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Abstract

Background

A powerful risk model allows clinicians, at the bedside, to ensure the early identification of

and decision-making for patients showing signs of developing physiological instability during

treatment. The aim of this study was to enhance the identification of patients at risk for dete-

rioration through an accurate model using electrolyte, metabolite, and acid-base parameters

near the end of patients’ intensive care unit (ICU) stays.

Methods

This retrospective study included 5157 adult patients during the last 72 hours of their ICU

stays. The patients from the MIMIC-III database who had serum lactate, pH, bicarbonate,

potassium, calcium, glucose, chloride, and sodium values available, along with the times at

which those data were recorded, were selected. Survivor data from the last 24 hours before

discharge and four sets of nonsurvivor data from 48–72, 24–48, 8–24, and 0–8 hours before

death were analyzed. Deep learning (DL), random forest (RF) and generalized linear model

(GLM) analyses were applied for model construction and compared in terms of performance

according to the area under the receiver operating characteristic curve (AUC). A DL backcast-

ing approach was used to assess predictors of death vs. discharge up to 72 hours in advance.

Results

The DL, RF and GLM models achieved the highest performance for nonsurvivors 0–8 hours

before death versus survivors compared with nonsurvivors 8–24, 24–48 and 48–72 hours

before death versus survivors. The DL assessment outperformed the RF and GLM assess-

ments and achieved discrimination, with an AUC of 0.982, specificity of 0.947, and sensitiv-

ity of 0.935. The DL backcasting approach achieved discrimination with an AUC of 0.898

compared with the DL native model of nonsurvivors from 8–24 hours before death versus

survivors with an AUC of 0.894. The DL backcasting approach achieved discrimination with

an AUC of 0.871 compared with the DL native model of nonsurvivors from 48–72 hours

before death versus survivors with an AUC of 0.846.
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Conclusions

The DL backcasting approach could be used to simultaneously monitor changes in the elec-

trolyte, metabolite, and acid-base parameters of patients who develop physiological instabil-

ity during ICU treatment and predict the risk of death over a period of hours to days.

1. Introduction

To improve patient outcomes, there is an urgent need to promptly recognize patients at risk

for deterioration by identifying early laboratory trends and then making decisions in a timely

manner [1, 2].

Electrolytes, metabolic parameters (e.g., glucose and lactate) and acid-base balance are cru-

cial in understanding the mechanism of death for critical care patients who deteriorate over a

period of hours to days.

The imbalance of these laboratory parameters not only signals physiological instability but

can lead to cellular and organ injuries; therefore, they are important markers of cellular and

organ function [3, 4].

Therefore, the ultimate purpose of the current study was to evaluate the trends and patho-

physiological changes in electrolyte, metabolite, and acid-base parameters leading to death,

which would enable us to design a model that could support the clinical decision-making

process.

Most critical care patients develop physiological instability, and the initiation of goal-

directed therapies to maintain electrolyte, metabolite, and pH homeostasis is critical for such

patients’ outcomes. Goal-directed therapies can be implemented by setting criteria for the

desired state of physiological stability through the creation of a desirable future and then

working backward to plan the achievement of this state. To facilitate the development of goal-

directed therapies, we developed a backcasting model that implements a retrograde prediction

of the risk of death over a period of hours to days and calculates the risk probability based

solely on laboratory tests.

If a patient’s physiological status deteriorates rapidly, clinical decisions are urgently

needed; under these circumstances, point-of-care blood analyzers, which are capable of

measuring all parameters in this model, can provide rapid on-site results that can be acted

upon immediately [5].

The presence of critical disorders of electrolyte, metabolite, and acid-base parameters that

indicate severe underlying pathophysiology was found in patients’ admission notes or near the

end of the hospital stay for nonsurvivors.

There is sufficient evidence that admission laboratory values are significant indicators of a

patient’s prognosis and candidate therapies [6–10]. Moreover, a model based solely on labora-

tory tests (the Laboratory Decision Tree Early Warning Score, LDT-EWS) has been developed

to predict patient outcomes after intensive care unit (ICU) admission and in-hospital mortal-

ity. The LDT-EWS is based on hemoglobin, urea, creatinine, sodium, potassium, and albumin

[7, 8].

Alternatively, there is less evidence of laboratory values as indicators of a patient’s prognosis

at near the end of a patient’s hospital stay [11]. Risk assessment and stratification for physio-

logical deterioration often use different models that are based on various laboratory tests, and

most of them predict the risk within 24 hours [11–13].

This subject has been investigated by numerous studies, which have noted a wide range of

sensitivities and specificities [4, 5, 9], and few studies have focused on the role of abnormal

electrolyte and acid-base parameters in predicting patients’ physiological deterioration [14].
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We hypothesized that a machine learning backcasting approach based on the database-

recorded electrolyte, metabolite, and acid-base parameters of patients near the end of their

ICU stays could be used to build a model for risk assessment. However, to date, an evaluation

of laboratory values of patients near the end of their ICU stays for these parameters in combi-

nation with a risk adjustment model has not been performed.

2. Method

This study describes a retrospective investigation of critical care patients obtained from the

freely available Medical Information Mart for Intensive Care III (MIMIC-III) database pro-

vided by PhysioNet (https://www.physionet.org/). MIMIC-III contains information on 38597

distinct adult patients with 49785 hospital admissions at the Beth Israel Deaconess Medical

Center (BIDMC) in Boston, Massachusetts, from 2001 to 2012. The MIMIC-III entries contain

monitoring data, records, laboratory test results, procedures, orders, mortality outcomes, and

demographics [15].

The electrolyte, metabolite, and acid-base parameters were selected in our models because

i) they are commonly available in the ICU from most modern blood analyzers, ii) they are

important determinants of physiological stability and outcome, and iii) they are measured for

most patients. Specifically, our model used lactate, pH, bicarbonate, potassium, calcium, glu-

cose, chloride and sodium. The algorithms used to develop the model architecture and analysis

procedure are presented in Fig 2.

We included all available adults, defined as patients aged 15 to 89 years at the time of ICU

admission. The selected laboratory values and their measurement times were extracted for sur-

viving and nonsurviving ICU patients to form two benchmark data subsets. The survivor data

subset included the model features from 2821 patients within 24 hours before ICU discharge.

The nonsurvivor data subset was extracted from four sets of data showing the model features

of ICU patients at 48–72, 24–48, 8–24, and 0–8 hours before death.

The nonsurvivor dataset from 0–8 hours before death consisted of the last values of electro-

lyte, metabolite, and acid-base parameters of 545 patients, recorded in the MIMIC-III data-

base; this dataset was combined with the survivor data from 0–8 hours form the LEMA 0–8

dataset. The nonsurvivor dataset from 8–24 hours before death included 712 patients and was

combined with the survivor data subset to form the EMA 8–24 dataset. The nonsurvivor data-

set from 24–48 hours before death included 653 patients and was combined with the survivor

data subset to form the EMA 24–48 dataset. The nonsurvivor dataset from 48–72 hours before

death contained 426 patients and was combined with the survivor data subset to form the

EMA 48–72 dataset.

The distribution of the datasets is expressed as the maximum, minimum and

mean ± standard deviation (SD), and the significance of the differences between surviving and

nonsurviving patients was assessed using the t test. A bivariate (Pearson’s) correlation test and

r-package "qgraph" functions were used to produce a visual graphic network of the correlation

and interrelationships between parameters [16]. Age and sex were included in the data selec-

tion but were not incorporated in the model for risk adjustment.

Model development

We chose a generalized linear model (GLM), as well as more specific logistic regression-bino-

mial family, random forest (RF) and deep learning (DL) models, which are the most frequently

used models for binary classification in medicine. Models were implemented by using the

open-source H2O R package. The functions “h2o.deeplearning”, “h2o.randomForest” and
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“h2o.glm” perform grid searches in succession to obtain the best models with optimal hyper-

parameters. For binomial classification problems, logloss was used as the optimization metric.

The model includes 8 parameters, defined as: Xi = {LACTATEi + PHi + BICARBONATEi

+ POTASSIUMi + CALCIUMi + GLUCOSEi + CHLORIDEi + SODIUMi}. For the binary

response categorical variable y, patients who did not survive are coded as 1, and those who did

survive are coded as 0, where yi 2 {0,1}.

The estimation of the GLM logistic regression (binomial) model is βk, where β1. . .β8 is the

parameter vector, and β0 is the intercept.

The GLM binomial model fitting to an output category can be written as follows, where p̂ is

the expected probability that the outcome is obtainable:

p̂ ¼
eXT

i bk

1þ eXT
i bk

where XT
i bk ¼ b0 þ b1LACTATEi þ b2PHi þ b3BICARBONATEi þ b4POTASSIUMi þ

b5CALCIUMi þ b6GLUCOSEi þ b7CHLORIDEi þ b8SODIUMi

DL (deep structured learning or hierarchical learning) is a subset of machine learning

methods based on artificial neural networks; our models applied the feedforward architecture

used by H2O. DL architectures are inspired by artificial intelligence models and perform fea-

ture extraction in a hierarchical manner similar to the layered learning process of the primary

sensory areas of the neocortex in the human brain. DL models can learn good feature repre-

sentations from raw data and have exhibited high performance with complex data [17, 18]. In

recent years, a DL approach has also been widely implemented in areas of bioinformatics such

as prediction and prevention of diseases as well as personalized treatment [19]. Our model

uses multilayer neural networks as is shown in Fig 1. For the model selected by optimization

metrics, the DL automatic supervised training revealed that the two hidden layers with 200

and 200 nodes with rectified linear activation, Bernoulli distribution and regularization proce-

dures L1 and L2 were zero, producing the best performance in terms of classification with

logloss of 0.137.

The nonlinear activation function f(α) is used throughout the network, where the weighted

combination α = ∑i wi xi + b, with bias b, represents the neuron’s activation threshold, and xi
and wi represent the firing neuron’s input values and their weights, respectively. Our DL

model used a rectified linear activation function: f(α) = max(0, α) in range ð�Þ 2 Rþ. This

can be interpreted as follows: for each negative of α input, the function returns 0, but the

same values are returned back if the value of α is positive [20].

The RF is widely used in medicine as a machine learning algorithm based on decision-tree

theory for solving classification problems. The RF generates a forest of classification trees

rather than a single classification, where each tree classifier is generated by using random

sample observations from training data and recursively partitioning data based on values of

the predictor variables. Our data in the binary response RF utilizes a single tree to calculate the

survival probability of patients and then computes the probability of nonsurvival as 1.0 − p0.

The selected random forest model had 50 trees with logloss of 0.306 as optimization metrics.

For testing purposes, the datasets were divided into the training and testing sets (60% and

40%, respectively). The DL, RF and GLM models were trained. Subsequently, the test data

were used to analyze the performance of the model. The performance of the models was com-

pared among the LEMA 0–8, EMA 8–24, EMA 24–48, and EMA 48–72 datasets.

Additionally, univariate DL analyses of lactate, pH, bicarbonate, potassium, calcium, glu-

cose, chloride, and sodium were performed to explore the individual importance of each of

those variables in risk prediction based on nonsurvivors 0–8 hours from death versus
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survivors. It is reasonable to calculate severity scores from the probability of ICU patient dete-

rioration derived from multivariate and univariate DL analyses.

The receiver operating characteristic (ROC) curve was plotted to define the optimal cutoff

value for discrimination and to analyze the ability of univariate and multivariate parameters to

predict patient survival or nonsurvival. Moreover, we estimated the area under the ROC curve

(AUC) to evaluate the accuracy of the DL, RF, and GLM models. The AUC ranged from 0 to 1,

where good discrimination is suggested to correspond with AUCs of 0.8–0.9, and values >0.9

represent very good discrimination performance. The value at the top left, “closest.topleft”,

where the sensitivity and specificity curves intersected, was considered the optimal cutoff value

for the ROC curve, defined as min((1 − sensitivity)2 + (1 − specificity)2) [21].

Backcasting approach algorithm

The backcasting approach algorithm of the DL, RF and logistic regression models involves

“working backward” from the endpoint of discharge or death (LEMA 0–8) up to 72 hours

prior. To achieve this goal, we initially trained the native models of the LEMA 0–8, EMA 8–24,

EMA 24–48, and EMA 48–72 datasets and then conducted retrospective predictions of the DL

LEMA 0–8 model by using test data from the EMA 8–24, EMA 24–48, and EMA 48–72 data-

sets. We compared the performance of the backcasting models with that of the native models

Fig 1. DL with two hidden layers of neurons. The input neurons are parameters of LEMA datasets, and output neurons indicate the

survival and nonsurvival probability.

https://doi.org/10.1371/journal.pone.0242878.g001
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during the patients’ last 72 hours in the ICU. The algorithm flowchart for model construction

and performance is shown in Fig 2 and Table 4.

All analyses were conducted using the statistical software R, and the queries were stored in

a public GitHub repository [22].

3. Results

A total of 5157 patients were included in the study. The electrolyte, metabolite, and acid-base

parameters of the 2821 survivors within 24 hours before ICU discharge were compared with

those of nonsurvivors as of 48–72 hours (426 patients), 24–48 hours (653 patients), 8–24 hours

(712 patients) and 0–8 hours (545 patients) before the time of death. The values of the patients’

electrolyte, metabolite, and acid-base parameters are shown in Tables 1 and 2 as well as Fig 2.

As shown in Tables 1 and 2 and Fig 3, in the nonsurvivors, lactate showed a significant

increasing trend, with mean ± SD values of 3.6±3.3, 4.4±3.9, 5.2±4.8 and 8.7±5.7 at 48–72, 24–

48, 8–24 and 0–8 hours before the time of death, respectively (P< 0.001). The same trend was

true for glucose, with mean ± SD values of 145.9±69.2, 154.1±83.3, 157.2±105.4 and 188.5

±130.6, respectively, in the same time windows (P< 0.001). Minor increasing trends in

sodium and potassium were observed among the nonsurvivors compared with the survivors,

with p-values less than 0.05. pH and bicarbonate measurements showed decreasing trends in

the nonsurvivors compared with the survivors, with p-values less than 0.001. The mean ± SD

values of pH (7.3±0.1 vs.7.2±0.2) and bicarbonate (21.5±5.9 vs. 17.1±7.3 mEq/dL) in nonsurvi-

vors also decreased from the first time window (48–72 hours from death) to the last time win-

dow (0–8 hours from death).

We investigated Pearson’s (bivariate) correlation between electrolyte, metabolite, and acid-

base parameters between ICU patients who remained stable and those who physiologically

Fig 2. Algorithm flowchart for model construction.

https://doi.org/10.1371/journal.pone.0242878.g002
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deteriorated and died within 0–8 hours. Moderate to weak correlation correlations were iden-

tified from the correlation matrix (Table 3 and Fig 4). Pearson’s correlation (r) measures the

linear correlation between two variables X and Y and has the value +1 and −1. The value +1

represents a positive linear correlation and vice versa, and there is no linear correlation when

the value is 0.

We found a moderate positive linear correlation between lactate and potassium (r = 0.4),

while lactate had a moderate negative correlation with pH (r = -0.6) and bicarbonate (r = -0.5).

Sodium had a moderate positive linear correlation with chloride (r = 0.59), and chloride

showed a weak negative correlation with bicarbonate (r = -0.31).

Table 4 shows the performance of the DL, RF and GLM models in the EMA 8–24, EMA

24–48, and EMA 48–72 datasets compared with the predictions of the native models in terms

of AUC, sensitivity, specificity, and accuracy. DL outperformed RF and GLM in almost all our

models.

EMA 8–24 backcasting, EMA 24–48 backcasting, and EMA 48–72 backcasting using the

DL and RF models achieved better AUCs than the native models; however, GLM showed by

EMA 24–48 and EMA 48–72 backcasting somewhat lower AUCs than the native models.

Moreover, DL and RF backcasting models had superior discrimination, especially in terms

of sensitivity.

The sensitivity of DL-EMA 8–24 backcasting was 0.832, compared with 0.808 for the native

model; the sensitivity of DL-EMA 24–48 backcasting was 0.839, compared with 0.767 for the

native model; and the sensitivity of DL-EMA 48–72 backcasting was 0.787, compared with

0.757 for the native model.

Table 1. Data are presented as the maximum, minimum and mean±SD parameter values and times for survivors 0–24 hours before ICU discharge vs. nonsurvivors

24–48 and 48–72 hours before death.

Survivors Nonsurvivors Nonsurvivors

0–24 Hours Before ICU Discharge 24–48 Hours Before Death 48–72 Hours Before Death

Time Min-Max Mean± SD Time Min-Max Mean± SD p-value Time Min-Max Mean± SD p-value

Patients n = 2821 n = 653 n = 426

Age (years) 59.6±17.1 65.5±15.4 <0.001 64.5±15.6 <0.001

SEX (F) n = 1151 n = 283 n = 172

(M) n = 1670 n = 370 n = 254

LACTATE (mmol/L) 15.51 h±6.81

h

0.3–14.4 1.5±1.0 35.05 h±6.38

h

0.6–28 4.4±3.9 <0.001 59.46 h±6.47

h

0.5–27 3.6±3.3 <0.001

PH (units) 12.20 h±6.67

h

7.03–

7.62

7.4±0.1 36.03 h±5.98

h

6.73–

7.63

7.3±0.1 <0.001 60.18 h±6.07

h

6.82–

7.54

7.3±0.1 <0.001

BICARBONATE (mEq/

dL)

10.65 h±6.41

h

8.0–52 25±4.6 36.65 h±6.01

h

5.0–45 20.9±5.9 <0.001 60.76 h±5.94

h

5.0–47 21.5±5.9 <0.001

POTASSIUM (mEq/dL) 9.91 h±6.82 h 1.9–7.3 4.1±0.5 36.64 h±6.04

h

2.2–9.8 4.4±0.9 <0.001 60.78 h±5.96

h

1.9–8.8 4.3±0.8 <0.001

CALCIUM (mg/dL) 10.98 h±6.43

h

5.8–11.9 8.3±0.7 36.60 h±6.04

h

4.1–15 8.3±1.2 0.161 60.72 h±6.01

h

3.8–13.2 8.3±1.1 0.267

GLUCOSE (mg/dL) 10.57 h±6.44

h

19–866 131.7

±51.7

36.67 h±6.03

h

25–726 154.1

±83.3

<0.001 60.75 h±5.97

h

28–560 145.9

±69.2

<0.001

CHLORIDE (mEq/L) 10.48 h±6.49

h

82–132 105.2±5.4 36.65 h±6.02

h

71–129 103.2±8 <0.001 60.75 h±5.94

h

72–135 103.9±8 <0.001

SODIUM (mEq/L) 10.35 h±6.58

h

116–159 138.9±4 36.64 h±6.02

h

116–161 137.9±6.2 <0.001 60.74 h±5.94

h

120–159 138.5±6 0.086

The p-values show the significance of the differences between surviving and nonsurviving patients.

https://doi.org/10.1371/journal.pone.0242878.t001
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To compare the performance of the multivariable DL, RF, and GLM models for probability

classification between patients who died within 0–8 hours and those who survived (the LEMA

0–8 dataset), we calculated the optimal cutoff probability value, assessed where the sensitivity

and specificity curves intersected and performed AUC analysis.

For DL, the closest top-left cutoff was 0.0659, with an AUC of 0.982, specificity of 0.947 and

sensitivity of 0.935. For the random forest, with an AUC of 0.968, specificity of 0.938 and sensi-

tivity of 0.921, the optimal probability cutoff was 0.271. The optimal probability cutoff for the

GLM was 0.127, with an AUC of 0.966, specificity of 0.939 and sensitivity of 0.907.

As shown in Table 5, the values of electrolyte, metabolite, and acid-base parameters in

the LEMA 0–8 dataset at the model’s probability cutoff were found to be similar to the corre-

sponding standard critical values [15]. The DL cutoff threshold values show the closest values

to the corresponding standard critical alert values.

The performance of the univariate DL probability classification in the LEMA 0–8 dataset

models was evaluated using the AUC, and the "closest.topleft” cutoff was determined from the

specificity and sensitivity shown in Table 6.

4. Discussion

Electrolytes, metabolites, acids, and bases are continually moving among the intracellular and

extracellular compartments of the body, which are in a state of homeostasis maintained by

multiple homeostatic mechanisms. The novelty of the proposed backcasting approach is the

early identification of failure in the mechanisms that maintain electrolyte, metabolite, and pH

homeostasis in ICU patients; monitoring these processes plays a pivotal role in managing the

Table 2. Data are presented as the maximum, minimum and mean±SD parameter values and times for survivors 0–24 hours before ICU discharge vs. nonsurvivors

8–24 and 0–8 hours before death.

Survivors Nonsurvivors Nonsurvivors

0–24 Hours Before ICU Discharge 0–8 Hours Before Death 8–24 Hours Before Death

Time Min-Max Mean± SD Time Min-Max Mean± SD p-value Time Min-Max Mean± SD p-value

Patients n = 2821 n = 545 n = 712

Age (years) 59.6±17.1 64.9±15.9 <0.001 66.5±15.1 <0.001

SEX (F) n = 1151 n = 218 n = 298

(M) n = 1670 n = 327 n = 414

LACTATE (mmol/L) 15.51 h±6.81

h

0.3–14.4 1.5±1.0 3.49 h±2.27

h

0.7–27.7 8.7±5.7 <0.001 14.65 h±4.45

h

0.05–26 5.2±4.8 <0.001

PH (units) 12.20 h±6.67

h

7.03–

7.62

7.4±0.1 3.45 h±2.30

h

6.35–

7.71

7.2±0.2 <0.001 14.81 h±4.31

h

6.84–

7.71

7.3±0.1 <0.001

BICARBONATE (mEq/

dL)

10.65 h±6.41

h

8.0–52 25±4.6 4.23 h±2.28

h

5–65.0 17.1±7.3 <0.001 14.98 h±4.46

h

5.0–46 19.6±6.1 <0.001

POTASSIUM (mEq/dL) 9.91 h±6.82 h 1.9–7.3 4.1±0.5 4.19 h±2.27

h

1.9–9.6 4.8±1.1 <0.001 15.00 h±4.47

h

2.4–8.5 4.5±0.9 <0.001

CALCIUM (mg/dL) 10.98 h±6.43

h

5.8–11.9 8.3±0.7 4.21 h±2.29

h

1.8–33.9 8.4±2.4 <0.001 14.95 h±4.48

h

4.2–18.6 8.2±1.2 <0.001

GLUCOSE (mg/dL) 10.57 h±6.44

h

19–866 131.7

±51.7

4.23 h±2.28

h

4–923 188.5

±130.6

<0.001 15.00 h±4.48

h

13–1390 157.2

±105.4

<0.001

CHLORIDE (mEq/L) 10.48 h±6.49

h

82–132 105.2±5.4 4.22 h±2.28

h

64–135 104.7±9.4 0.191 14.98 h±4.46

h

72–137 103.5±8.1 <0.001

SODIUM (mEq/L) 10.35 h±6.58

h

116–159 138.9±4 4.22 h±2.27

h

112–172 140.1±7.7 0.004 15.00 h±4.45

h

114–174 138.1±6.5 <0.001

The p-values show the significance of the differences between surviving and nonsurviving patients.

https://doi.org/10.1371/journal.pone.0242878.t002
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patient’s plan of care. Additionally, early identification of trends in laboratory values can sup-

port clinicians in decision-making.

There are many studies in which backcasting methodologies provide a superior approach

to complex problems and represent an alternative method for environmental, economic, and

time-series analysis, and these methods can be applied in medicine as well [23–25].

The backcasting prediction in our model was developed by performing several investiga-

tions. The principal aim was to achieve a risk assessment model with high predictive power.

Then, after back-prediction and comparison with native models, we generated the complete

backcasting model.

According to Table 5, the performance of the DL, RF and GLM models shows that the

LEMA 0–8 AUCs were 0.982, 0.968 and 0.966 and that higher classification and prediction

Fig 3. Mean (standard error) parameter values; blue dots represent the survivors, and red dots represent the nonsurvivors. The

gray line shows the trend of the laboratory test results during the last 72 hours of life in nonsurviving ICU patients.

https://doi.org/10.1371/journal.pone.0242878.g003

Table 3. Bivariate (Pearson’s) correlation matrix for electrolyte, metabolite, and acid-base parameters of the LEMA dataset.

SODIUM POTASSIUM CHLORIDE BICARBONATE GLUCOSE CALCIUM LACTATE PH

SODIUM 1

POTASSIUM -0.11 1

CHLORIDE 0.59 -0.1 1

BICARBONATE 0.1 -0.31 -0.31 1

GLUCOSE -0.05 0.11 -0.17 -0.14 1

CALCIUM 0.15 0.12 -0.16 0.16 0.07 1

LACTATE 0.11 0.4 -0.14 -0.5 0.32 0.12 1

PH -0.08 -0.41 -0.09 0.51 -0.24 0.04 -0.6 1

https://doi.org/10.1371/journal.pone.0242878.t003
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accuracy were achieved compared with the EMA 8–24 AUCs (0.894, 0.872, and 0.874), EMA

24–48 AUCs (0.873, 0.897 and 0.873) and EMA 48–72 AUCs (0.846, 0.841 and 0.839). Similar

results were also derived from a retrospective study through laboratory tests that demonstrated

the ability to predict the patient’s death within 24–48 hours, with an AUC of 0.88 [11].

The DL and RF backcasting approaches outperformed the native models in estimating risk

and distinguishing nonsurvivors from survivors up to 72 hours in advance.

The DL-EMA 8–24 AUC compared with the DL-EMA 8–24 backcasting AUC was 0.894 vs.

0.898; the DL-EMA 24–48 AUC compared with the DL-EMA 24–48 backcasting AUC was

0.873 vs. 0.892; and the DL-EMA 48–72 AUC compared with the DL-EMA 48–72 backcasting

AUC was 0.846 vs. 0.871.

GLM preserved the predictive power of the backcasting approach, but its performance was

slightly inferior to that of the native models. The GLM-EMA 8–24 AUC compared with the

GLM-EMA 8–24 backcasting AUC was 0.874 vs. 0.874; the GLM-EMA 24–48 AUC compared

with the GLM-EMA 24–48 backcasting AUC was 0.873 vs. 0.862; and the GLM-EMA 48–72

AUC compared with the GLM-EMA 48–72 backcasting AUC was 0.839 vs. 0.818.

We think the reason why GLM had lower performance than the native models is the lower

flexibility of GLM in handling nonlinearity. Alternatively, the excellent performance of the DL

backcasting approach can be explained by its high flexibility in nonlinear classification.

Fig 4. Correlation network of the bivariate (Pearson’s) correlation of the electrolyte, metabolite, and acid-base parameters

between ICU patients who remained stable and those who physiologically deteriorated and died in 0–8 hours. Blue lines

represent positive correlations, while red lines represent negative correlations. The thicker and darker a line is, the stronger the

correlation.

https://doi.org/10.1371/journal.pone.0242878.g004
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As shown from our results, the proposed DL and RF backward prediction of the electrolyte,

metabolite, and acid-base parameters when used in combination (multivariate analysis) has a

better ability to predict the patient’s deterioration or death within hours to days.

Moreover, an evaluation of the trends and laboratory values for nonsurvivors during their

last 72 hours in the ICU, as shown in Fig 3, showed values of stepwise progression of labora-

tory abnormalities that led to organ injury up to death. Therefore, predictive backcasting

approaches were designed to detect even small changes in the electrolyte, metabolite, and acid-

base values, which follow a simultaneous change in multiple parameters, to help guide the clin-

ical decision-making process.

Point-of-care blood analyzers play an important role in risk prediction in this model. These

modern blood analyzers are highly capable tools for assessing patients’ physiological status,

Table 5. Parameter threshold values of multivariable DL, RF and GLM models of the LEMA 0–8 dataset at the optimal probability cutoff (closest to the top left)

compared with standard critical values.

Threshold-GLM (Values) Threshold-RF (Values) Threshold-DL (Values) Critical Values

LACTATE (mmol/L) 0.3–7.0 0.3–6.7 0.3–4.6 >4

PH (units) 7.22–7.71 7.22–7.59 7.19–7.59 <7.20 and >7.60

BICARBONATE (mEq/dL) 12–47 14–47 12–47 <10 and >40

POTASSIUM (mEq/dL) 2.3–6.0 2.3–6.4 2.5–6.4 < 2.5 and >6.2

CALCIUM (mg/dL) 6.2–33.1 6.2–11.6 6.2–11.6 <6.5 and >13.0

GLUCOSE (mg/dL) 40–530 46–530 46–530 <45 and >450

CHLORIDE (mEq/L) 82.0–134 90.0–129.0 82.0–129 <80 and >120

SODIUM (mEq/L) 116.0–158 126.0–156 118.0–150 <120 and >160

https://doi.org/10.1371/journal.pone.0242878.t005

Table 4. Performance of the DL, RF and GLM models and backcasting of the LEMA 0–8, EMA 8–24, EMA 24–48, and EMA 48–72 datasets.

AUC (95% CI) Specificity Sensitivity Accuracy

DL-LEMA 0–8 0.982(0.973–0.991) 0.947 0.935 0.945

RF-LEMA 0–8 0.968(0.953–0.983) 0.938 0.921 0.936

GLM-LEMA 0–8 0.966(0.95–0.981) 0.939 0.907 0.934

DL-EMA 8–24 0.894(0.868–0.914) 0.840 0.805 0.815

RF-EMA 8–24 0.872(0.846–0.898) 0.852 0.781 0.838

GLM-EMA 8–24 0.874(0.848–0.90) 0.863 0.771 0.844

DL-EMA 8–24 Backcasting 0.898(0.875–0.921) 0.827 0.832 0.828

RF-EMA 8–24 Backcasting 0.888(0.862–0.913) 0.859 0.808 0.849

GLM-EMA 8–24 Backcasting 0.874(0.847–0.848) 0.856 0.771 0.838

DL-EMA 24–48 0.873(0.840–0.907) 0.821 0.767 0.811

RF-EMA 24–48 0.897(0.926–0.926) 0.845 0.797 0.836

GLM-EMA 24–48 0.873(0.838–0.908) 0.813 0.827 0.815

DL-EMA 24–48 Backcasting 0.892(0.867–0.928) 0.838 0.839 0.838

RF-EMA 24–48 Backcasting 0.896(0.865–0.928) 0.870 0.821 0.860

GLM-EMA 24–48 Backcasting 0.862(0.825–0.899) 0.827 0.785 0.819

DL-EMA 48–72 0.846(0.812–0.902) 0.797 0.757 0.792

RF-EMA 48–72 0.841(0.807–0.875) 0.814 0.733 0.804

GLM-EMA 48–72 0.839(0.803–0.875) 0.758 0.787 0.762

DL-EMA 48–72 Backcasting 0.871(0.841–0.902) 0.820 0.787 0.816

RF-EMA 48–72 Backcasting 0.850(0.814–0.887) 0.849 0.751 0.836

GLM-EMA 48–72 Backcasting 0.818(0.78–0.857) 0.764 0.727 0.759

https://doi.org/10.1371/journal.pone.0242878.t004
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and they may facilitate the identification of patients at deterioration risk to enable the prompt

initiation of goal-directed therapy [26].

A bivariate (Pearson’s) correlation between ICU patients who remained stable and those

who physiologically deteriorated and died in 0–8 hours is presented in Table 3 and Fig 4,

showing simultaneous changes in all the electrolyte, metabolite, and acid-base parameters.

This helps us to understand the relationships between variables and provides insight into the

complexities of homeostatic mechanisms. The degree of intercorrelations varied from positive

to negative among parameters, with pH showing the greatest correlation with the measured

lactate r = -0.6, bicarbonate r = 0.51, and potassium r = -0.41, while parameters such as glucose

r = -0.26, calcium r = 0.04, chloride r = -0.09 and sodium r = -0.08 revealed the least associa-

tion. A retrospective, observational study revealed similar results by assessing the correlation

between HCO3 and blood pH in pediatric subjects, with r = 0.413 [27].

Multivariate analysis enables risk estimation and statistical assessment of the relationship of

electrolyte, metabolite, and acid-base parameters between survivors and nonsurvivors among

ICU patients. As shown in Table 5, we found that most of the cutoffs (closest to the top left) for

parameter values from DL, RF and GLM models of the LEMA-based multivariate model at a

cutoff probability were quite similar to the critical value thresholds. The critical values of labo-

ratory measurements are well established in the medical field for identifying patients who face

an imminent or sustained increased risk of death [28, 29]. This approach opens the possibility

of defining critical value thresholds by the probability at the upper left of the ROC curve for

distinguishing between nonsurvivors and survivors.

Due to the importance of the DL model for the LEMA dataset for the backcasting approach,

univariate analyses of the electrolyte, metabolite, and acid-base parameters were performed to

examine the contributions of individual variables to risk identification and prediction. All

parameters assessed by univariate analysis except lactate displayed similar nonlinear U-shaped

relationships with the DL-based risk of death within 8 hours.

Acid-base parameters

Acid-base disorders are common in ICU patients and are often complex to diagnose and man-

age appropriately; they are also associated with increased morbidity and mortality [30]. In our

model, we focused on the pH value and the metabolic component that reflects the serum bicar-

bonate level.

Table 6. Univariate DL analysis in the LEMA 0–8 dataset.

AUC(95% CI) Top-Left Threshold (Prob) Threshold (Values) Normal Values Specificity Sensitivity Accuracy

LACTATE 0.92(0.889–0.951) 0.01 0.3–2.7 mmol/L <2 mmol/L 0.897 0.826 0.887

PH 0.867(0.831–0.902) 0.03 7.32–7.52 units 7.35-7-45 units 0.899 0.764 0.878

BICARBONATE 0.842(0.807–0.877) 0.07 21–33 mEq/L 24–30 mEq/L 0.823 0.75 0.812

POTASSIUM 0.770(0.731–0.809) 0.06 3.4–4.4 mEq/dL 3.5–5 mEq/dL 0.749 0.666 0.735

CALCIUM 0.709(0.668–0.750) 0.03 7.9–9 mg/dL 8–10.5 mg/dL 0.636 0.675 0.642

GLUCOSE 0.683(0.622–0.744) 0.05 85–160 mg/dL 70–130 mg/dL 0.737 0.606 0.717

CHLORIDE 0.659(0.616–0.702) 0.1 102–111 mEq/L 95–106 mEq/L 0.676 0.602 0.665

SODIUM 0.619(0.574–0.665) 0.08 137–143 mEq/L 135–145 mEq/L 0.631 0.549 0.619

The DL-derived optimal probability cutoff was used to estimate the parameter values discriminating ICU patients who remained stable from those who physiologically

deteriorated and died in 0–8 hours. Lactate was the most reliable predictor value, with an AUC of 0.92, followed by pH and bicarbonate, with AUCs of 0.867 and 0.842,

respectively.

https://doi.org/10.1371/journal.pone.0242878.t006
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Systemic pH homeostasis is maintained between 7.35 and 7.45; this balance is achieved

through multiple buffer systems and compensatory mechanisms in which the kidneys and

lungs play central roles. Similar to normal pH values, the cutoffs from our univariate analyses

are between 7.32–7.52 units. It is well known that pH fluctuations can add to the negative

effects of the causative condition, sometimes leading to mortality or complicating cardiopul-

monary resuscitation in survivors [30, 31]. A pH of less than 7.2 is recognized as being associ-

ated with the initiation of enzyme and protein dysfunctions, including coagulation disorders;

this value corresponds to the lower pH threshold value (7.19) of our multivariate model cutoff,

as well as established critical values [4]. The pH values in the univariate analysis between sur-

vival and mortality within 8 hours achieved a discriminatory AUC of 0.867, with a specificity

of 0.89 and sensitivity of 0.76, as shown in Fig 5 and Table 6.

The dynamic balance of bicarbonate is critical for the physiological pH buffering system.

Bicarbonate is a byproduct of the body’s metabolism; the lungs participate in removing this

ion through volatile equilibrium, and the kidneys support homeostasis by active reabsorption

and excretion [32]. In ICU patients, bicarbonate is a good predictor of acidosis and mortality

[19] as well as acute kidney injury [33]; in our univariate analysis, it showed an AUC of 0.84,

with a specificity of 0.82 and a sensitivity of 0.75, as presented in Fig 5 and Table 6.

Metabolites

Glucose and lactate are the two most essential metabolite parameters used in the monitoring of

patients in the ICU [34, 35]. The serum lactate level is established to be an important indicator of

Fig 5. Univariate analysis depicting the nonlinear association of lactate, pH, bicarbonate, and potassium values with the DL-

derived probability of death within 8 hours based on surviving and nonsurviving ICU patients.

https://doi.org/10.1371/journal.pone.0242878.g005
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circulatory impairment and, thereby, oxygenation status in critical care [35]. The serum lactate

concentration is also a useful predictor for assessing the risk of sepsis, mortality versus survival,

and poor versus good neurological outcomes after cardiac arrest [36, 37]. Multiple studies have

confirmed that, above 2 mmol/L, the lactate level has a strong positive linear relationship with

hospital mortality [36, 38]. Similar results were obtained from the univariate analyses in our study,

with a cutoff of 2.7 mmol/L. Additionally, the admission lactate level achieved a pooled AUC of

0.77 as a predictor of cardiac arrest outcomes in a systematic review and meta-analysis [39]. In

univariate analyses between survival and death within 8 hours, we found that lactate was an

impressive independent predictor, with an AUC of 0.92, a specificity of 0.89, and a sensitivity of

0.82, as shown in Fig 5 and Table 6. Additionally, in multivariate analyses, the optimal lactate cut-

off was found to be 4.6 mmol/L, which is close to the established critical value of 4.0 mmol/L [40].

Glucose is used for the diagnosis and surveillance of diabetes mellitus and other metabolic

dysfunctions in ICU patients. Glucose variability, such as hyperglycemia and hypoglycemia, is

associated with increased mortality and poor outcomes in ICU patients [41, 42]. In our model,

risk increased when the glucose level was outside the range of 85–160 mg/dL. However, the

optimal cutoff point from multivariate DL in the LEMA dataset was 46.0 mg/dL, which is the

critical value alert threshold for hypoglycemia. Univariate analysis with the DL model in the

LEMA dataset achieved an AUC of 0.68, with a specificity of 0.73 and sensitivity of 0.60, as

shown in Fig 6 and Table 6.

Fig 6. Univariate analysis depicting the nonlinear association of calcium, glucose, chloride and sodium values with the DL-

derived probability of death within 8 hours based on surviving and nonsurviving ICU patients. The background of each plot

represents the density of estimates of the relevant variable among survivors and nonsurvivors. The green line segment indicates the

optimal DL-derived range of probability cutoff points below the intersection of the sensitivity and specificity curves, along with the

corresponding laboratory values.

https://doi.org/10.1371/journal.pone.0242878.g006
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The background of each plot represents the density of estimates of the relevant variable

among survivors and nonsurvivors. The green line segment indicates the optimal DL-derived

range of probability cutoff points below the intersection of the sensitivity and specificity

curves, along with the corresponding laboratory values.

Electrolytes

Disturbances of electrolytes in the ICU patient population have been associated with pro-

longed ICU stays as well as increased morbidity and mortality [14, 43–45]. Our results suggest

that, with even modest departures from normal electrolyte concentrations, risk increases in

a nonlinear manner as the magnitude of the disturbance increases. Severe electrolyte distur-

bances associated with acid-base status, metabolic disorders, or enzyme systems of excitable

tissues (including nerves and muscles) are potentially fatal if they cause arrhythmia [44, 46].

Potassium is a major intracellular cation and plays a significant role in action potentials,

acid-base homeostasis, and metabolism. The relationship of the potassium concentration and

potassium variability with outcomes on admission and in the first 24 hours of the ICU stay

is now well established [47, 48]. A critical potassium level (less than 2.5 and more than 6.2

mmol/L) can be life-threatening and requires urgent medical attention; almost identical

potassium values (2.5 and 6.4 mmol/L) were obtained as the cutoffs of our multivariate

model. Additionally, in our univariate analysis, potassium achieved an AUC of 0.77,

specificity of 0.74, and sensitivity of 0.66, as shown in Fig 5 and Table 6.

Sodium is the most significant extracellular cation and plays an important role in serum

osmolality and water balance. Disorders of sodium are common in clinical settings, and the

importance of sodium as a parameter in the ICU is well recognized [49, 50]. Our results from

univariate analyses show cutoffs close to the upper and lower bounds of the normal sodium

range: 137–143 mEq/L vs. 135–145 mEq/L. In addition, the critical sodium limits are 120

mEq/L or less and 160 mEq/L or more, corresponding to the multivariate cutoff in our model.

In our model, sodium as an individual variable had an AUC of 0.61, specificity of 0.63, and

sensitivity of 0.54, as shown in Fig 6 and Table 6.

Chloride is a major extracellular anion and assists in maintaining osmolarity and acid-base

balance. Serum chloride alterations in the ICU are usually a result of an underlying condition

or secondary to therapeutic interventions [51] and are associated with poor clinical outcomes,

increased mortality, and prolonged hospital stays [52]. Our results from univariate analyses

show that chloride alterations outside the range of 102–111 mEq/L are related to an increased

death risk. Moreover, in the univariate analyses, chloride presented an AUC of 0.65, specificity

of 0.67, and sensitivity of 0.60, as shown in Fig 6 and Table 6.

Serum calcium (in its unbound form) is a cation that plays an important role in many phys-

iological processes, such as cell signaling, neurotransmission, muscle contraction, and coagula-

tion. Disturbances in calcium homeostasis are common in ICU settings and are associated

with increased mortality in critically ill patients [53, 54]. In our univariate analysis, hypo- and

hypercalcemia were associated with an increased risk, with an AUC of 0.70, specificity of 0.63,

and sensitivity of 0.67, as displayed in Fig 6 and Table 6.

Backcasting approach for everyday application

In accordance with the concept of the model backcasting approach for everyday application in

ICU facilities, our model can support clinicians in timely decision-making. The four criteria of

backcasting according to Holmberg and Larsson are [55]:

1. Identify the criteria that need to be met in a sustainable future.
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2. Identify gaps between the current situation and desired situation specified in step 1.

3. Envision the future solution.

4. Identify strategies for achieving sustainability.

The first step of our backcasting approach was defined in the future sustainable desired

state of the physiological stability of ICU patients. Our results show that the cutoffs based on

multivariate DL models of LEMA 0–8 dataset values, which are quite similar to the standard-

ized critical values, are essential in the discrimination of stable vs. unstable ICU patients.

Moreover, DL in the LEMA 0–8 dataset yielded optimal probability cutoffs for univariate

parameters that were similar to the normal values.

In step 2, the gap in the recorded electrolyte, metabolite, and acid-base parameters between

physiologically unstable and stable ICU patients can accurately be assessed by our backcasting

risk model.

With respect to step 3 and step 4, our backcasting model supports the same goal-directed

approach to therapy that follows all current medical guidelines to restore electrolyte, metabo-

lite, and acid-base parameters to normal values.

It is crucial for the four points to work together in addressing the simultaneous changes in

electrolyte, metabolite, and acid-base parameters to reduce patients’ risk.

5. Conclusion

We have shown that the backcasting machine learning approach for evaluating electrolyte,

metabolite, and acid-base parameters yields better discrimination than day-to-day parameter

prediction.

A new method could be used to evaluate and monitor these parameters dynamically, and it

also has the potential to identify patients at risk for deterioration such that the medical staff

can make decisions and undertake treatments in a timely manner.
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6. Holm Atkins T. E., Öhman M. C., and Brabrand M., “External validation of a decision tree early warning

score using only laboratory data: A retrospective review of prospectively collected data,” Eur. J. Intern.

Med., 2018. https://doi.org/10.1016/j.ejim.2017.12.008 PMID: 29452730

7. Jarvis S. W. et al., “Development and validation of a decision tree early warning score based on routine

laboratory test results for the discrimination of hospital mortality in emergency medical admissions,”

Resuscitation, 2013. https://doi.org/10.1016/j.resuscitation.2013.05.018 PMID: 23732049

8. Redfern O. C. et al., “Predicting in-hospital mortality and unanticipated admissions to the intensive care

unit using routinely collected blood tests and vital signs: Development and validation of a multivariable

model,” Resuscitation, 2018. https://doi.org/10.1016/j.resuscitation.2018.09.021 PMID: 30253229

9. Brabrand M., Knudsen T., and Hallas J., “Identifying admitted patients at risk of dying: A prospective

observational validation of four biochemical scoring systems,” BMJ Open, 2013. https://doi.org/10.

1136/bmjopen-2013-002890 PMID: 23794564

10. Ratnayake H., Johnson D., Martensson J., Lam Q., and Bellomo R., “A laboratory-derived early warning

score for the prediction of in-hospital mortality, ICU admission, Medical Emergency Team activation

and Cardiac Arrest in general medical wards,” Intern. Med. J., 2019. https://doi.org/10.1111/imj.14613

PMID: 31424605

11. Loekito E. et al., “Common laboratory tests predict imminent death in ward patients,” Resuscitation,

vol. 84, no. 3, pp. 280–285, 2013. https://doi.org/10.1016/j.resuscitation.2012.07.025 PMID: 22863543

12. Loekito E. et al., “Common laboratory tests predict imminent medical emergency team calls, intensive

care unit admission or death in emergency department patients,” EMA—Emerg. Med. Australas., 2013.

https://doi.org/10.1111/1742-6723.12040 PMID: 23560963

13. Asadollahi K., Hastings I. M., Gill G. V., and Beeching N. J., “Prediction of hospital mortality from admis-

sion laboratory data and patient age: A simple model,” EMA—Emerg. Med. Australas., 2011. https://

doi.org/10.1111/j.1742-6723.2011.01410.x PMID: 21668723

14. Wang Y. et al., “A novel scoring system for assessing the severity of electrolyte and acid-base disorders

and predicting outcomes in hospitalized patients,” J. Investig. Med., 2019. https://doi.org/10.1136/jim-

2018-000900 PMID: 30530786

15. Johnson A. E. W. et al., “MIMIC-III, a freely accessible critical care database,” Sci. Data, vol. 3, p.

160035, 2016. https://doi.org/10.1038/sdata.2016.35 PMID: 27219127

16. Epskamp S., Cramer A. O. J., Waldorp L. J., Schmittmann V. D., and Borsboom D., “Qgraph: Network

visualizations of relationships in psychometric data,” J. Stat. Softw., 2012.

17. Lecun Y., Bengio Y., and Hinton G., “Deep learning,” Nature. 2015. https://doi.org/10.1038/

nature14539 PMID: 26017442

18. LeDell E. et al., “R Interface for ‘H2O,’” CRAN, 2019.

19. Ravi D. et al., “Deep Learning for Health Informatics,” IEEE J. Biomed. Heal. Informatics, 2017. https://

doi.org/10.1109/JBHI.2016.2636665 PMID: 28055930

20. A. A. Candel Arno, Parmar Viraj, LeDell Erin, “Deep learning with H2O,” H2O. ai Inc, 2016.

21. Robin X. et al., “pROC: An open-source package for R and S+ to analyze and compare ROC curves,”

BMC Bioinformatics, 2011. https://doi.org/10.1186/1471-2105-12-77 PMID: 21414208

22. Dervishi A., “GitHub repository-A Deep Learning Backcasting Approach to the Electrolyte, Metabolite,

and Acid-Base Parameters That Predict Risk in ICU Patients,” 2020.

PLOS ONE LEMA model in identification of the ICU patient’s risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0242878 December 17, 2020 17 / 19

https://doi.org/10.1093/ajcp/aqy163
http://www.ncbi.nlm.nih.gov/pubmed/30689683
https://doi.org/10.1136/jamia.2009.000505
http://www.ncbi.nlm.nih.gov/pubmed/20595309
https://doi.org/10.1097/00075198-200312000-00002
https://doi.org/10.1097/00075198-200312000-00002
http://www.ncbi.nlm.nih.gov/pubmed/14639065
https://doi.org/10.1016/j.ejim.2017.12.008
http://www.ncbi.nlm.nih.gov/pubmed/29452730
https://doi.org/10.1016/j.resuscitation.2013.05.018
http://www.ncbi.nlm.nih.gov/pubmed/23732049
https://doi.org/10.1016/j.resuscitation.2018.09.021
http://www.ncbi.nlm.nih.gov/pubmed/30253229
https://doi.org/10.1136/bmjopen-2013-002890
https://doi.org/10.1136/bmjopen-2013-002890
http://www.ncbi.nlm.nih.gov/pubmed/23794564
https://doi.org/10.1111/imj.14613
http://www.ncbi.nlm.nih.gov/pubmed/31424605
https://doi.org/10.1016/j.resuscitation.2012.07.025
http://www.ncbi.nlm.nih.gov/pubmed/22863543
https://doi.org/10.1111/1742-6723.12040
http://www.ncbi.nlm.nih.gov/pubmed/23560963
https://doi.org/10.1111/j.1742-6723.2011.01410.x
https://doi.org/10.1111/j.1742-6723.2011.01410.x
http://www.ncbi.nlm.nih.gov/pubmed/21668723
https://doi.org/10.1136/jim-2018-000900
https://doi.org/10.1136/jim-2018-000900
http://www.ncbi.nlm.nih.gov/pubmed/30530786
https://doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/pubmed/27219127
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1109/JBHI.2016.2636665
https://doi.org/10.1109/JBHI.2016.2636665
http://www.ncbi.nlm.nih.gov/pubmed/28055930
https://doi.org/10.1186/1471-2105-12-77
http://www.ncbi.nlm.nih.gov/pubmed/21414208
https://doi.org/10.1371/journal.pone.0242878


23. Holmberg J. and Robert K. H., “Backcasting—a framework for strategic planning,” Int. J. Sustain. Dev.

World Ecol., 2000.

24. Robinson J. B., “Futures under glass. A recipe for people who hate to predict,” Futures, 1990.

25. Brameld K. J., Holman C. D. A. J., Lawrence D. M., and Hobbs M. S. T., “Improved methods for estimat-

ing incidence from linked hospital morbidity data,” Int. J. Epidemiol., 2003. https://doi.org/10.1093/ije/

dyg191 PMID: 12913039

26. Martin J., Blobner M., Busch R., Moser N., Kochs E., and Luppa P. B., “Point-of-care testing on admis-

sion to the intensive care unit: Lactate and glucose independently predict mortality,” Clinical Chemistry

and Laboratory Medicine. 2013. https://doi.org/10.1515/cclm-2012-0258 PMID: 22987833

27. Chaiyakulsil C., Mueanpaopong P., Lertbunrian R., and Chutipongtanate S., “Connecting two worlds:

Positive correlation between physicochemical approach with blood gases and pH in pediatric ICU set-

ting,” BMC Res. Notes, 2019. https://doi.org/10.1186/s13104-019-4770-6 PMID: 31706359

28. Tan E. H., Yang Z., Li Y., Metz M. P., and Loh T. P., “Outcome-Based Critical Result Thresholds in the

Adult Patient Population,” Am. J. Clin. Pathol., 2019. https://doi.org/10.1093/ajcp/aqz026 PMID:

31067292

29. Doering T. A., Plapp F., and Crawford J. M., “Establishing an Evidence Base for Critical Laboratory

Value Thresholds,” Am. J. Clin. Pathol., 2014. https://doi.org/10.1309/AJCPDI0FYZ4UNWEQ PMID:

25319976

30. Ho K. M., “Effect of non-linearity of a predictor on the shape and magnitude of its receiver-operating-

characteristic curve in predicting a binary outcome,” Sci. Rep., 2017. https://doi.org/10.1038/s41598-

017-10408-9 PMID: 28860560

31. Chien D. K., Lin M. R., Tsai S. H., Sun F. J., Liu T. C., and Chang W. H., “Survival prediction of initial

blood pH for nontraumatic out-of-hospital cardiac arrest patients in the emergency department,” Int. J.

Gerontol., 2010.

32. Khonsary S., “Guyton and Hall: Textbook of Medical Physiology,” Surg. Neurol. Int., 2017.

33. Gujadhur A., “Serum bicarbonate may independently predict acute kidney injury in critically ill patients:

An observational study,” World J. Crit. Care Med., 2015. https://doi.org/10.5492/wjccm.v4.i1.71 PMID:

25685725

34. Van Den Berghe G. et al., “Intensive insulin therapy in critically ill patients,” N. Engl. J. Med., 2001.

https://doi.org/10.1056/NEJMoa011300 PMID: 11794168

35. Bakker J., Nijsten M. W. N., and Jansen T. C., “Clinical use of lactate monitoring in critically ill patients,”

Ann. Intensive Care, 2013. https://doi.org/10.1186/2110-5820-3-12 PMID: 23663301

36. Nichol A. D. et al., “Relative hyperlactatemia and hospital mortality in critically ill patients: A retrospec-

tive multi-centre study,” Crit. Care, 2010. https://doi.org/10.1186/cc8888 PMID: 20181242

37. Donnino M. W. et al., “Initial lactate and lactate change in post-cardiac arrest: A multicenter validation

study,” Crit. Care Med., 2014. https://doi.org/10.1097/CCM.0000000000000332 PMID: 24776606

38. Shankar-Hari M. et al., “Developing a New Definition and Assessing New Clinical Criteria for Septic

Shock,” JAMA, 2016. https://doi.org/10.1001/jama.2016.0289 PMID: 26903336

39. Zhou B. C., Zhang Z., Zhu J. J., Liu L. J., and Liu C. F., “Blood Lactate or Lactate Clearance: Which Is

Robust to Predict the Neurological Outcomes after Cardiac Arrest? A Systematic Review and Meta-

Analysis,” Biomed Res. Int., 2018. https://doi.org/10.1155/2018/8014213 PMID: 30370306

40. Campbell C. A., Georgiou A., Westbrook J. I., and Horvath A. R., “What alert thresholds should be used

to identify critical risk results: A systematic review of the evidence,” Clinical Chemistry. 2016.

41. Park B. S., Yoon J. S., Moon J. S., Won K. C., and Lee H. W., “Predicting mortality of critically ill patients

by blood glucose levels,” Diabetes Metab. J., 2013.

42. Egi M. et al., “Hypoglycemia and outcome in critically ill patients,” Mayo Clin. Proc., 2010. https://doi.

org/10.4065/mcp.2009.0394 PMID: 20176928

43. Sedlacek M., Schoolwerth A. C., and Remillard B. D., “Electrolyte disturbances in the intensive care

unit,” Semin. Dial., 2006. https://doi.org/10.1111/j.1525-139X.2006.00212.x PMID: 17150050

44. Hu J. et al., “Electrolyte and acid-base disturbances in critically ill patients: A retrospective and propen-

sity-matched study,” Int. J. Clin. Exp. Med., 2017.

45. Stelfox H. T., Ahmed S. B., Khandwala F., Zygun D., Shahpori R., and Laupland K., “The epidemiology

of intensive care unit-acquired hyponatraemia and hypernatraemia in medical-surgical intensive care

units,” Crit. Care, 2008. https://doi.org/10.1186/cc7162 PMID: 19094227

46. Al-Jaghbeer M. and Kellum J. A., “Acid-base disturbances in intensive care patients: Etiology, patho-

physiology and treatment,” Nephrology Dialysis Transplantation. 2015.

47. Collins A. J. et al., “Association of serum potassium with all-cause mortality in patients with and without

heart failure, chronic kidney disease, and/or diabetes,” Am. J. Nephrol., 2017.

PLOS ONE LEMA model in identification of the ICU patient’s risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0242878 December 17, 2020 18 / 19

https://doi.org/10.1093/ije/dyg191
https://doi.org/10.1093/ije/dyg191
http://www.ncbi.nlm.nih.gov/pubmed/12913039
https://doi.org/10.1515/cclm-2012-0258
http://www.ncbi.nlm.nih.gov/pubmed/22987833
https://doi.org/10.1186/s13104-019-4770-6
http://www.ncbi.nlm.nih.gov/pubmed/31706359
https://doi.org/10.1093/ajcp/aqz026
http://www.ncbi.nlm.nih.gov/pubmed/31067292
https://doi.org/10.1309/AJCPDI0FYZ4UNWEQ
http://www.ncbi.nlm.nih.gov/pubmed/25319976
https://doi.org/10.1038/s41598-017-10408-9
https://doi.org/10.1038/s41598-017-10408-9
http://www.ncbi.nlm.nih.gov/pubmed/28860560
https://doi.org/10.5492/wjccm.v4.i1.71
http://www.ncbi.nlm.nih.gov/pubmed/25685725
https://doi.org/10.1056/NEJMoa011300
http://www.ncbi.nlm.nih.gov/pubmed/11794168
https://doi.org/10.1186/2110-5820-3-12
http://www.ncbi.nlm.nih.gov/pubmed/23663301
https://doi.org/10.1186/cc8888
http://www.ncbi.nlm.nih.gov/pubmed/20181242
https://doi.org/10.1097/CCM.0000000000000332
http://www.ncbi.nlm.nih.gov/pubmed/24776606
https://doi.org/10.1001/jama.2016.0289
http://www.ncbi.nlm.nih.gov/pubmed/26903336
https://doi.org/10.1155/2018/8014213
http://www.ncbi.nlm.nih.gov/pubmed/30370306
https://doi.org/10.4065/mcp.2009.0394
https://doi.org/10.4065/mcp.2009.0394
http://www.ncbi.nlm.nih.gov/pubmed/20176928
https://doi.org/10.1111/j.1525-139X.2006.00212.x
http://www.ncbi.nlm.nih.gov/pubmed/17150050
https://doi.org/10.1186/cc7162
http://www.ncbi.nlm.nih.gov/pubmed/19094227
https://doi.org/10.1371/journal.pone.0242878


48. Hessels L. et al., “The relationship between serum potassium, potassium variability and in-hospital mor-

tality in critically ill patients and a before-after analysis on the impact of computer-assisted potassium

control,” Crit. Care, 2015. https://doi.org/10.1186/s13054-014-0720-9 PMID: 25560457

49. Marshall D. C. et al., “The association between sodium fluctuations and mortality in surgical patients

requiring intensive care,” J. Crit. Care, 2017. https://doi.org/10.1016/j.jcrc.2017.02.012 PMID:

28347943

50. Basile-Filho A., Menegueti M. G., Nicolini E. A., Lago A. F., Martinez E. Z., and Auxiliadora-Martins M.,

“Are the Dysnatremias a Permanent Threat to the Critically Ill Patients?,” J. Clin. Med. Res., 2015.

https://doi.org/10.14740/jocmr2425w PMID: 26767083

51. Kashani K. B. and Bandak G., “Chloride in intensive care units: A key electrolyte,” F1000Research.

2017. https://doi.org/10.12688/f1000research.11401.1 PMID: 29123653

52. Thongprayoon C., Cheungpasitporn W., Cheng Z., and Qian Q., “Chloride alterations in hospitalized

patients: Prevalence and outcome significance,” PLoS One, 2017. https://doi.org/10.1371/journal.pone.

0174430 PMID: 28328963

53. Zhang Z., Xu X., Ni H., and Deng H., “Predictive value of ionized calcium in critically ill patients: an anal-

ysis of a large clinical database mimic ii,” PLoS One, 2014. https://doi.org/10.1371/journal.pone.

0095204 PMID: 24736693

54. Egi M. et al., “Ionized calcium concentration and outcome in critical illness,” Crit. Care Med., 2011.

https://doi.org/10.1097/CCM.0b013e3181ffe23e PMID: 21099425

55. Larsson J. and Holmberg J., “Learning while creating value for sustainability transitions: The case of

Challenge Lab at Chalmers University of Technology,” J. Clean. Prod., 2018.

PLOS ONE LEMA model in identification of the ICU patient’s risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0242878 December 17, 2020 19 / 19

https://doi.org/10.1186/s13054-014-0720-9
http://www.ncbi.nlm.nih.gov/pubmed/25560457
https://doi.org/10.1016/j.jcrc.2017.02.012
http://www.ncbi.nlm.nih.gov/pubmed/28347943
https://doi.org/10.14740/jocmr2425w
http://www.ncbi.nlm.nih.gov/pubmed/26767083
https://doi.org/10.12688/f1000research.11401.1
http://www.ncbi.nlm.nih.gov/pubmed/29123653
https://doi.org/10.1371/journal.pone.0174430
https://doi.org/10.1371/journal.pone.0174430
http://www.ncbi.nlm.nih.gov/pubmed/28328963
https://doi.org/10.1371/journal.pone.0095204
https://doi.org/10.1371/journal.pone.0095204
http://www.ncbi.nlm.nih.gov/pubmed/24736693
https://doi.org/10.1097/CCM.0b013e3181ffe23e
http://www.ncbi.nlm.nih.gov/pubmed/21099425
https://doi.org/10.1371/journal.pone.0242878

