2O4 through a combustion
technique, using citric acid as fuel. The precursors were cadmium nitrate hexahydrate and
iron nitrate hexahydrate. They reported a response as high as 59.23% when the sensor was
exposed to 50–200 ppm of ethanol. In addition, the response time and recovery time were
approximately 40 s and 50 s, respectively. They revealed that the CdFe2O4 sensor exhibited
high sensitivity and rapid response/recovery to ethanol at 350 ◦C. Other examples of iron
oxide nanoparticles obtained via the green chemistry approach are summarized in Table 7.

Table 7. Iron oxide nanoparticles were obtained using the green synthesis method.

Material Structure/Synthesis Method Target Gas/Concentration
(ppm)

Operating T
(◦C)

Response
(%) Ref.

γ-Fe2O3 Chains/- Methane/100

50 2

[104]

70 7
90 12
110 15
130 20
150 36
170 32
190 29

γ-Fe2O3 Chains/- Methane/1 150 15

FeYO3
Hexagonal

perovskite/hydrothermal
Ethanol/1

330
2.38

[194]Ethanol/25 -

6.5. Indium Oxide Nanoparticles (In2O3 NPs)

Indium oxide is an n-type metal oxide semiconductor having a direct bandgap
(Eg = 3.5–3.7 eV). Due to great electrical, optical, physical, and chemical features, In2O3 has
vast applications as a heterogeneous catalyst in solar cells, optoelectronic devices, photocat-
alysts, and transparent conducting oxide [196,197]. Moreover, In2O3 micro/nanostructures
have been extensively used for gas sensing owing to their excellent selectivity, short re-
sponse/recovery time, and high response. Various chemical and physical techniques are
applied to synthesize indium oxide, such as thermal evaporation, hydrothermal, spray
pyrolysis, sol-gel, etc. [197,198]. Synthesized indium oxide nanostructures exist in var-
ious morphologies such as nanorods, nanocubes, nanosheets, nanobelts, nanoparticles,
nanofibers, nanowires, and flower-like. There are many reports on the use of In2O3 in gas
sensor applications to detect oxidizing and reducing gases such as CO2, H2S, O3, ethanol,
NH3, NO2, etc. [197].

Indium oxide bricks were prepared by a hydrothermal route from indium chloride
and L-alanine as a reducing agent in a study conducted by Pawar et al. [197]. These
authors studied the gas sensing response of screen-printed In2O3 films at different working
temperatures (50–200 ◦C) towards various concentrations of NO2 in the range from 5 to
100 ppm. In the beginning, the response of In2O3 thin film dramatically increased from
12 to 140 at 50 ◦C and 100 ◦C, respectively, under 60 ppm of NO2. However, by increasing
the temperature to 200 ◦C, the sensor’s response decreased to 72 and 73 at 150 ◦C and
200 ◦C, respectively. Therefore, the optimum working temperature for In2O3 film was
reported to be approximately 100 ◦C. In addition, it was observed that when increasing
NO2 concentration up to 100 ppm, the sensor response increased too (Figure 22).
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Figure 22. Sensor response of In2O3 film at various concentrations of NO2. Reprinted from Ref. [197]
with permission of Springer Science Business Media, LLC, 2018.

The selectivity of screen-printed In2O3 films was additionally assessed at the working
temperature of 100 ◦C towards 100 ppm of CO2, NH3, NO2, and acetone (Figure 23a). It
was found that the fabricated sensor showed the highest selectivity towards NO2. Quite
fast response and recovery times are observed for different concentrations of NO2 gas
(Figure 23b), which refers to rapid adsorption and desorption of test gas on the surface of
In2O3 film. The list of reported studies is presented in Table 8.

Figure 23. (a) The selectivity of indium oxide thin film sensor for 100 ppm of various gases at 100 ◦C;
(b) response/recovery time of indium oxide towards various concentrations of NO2 gas. Reprinted
from Ref. [197] with permission of Springer Science Business Media, LLC, 2018.

Table 8. A summary of green synthesized In2O3 nanoparticles as a gas sensor.

Material Structure/Synthesis
Method Target Gas/Concentration (ppm) Operating T

(◦C)
Response

(%) Ref.

In2O3
Hollow

sphere/hydrothermal

alcohol, acetone, gasoline, formaldehyde,
chloroform, and

acetonitrile
- - [199]

In2O3 cubes/hydrothermal

NO2/5

100

1.3

[197]

NO2/10 9
NO2/20 20
NO2/40 80
NO2/60 140
NO2/80 350

NO2/100 600
CO2/100 18
NH3/100 8

Acetone/100 7
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6.6. Copper Oxide Nanoparticles (CuO NPs)

Copper oxide is a p-type semiconductor with a narrow bandgap (1.2 eV). It has at-
tracted particular attention due to its low-cost, safety, high stability, great catalytic activity,
and adsorption performance [200,201]. Copper oxide NPs have numerous applications,
including gas sensing, catalysis, batteries, food preservation, superconductor, dye degra-
dation, waste treatment, solar energy transformation, agriculture, cosmetics, biomedical,
environmental science, etc. [202]. Mainly, CuO nanoparticles are used as a gas sensing
material to detect various gases such as NO2, acetone, ethanol, H2, etc. [200,203,204]. Find-
ings have also proved that copper oxide thin films can be applied as gas sensors to detect
other compounds such as carbon oxides, hydrogen sulfate, and ammonia with great sensor
performance (high sensitivity, selectivity, and stability). Moreover, these sensors can operate
at ambient temperature with long-term stability [205].

In the literature, several procedures are reported for the synthesis of CuO NPs, such as
sol-gel, sonochemical, electrochemical, reverse micelle, hydrothermal, precipitation, ther-
mal decomposition, laser ablation, microwave, and alkoxide based methods. Nevertheless,
these chemical and physical methods suffer many disadvantages, including high energy
consumption, complex purification of NPs, producing a large amount of waste, as well as
the need to use dangerous chemical materials, flammable organic solvents, and expensive
instruments. To overcome these challenges, it is necessary to develop the green synthesis
of CuO nanomaterials by fast and energy-efficient techniques based on non-toxic raw
materials [206]. Table 9 presents a comparison between various methods for synthesizing
CuO NPs.

Table 9. A comparison of various synthesis methods of copper oxide nanoparticles. Elaboration from
ref. [206].

Synthesis Route Merits Demerits

Physical
• Controlled shape, size,

and crystallinity
• High uniformity and purity

• Needs of high energy

Chemical • A large scale of production
• Use of toxic solvent
• Non-eco-friendly products
• High energy consumption

Biological
• Cost-effective, facile and

eco-friendly
• The use of microorganisms is

not desirable

The investigations on the green synthesis of Cu NPs and CuO NPs have increased with
respect to physical and chemical methods. The CuO NPs were prepared by Dey et al. [149]
using cupric sulfate and the aqueous extract of AI leaves. The green synthesis of copper
oxide from different roots, husk, fruit, leaves, and aerial parts of plants and copper sulfate,
acetate, nitrate, or chloride is reviewed in [207,208].

Hollow Cu2O/Au/CuO hierarchical nanostructures were obtained using NaOH solu-
tion added into an aqueous solution of CuCl2·2H2O at 55 ◦C, followed by ascorbic acid
solution in a study conducted by Liu et al. [209]. The sensing materials were used as CO
gas sensors. They reported that the unique hierarchical structure of synthesized composite
materials with a high specific surface area makes them a promising candidate for high-
performance CO gas sensors. It was observed that the catalytic activity of gold leads to
structure revolution and promotion of CO gas sensing performance. They measured the
sensor response against 10, 25, 50, 100, 200, and 500 µL/L of CO gas at 200 ◦C (Figure 24a).
The increase in CO concentration caused a linear increase in the sensor response. The
synthesized Cu2O/Au/CuO sensor presented a response of 1.5 even in the presence of a
low concentration of CO (10 µL/L). Figure 24b illustrated the reproducible response and
recovery signals of the sensor towards low (25 µL/L) and high concentrations (200 µL/L)
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of sensing gas which indicated excellent long-term stability of the Cu2O/Au/CuO sensor.
Nevertheless, they highlighted that the Cu2O nanocubes do not show any detectable re-
sponse without the addition of Au under the same working condition. The sensor response
in function of the gas concentration was linear (inset of Figure 24a) with a sensitivity of
1.04 ppm−1 (the slope of the calibration curve).

Figure 24. (a) Response of Cu2O/Au/CuO sensor towards different concentrations of CO gas at
200 ◦C; the inset figure is the plot of Rgas/Rair as a function of the CO concentration; (b) Repro-
ducibility of the sensor on (10 cycles) to 25 against 200 µL/L CO. Reprinted from Ref. [209] with
permission of Springer Science Business Media, LLC, 2013.

6.7. Nickel Oxide Nanoparticles (NiO NPs)

Recently, nickel oxide nanoparticles have attracted much research interest due to
their unique chemical stability, electrocatalysis, electron transfer capability, and super-
capacitive characteristics [210,211]. It is a chemically stable p-type semiconductor having
a wide bandgap of 3.6–4.0 eV and high electro-optical efficiency [212]. The NiO NPs are
extensively applied in various fields, including antiferromagnetic materials, gas sensing,
solar and fuel cells, lithium-ion batteries, electrochemical supercapacitors, magnetic and
antibacterial materials, and photocatalytic agents [213]. Nickel oxide nanoparticles have
been successfully produced using various chemical and physical methodologies such as
anodic arc plasma, sol-gel, precipitation, solvothermal synthesis, microwaves, and thermal
decomposition. Nevertheless, these conventional methods are not eco-friendly, produce
hazardous by-products, and require high energy. The biosynthesis approach has attracted
tremendous regard for producing NiO NPs using plants and various microorganisms [213].

Kennedy et al. [214] used biosynthesis methods to prepare doped nanocrystalline NiO
as a humidity sensor (derived from the Hygrophila spinosa plant seeds, HST, nickel nitrate
hexahydrate, and polyvinyl alcohol). After air drying, a PMMA optical fiber was then
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mechanically etched and dip-coated with GO-NiO nanocomposites and inserted into the
glass chamber. It was observed that the 0.5% HST-NiO sample had good linearity and
reproducibility. Moreover, this sample exhibited response and recovery times of 210 ± 5 s
and 232± 4 s, respectively, with respect to the pure NiO sample. In 2022, a study conducted
by Kavitha et al. [215] resulted in the synthesis of NiO NPs using Tribulus terrestris leaf
extract and nickel nitrate hexahydrate. These nanoparticles were mixed with graphene
oxide nanosheets (GO) to obtain GO-NiO nanocomposites. The sensing ability of GO-NiO
towards volatile organic compounds (VOCs) was assessed for the first time by a fiber-
optic gas sensor at room temperature. Figure 25a–c demonstrates the spectral response
of the GO-NiO sensor towards various concentrations (0–500 ppm) of ammonia, acetone,
and ethanol.
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The intensity of the spectral response changed with all test gas concentrations, al-
though there was no peak shift observed. Moreover, the authors reported a superior spectral
response for ethanol compared to acetone and ammonia, which displays an increase in the
intensity of ethanol with increasing concentration. The sensor response (%) of GO-NiO
nanocomposite for 0–500 ppm of ammonia, acetone, and ethanol is exhibited in Figure 25d.

The sensor response reached a maximum value of 22% for 500 ppm of ethanol at
room temperature and was higher than for other VOCs gases. This result was attributed
to the synergic effect of GO, their small particle sizes and narrow band gap. The fit of
the curves displaying the sensor response in function of the gas concentration showed a
linear regression in spectral response for ethanol and acetone gases with positive slope
values of 4.085 and 3.607 respectively. On the contrary, with ammonia, the spectral response
decreased when increasing the gas concentration, probably because the effective refractive
index of the fiber was influenced by an increased leakage of light. Table 10 reports studies
on nickel oxide nanoparticles as gas sensing materials.
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6.8. Tin Oxide Nanoparticles (SnO2 NPs)

Tin oxide nanoparticles have gained remarkable attention as an n-type semiconductor
with a wide bandgap of 3.6 to 3.8 eV, strong thermal stability (up to 500 ◦C), strong chemical
and physical interactions with the adsorbed species and a high degree of transparency in the
visible spectrum. These unique properties make it a promising candidate in various applica-
tions, including gas sensing, lithium batteries, transparent conducting electrodes, catalysis,
energy storage, glass coatings, medicine, and environmental remediation [216,217]. Among
these applications, extensive investigations have been focused on the application of SnO2 in
gas sensing due to its high specific surface area (SSA), high chemical stability, low cost, easy
synthesis, good light transmission and high electron mobility (160 cm2·V/s), low electrical
resistance, and low density for the detection of exhaust gases such as CO, NO, NO2 and
H2S, as well as volatile organic compounds like C2H5OH. The gas sensing properties of
SnO2-based devices are greatly influenced by their morphologies, such as nanoparticles,
nanorods or nanowires, nanosheets, nanoflowers, nanotubes, mesoporous hollow spheres,
and hierarchical nanostructures. However, three-dimensional SnO2 hierarchical nanos-
tructures are considered effective gas sensing materials due to their large SSA, porous
nanostructure, and controlled size [130,218,219].

A flower-like tin oxide hierarchical nanostructure was first synthesized from tetrapropy-
lammonium hydroxide and SnSO4 through a hydrothermal technique and an impregnation
method with ascorbic acid, and AgNO3 was then used to produce Ag/SnO2 nanostruc-
tures [220]. As shown in Figure 26a, the sensitivity of SnO2 NPs annealed at 500 ◦C was
much higher than commercial SnO2 and samples annealed at 400 ◦C and 600 ◦C. The
response of flower-like SnO2 NPs under 100 ppm of butanol gradually increased from
120–160 ◦C and reached a max response of 28.3 at 160 ◦C. However, by increasing the
temperature up to 220 ◦C, the sensor response decreased. By incorporating the Ag NPs into
SnO2, the sensor’s sensitivity toward butanol increased to 39.9 at 160 ◦C, which was much
higher than pure SnO2 NPs. Therefore, 160 ◦C was considered the working temperature.
Moreover, the sensor’s sensitivity toward various concentrations of butanol (1–500 ppm)
was evaluated at this operating temperature. The results showed that tin oxide annealed
at 500 ◦C exhibited higher sensitivity than those samples annealed at 400 ◦C and 600 ◦C
towards different butanol concentrations (Figure 26b). In addition, the sensor response of
SnO2 NPs significantly increased to the maximum by incorporating Ag.

Figure 26. A comparison between sensor response SnO2 NPs: (a) 100 ppm butanol at various working
temperatures; (b) response of sensor at 160 ◦C towards various concentrations of butanol (5–500 ppm).
Reprinted from Ref. [220] with permission of Elsevier B.V., 2015.

The sensor’s selectivity under 100 ppm of test gases was measured towards methanol,
propanol, acetone, ethanol, ethyl ether, and butanol (Figure 27). The sensitivity to all
gases was lower than that toward butanol. Moreover, pure SnO2 and Ag/SnO2 sensors
demonstrated better sensor response to butanol at an operating temperature of 160 ◦C
compared with commercial SnO2 NPs sensors.
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Figure 27. Sensor response of SnO2 NPs-based sensors towards 100 ppm of different gases at the
optimal working temperature. Reprinted from Ref. [220] with permission of Elsevier B.V., 2015.

Ding et al. [221] fabricated the first carbonaceous particles (1 µm in diameter) by
hydrothermal synthesis from wheat or corn. Then, they used them as a sacrificial template
for preparing hollow SnO2 nanosphere from tin(IV) chloride. The prepared sensors were
able to detect ethanol at various concentrations. The authors reported a high sensing
performance of 134 towards 250 ppm of ethanol at 200 ◦C (Figure 28).

Figure 28. The sensing response of carbonaceous particles/SnO2-based gas sensor towards ethanol:
(a) at concentrations 10, 20, 30, and 40; (b) response toward 150, 200, and 250 ppm of ethanol.
Reprinted from Ref. [221].

A study conducted by Prajabati et al. [222] described the synthesis of SnO2/Carbon
Quantum Dots (CQDs) by a hydrothermal method using grapefruit juice. They inves-
tigated the sensor response toward 1000 ppm of carbon monoxide at various operating
temperatures. The synthesized SnO2/CQDs showed the highest performance at 275 ◦C.
Incorporating CQDs into SnO2 has an essential effect on the gas sensing response and
selectivity. Gattu et al. [223] compared the gas sensing performance of both chemically
(sol-gel method) and biosynthesized pure SnO2 and Ni-doped SnO2 made from Bengal
gram beans (Cicer arietinum) extract for detection of NO2 gas at 200 ◦C (Figure 29a). In the
presence of Ni, the sensor response increased for both specimens, which can be attributed
to the reduced particle size when adding Ni and increased specific surface area for better
absorption of NO2 gas.
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Figure 29. (a) Gas sensitivity towards various concentrations of NO2 for chemically and green
synthesized SnO2 and Ni-doped SnO2 nanoparticles thin film; Inset illustrates the response and
recovery time with variation in the concentration of NO2 for both specimens; (b) Gas selectivity for
Ni-doped SnO2 sensor towards 100 ppm concentration of H2S, LPG, NH3, and NO2. Reprinted from
Ref. [223] with permission of the Royal Society of Chemistry, 2011.

Nevertheless, the response was relatively lower for chemically synthesized Ni-doped
SnO2 with respect to biosynthesized Ni-doped SnO2. In the case of biosynthesized Ni-
SnO2, there was a decrease in response time and an increase in recovery time with the
concentration of NO2 gas. Furthermore, their results showed that Ni-doped SnO2 has
excellent selectivity for detecting NO2 compared to H2S, LPG, and NH3 gases (Figure 29b).

In another study, Gattu et al. [224] investigated the sensing performance of Au-doped
SnO2 thin film to NO2 gas at 200 ◦C operating temperature. Gold doped SnO2 nanopar-
ticles were manufactured from remnant water collected from soaked Bengal gram beans
(Cicer arietinum) extract. The authors found that Au/SnO2 showed a gas response of about
30% to 100 ppm of NO2. Moreover, the biosynthesized sensor presented excellent selectivity
to NO2 gas compared to other gases such as H2S, LPG, and NH3. Prajapati et al. [222] eval-
uated the gas sensing properties of SnO2/Carbon Quantum Dots (CQDs) nanocomposite
synthesized by the hydrothermal method. The maximum response towards 1000 ppm of
carbon monoxide was reported at 275 ◦C. Manjula et al. [219] prepared biosynthesized pure
SnO2 nanosphere and Pd/SnO2 from sodium stannate trihydrate precursor and glucose
as structure modifying agents to detect hydrogen gas. It was observed that the pure SnO2
sensor response reached saturation at approximately 180 ◦C toward 1% of hydrogen gas
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(Figure 30a). The authors also reported a severe decrease in the working temperature
of Pd/SnO2 sensor response to 1% of H2 gas below 50 ◦C (Figure 30b). Moreover, pure
SnO2 and Pd/SnO2 demonstrated reasonable sensitivity even toward 50 ppm of target gas
(Figure 30c) at 180 ◦C and 50 ◦C, respectively. A comparative response of pure SnO2 and
Pd/SnO2 nanospheres showed that both synthesized sensors’ response and recovery time
at their corresponding operating temperature was less than 10 s and about 20 s, respectively
(Figure 30d). To evaluate the selectivity of Pd/SnO2 The responses of Pd/SnO2 sensors
towards ethanol, acetone and ammonia at different temperatures were explored. At higher
temperature, the sensitivity of sensor to the test gases increased. However, it shows a
higher selectivity for the detection of hydrogen at lower temperature (below 60 ◦C) within
an interval of 10 s.

Figure 30. (a) Sensor response of pure SnO2 at various working temperatures to 1% H2 gas;
(b) sensor response of Pd/SnO2 at different temperatures to 1% H2 gas; (c) sensor response of
pure SnO2 and Pd/SnO2 toward various concentrations of H2 gas at operating temperatures of
180 and 50 ◦C, respectively; (d) Sensor response of pure SnO2 and Pd/SnO2 as a function of time at
180 and 50 ◦C. reprinted from Ref. [219] with permission of the American Chemical Society, 2012.

Another study by Gattu et al. reported the gas-sensing characteristics of green synthe-
sized un-doped and Fe-doped SnO2 nanoparticles [225] from remnant water (kitchen waste)
of soaked Bengal gram beans (Cicer arietinum). This extract contains different bio-molecules
that act as complexing and capping agents to synthesize Fe-doped SnO2 nanoparticles. The
sensor response of pure SnO2 and Fe-doped SnO2 thin film to 100 ppm of NH3 gas was 28%
and 46%, respectively, at the operating temperature of 200 ◦C. Additionally, the Fe-doped
SnO2-based sensor showed higher selectivity to NH3 gas at 200 ◦C in comparison with the
un-doped tin oxide-based sensor.

A summary of the SnO2-based gas sensor is reported in Table 10.
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Table 10. A comparison of gas sensing characteristics of SnO2-based gas sensor.

Material Structure/Synthesis Method Target Gas/Concentration
(ppm)

Operating T
(◦C)

Response
(%) Ref.

SnO2 -/green Pechini Ethanol/50
276 27

[226]Ce–SnO2 265 69.5
SnO2 spherical/ hydrothermal Ethanol/100 230 24.9 [227]

Carbonous
particles/SnO2

hollow nanosphere/-

Ethanol/10

200

7

[221]

Ethanol/20 13
Ethanol/30 22
Ethanol/40 39

Ethanol/150 93
Ethanol/200 127
Ethanol/250 134

SnO2 thin-film/-
NO2/20, 60, 100

200
28

[223]Ni-doped SnO2 NO2/20, 60, 100 40

6.9. Tungsten (Tri) Oxide Nanoparticles (WO3 NPs)

Tungsten oxide behaves as an n-type transition metal oxide semiconductor with a
bandgap ranging from 2.5 to 3.6 eV. It possesses several exciting characteristics like excellent
stability (over a wider temperature range), unique electrical and optical features, low cost,
non-toxicity, and good gas sensitivity to oxidizing and reducing gases [228,229]. These
advantages make it a promising candidate in a variety of applications such as photocatalysis,
antimicrobial activity against human pathogens [230], electrochromic display, chemical
sensing [231,232], biosensing [233] and gas sensing. Tungsten oxide has drawn significant
interest as sensor materials [234] such as resistive [235], optical [236], and capacitive [237]
devices for a large variety of different gas analytes such as NOx, NH3, CO, H2, O3, ethanol,
and H2S [234]. The gas sensing mechanism of WO3 is attributed to the surface-controlled
type [238].

Researchers have synthesized WO3 nanomaterials with various dimensions such as
nanoparticles (0D) [141], nanofibers (1D) [142], nanosheets (2D) [143], nanosphere [144],
nanoflowers [239], and nanomesh (3D) [145]. There are several methods to synthesize
tungsten oxide, including acid precipitation, wet chemical method, sol-gel, ion-exchange
approach with sodium tungstate as a precursor, etc. [238]. Nevertheless, traditional meth-
ods suffer many limitations and challenges like the utilization of harmful and expensive
chemicals, large-scale production of the nanomaterials having improved features than
their commonly available bulk form, and their practical application [238,240]. Hence, the
biosynthesis of tungsten oxide has gained increased consideration to decrease the use of
toxic chemicals. Kavitha et al. [126] synthesized tungsten oxide nanoflakes (WO3 NFs)
using the plant pathogenic fungus F. solani with an average thickness and length of around
40 nm and 300 nm, respectively. Tijani et al. [128] produced WO3 nanoparticles using
Spondias mombin aqueous extract, and they examined the effect of solution pH (1, 4, 7, 10,
13) and calcination temperature (250 ◦C, 350 ◦C, 450 ◦C, 550 ◦C, 650 ◦C, each for 2 h) on the
morphological properties, crystallite size and surface area of the nanoparticles. The average
crystallite size was found to be 13.1, 14.7, 25.2, 27.1, 29, and 31 nm for WO3 nanoparticles
prepared at pH = 1 and calcined at 250◦, 350◦, 450◦, 550◦, and 650 ◦C, respectively. The
SSA of WO3 NPs prepared at pH 1 was higher than other pH values, probably because of
a higher rate of electron transfer in an acidic medium than in a neutral or basic medium.
The SSA increased from 156.3 m2/g up to 352.6 m2/g when the firing temperature was
increased from 250 to 550 ◦C and then, was reduced to 18.1 m2/g when the treatment was
operated at 650 ◦C. Spherical tungsten nanoparticles with an average size of 10 nm were
synthesized through the green method using aqueous extracts of Moringa oleifera [127] to
test different biological activities. Orthorhombic tungsten trioxide monohydrate nanosheets
(WONSs) in high yields were successfully green synthesized by Chang et al. [238] and used
as a gas sensing material. The prepared sensors were then tested at room temperature in
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presence of three different flammable organic vapors (Figure 31a) and two harmful gases
(Figure 31b). The response curves towards 100 ppm ethanol, acetone, and 93# gasoline are
shown in Figure 31a. The experimental results showed that the output voltage dramatically
increased when the sensor was exposed to ethanol vapor, indicating a decrease in the
sensors’ electrical resistance. The WONSs sensor showed a short response (~15 s) and
recovery (~28 s) times toward 100 ppm ethanol.

Figure 31. Sensor response of WO3 monohydrate nanosheets: (a,b) Response curves of the sensor to
flammable organic vapors and pure gases; (c) Sensor sensitivity under various gases. Reprinted from
Ref. [238] with permission of Materials Chemistry and Physics, 2011.

Furthermore, biosynthesized sensors exhibited high sensitivity of 15.6 under 100 ppm
of ethanol (Figure 31c). However, the sensor possessed relatively weaker responses to
gasoline and acetone vapors with 7.3 and 5.7, respectively (Figure 31c), respect to ethanol,
even though the WONSs sensor had fast response and recovery times to acetone. Besides
these, the WONSs sensors had an excellent sensor response toward ammonia and formalde-
hyde with 13.4 and 10.6, respectively, which were lower than the one under ethanol vapor
(Figure 31b). Nevertheless, they reported longer response times to both detected gases,
whereas they had short recovery times.

7. Future Perspectives

There are several significant ways to maximize the performance of “green” chemistry
in all aspects of life [5,42] by means of the following:

• Utilization of innovative alternative routes to minimize the harmful effects on the
human health and the environment such as improvement of catalytic efficiency, pro-
duction of less toxic waste, use of less hazardous solvents such as ionic liquids, water,
etc. instead of dangerous reagents, use of renewable sources of precursors and least
consumption of energy.
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• Higher diffusion within the community of researchers studying gas sensors of green
synthesis principles as in other fields of science.

• Organization of different chemical associations and institutes to study cleaner and
safer reactions and methods with cleaner productions.

• Promotion of green synthesis at universities and research laboratories for the develop-
ment of this approach in terms of economy.

• Introduction of green chemistry to industrial enterprises.
• Training the researchers who will solve the environmental problems.
• Enhancement of environmental protection at the legislative level.
• Assessment of toxicity nature and effective risk management associated with nanopar-

ticles, their synthesis, handling, and storage.
• In the future, biological methods for the synthesis of nanomaterials may focus on the

reduction of manufacturing time.

Scientific investigations of green synthesis methods should be considered and used
in various industrial products, including not only gas sensors but also energy, medicines,
cleaning products, food industry, plastics, cosmetics, etc.

8. Conclusions

Recently, air pollution has become a severe threat to humans and the ecosystem.
Therefore, it is essential to detect air pollutants, such as NO2, NO, N2O, H2S, CO, NH3,
CH4, SO2, CO2, and BTX (Benzene, Toluene and Xylene), etc., beyond their tolerable limits.

Bottom-up methods are commonly used to fabricate metal/metal oxide nanoparticles
by applying different organic solvents and toxic and non-ecological reagents under high
pressure and temperature. For this reason, the development of alternative cheap and safe
techniques is essential to reduce negative effects on human health and the environment.

Various biological routes have been developed using “green” resources like plants,
algae, fungi, yeast, bacteria, viruses, etc. Among these biosources, plants are the best
source as the raw materials to synthesize metal/metal oxide nanoparticles. They are known
for their non-toxicity, availability, simplicity, antioxidant capacity, and protein content.
Different plant extracts can be used as reducing, capping, and stabilizing agents. Although
there is a limited but essential role of green chemicals in nanoparticle synthesis, it has to
be underlined that there is a considerable availability of plant extracts worldwide that can
act as reducing, capping, and stabilizing agents. Thus, their use, not so diffused for MOS
synthesis, should be greatly encouraged. In the separate section of this review paper, the
biological synthesis and the use of metal oxide nanoparticles such as ZnO, TiO2, CeO2,
SnO2, In2O3, CuO, NiO, WO3, and Fe3O4 for gas sensing applications are reported. The
obtained gas sensors received widespread attention due to their particular characteristics.

The set-up of high-performance gas sensors is a hot topic that has attracted consid-
erable attention from researchers involved in their development over several decades.
Specifically, huge efforts have been made to improve the sensor response of gas sensors by
doping them with noble metals (to favor oxygen molecules adsorption and spillover) and
other metal oxides (to form hetero-junctions) as well as by tailoring the microstructures
(targeting hierarchical, hollow and porous structures) with the aim to increase the SSA and
to shorten response/recovery times. Thus, important results have already been reached
and these strategies are still under investigation. However, facet-controlled synthesis is also
one very promising strategy to enhance sensing performances, because special facets with
high surface energy, dangling bonds and densities of atoms also present a much higher
chemical activity. In fact, using the “green” approach to synthesizing metal and metal
oxide nanoparticles allows for obtaining nanoparticles with desirable size and improved
morphology. Thus, this technology can not only decrease the risk to human health and
environmental pollution but can also help to produce sensors with the right microstructure
that present the highest response to the target gas.
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