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Patellofemoral pain syndrome (PFPS) is a common, yet misunderstood, knee

pathology. Early accurate diagnosis can help avoid the deterioration of

the disease. However, the existing intelligent auxiliary diagnosis methods

of PFPS mainly focused on the biosignal of individuals but neglected the

common biometrics of patients. In this paper, we propose a PFPS classification

method based on the fused biometrics information Graph Convolution Neural

Networks (FBI-GCN) which focuses on both the biosignal information of

individuals and the common characteristics of patients. The method first

constructs a graph which uses each subject as a node and fuses the biometrics

information (demographics and gait biosignal) of different subjects as edges.

Then, the graph and node information [biosignal information, including the

joint kinematics and surface electromyography (sEMG)] are used as the inputs

to the GCN for diagnosis and classification of PFPS. The method is tested on a

public dataset which contain walking and running data from 26 PFPS patients

and 15 pain-free controls. The results suggest that our method can classify

PFPS and pain-free with higher accuracy (mean accuracy = 0.8531 ± 0.047)

than other methods with the biosignal information of individuals as input

(mean accuracy = 0.813 ± 0.048). After optimal selection of input variables,

the highest classification accuracy (mean accuracy = 0.9245 ± 0.034) can be

obtained, and a high accuracy can still be obtained with a 40% reduction in

test variables (mean accuracy = 0.8802 ± 0.035). Accordingly, the method

effectively reflects the association between subjects, provides a simple and

effective aid for physicians to diagnose PFPS, and gives new ideas for studying

and validating risk factors related to PFPS.
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patellofemoral pain syndrome, graph convolutional neural network, fuse biometrics,
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Introduction

Patellofemoral pain syndrome (PFPS) is a common chronic
knee injury (Boling et al., 2009), which typically presents as
diffuse anterior knee pain (Crossley et al., 2016). According
to studies, the annual prevalence for PFPS in the general
population is 22.7 % and in adolescents is 28.9 % (Smith et al.,
2018). Sociodemographic characteristics [e.g., height, weight,
and body mass index (BMI)] do not have a significant impact
on the incidence of PFPS (Collins et al., 2010). However,
females have a higher incidence of PFPS compared with males
(Boling et al., 2010). Daily physical activities with knees bending
(e.g., climbing stairs, squatting, running, jumping, sitting) can
exacerbate the pain that causes limitations to daily activities
(Halabchi et al., 2013). Increasing evidences suggest that it is a
recalcitrant condition that can persist for many years (Crossley
et al., 2016). In addition, PFPS patients have a higher risk of
osteoarthritis (OA) (Thomas et al., 2010).

Early accurate diagnosis of PFPS helps avoid disease
progression (Ferrari et al., 2014). But there is still a lack of
consensus on the exact pathological mechanism of PFPS, as
its etiology is multifactorial (Powers et al., 2012). Clinical
examination is the cornerstone to diagnose PFPS, and the
best available test is anterior knee pain elicited during a
squatting maneuver. Tenderness on palpation of the patellar
edges, patellar grinding, and apprehension tests are also capable
of detecting (Crossley et al., 2016). The clinical diagnosis of
PFPS usually uses an exclusion method without the need
of any further imaging studies (Nuttall and Winters, 2015).
The currently proposed pathomechanical model suggested that
PFPS is associated with abnormal loading of the patellofemoral
joint (elevated joint stress) (Powers et al., 2017). Describing
the causal relationship between tissue stress and pain is
difficult because these variables cannot be measured directly
in vivo. To solve the problem, human kinematics and
surface electromyography (sEMG) can be used to set up a
corresponding musculoskeletal model to estimate the joint
moment (Buchanan et al., 2004). Since the coordination
mechanism of the human nerve, muscle, and skeletal system
are unknown, such models will inevitably be faced with
some uncertainties such as inaccuracy or computational
complexity, which is not conducive to the application in
clinical testing.

Previous studies have shown that data-driven machine
learning has good system representation and individual
adaptability when the principles of the system are unclear or
unknown (Zeng et al., 2016). Recently, machine learning has
been increasingly used in biomedical sciences, such as joint
moment prediction (Myer et al., 2014; Xiong et al., 2019) and
disease diagnosis (Shi et al., 2021a,b) etc. These methods mainly
focus on biological signal information of individuals but neglect
the common characteristics of patients. In practical situations,
however, it is beneficial to consider the relationship among

patients as it facilitates the analysis and study of patient groups
with similar symptoms (Ghorbani et al., 2021).

As a graph-based neural network model, GCN can focus on
both individual characteristics and common features (Ahmedt-
Aristizabal et al., 2021; Li et al., 2022b). The graphs provide
an intuitive way to represent individuals (as nodes) and the
common features of patients (as edges) (Zhou et al., 2020).
Currently, GCN has been successfully applied in the areas of
disease diagnosis (Parisot et al., 2018), emotion recognition
(Song et al., 2020), and heart abnormality detection (Wang
et al., 2020), etc. In addition, GCN is also a semi-supervised
learning method, which uses samples without class labels to
train the samples with class labels, which makes it an attractive
approach toward addressing the problem of data shortage
(Oliver et al., 2018).

In this work, we propose a method based on the fused
biometrics information Graph Convolution Neural Networks
(FBI-GCN) to assist the diagnosis PFPS. A population graph was
constructed in which the similarity of test subject characteristics
(sEMG and joint kinematics) and demographic information
were fused to represent the degree of association between
different subjects. The FBI-GCN was used to focus on both
individual characteristics (inputs of nodes) and common
features, and the classes of unlabeled nodes were inferred by
training the model. The model was first tested on 41 subjects
using the public datasets of PFPS to explore the best strategy
for constructing the population graph. Then the impact of
the choice of each part of the model on the classification
performance was examined. The overview of FBI-GCN is shown
in Figure 1. Finally, the model was used to validate some
of the current clinical findings on the PFPS, and optimized
the selection of input variables according to expert knowledge,
which could still obtain a high diagnostic accuracy while greatly
reducing the cost of data collection. Experiment results showed
that recognizing the correct clinical knowledge can significantly
improve the classification performance of the model.

The main contributions of this research include:

(1) The method of graph structure was used to construct the
relationship between individual characteristics and group
common characteristics between subjects. At the same time
a semi-supervised, GCN-based PFPS auxiliary diagnosis
method (FBI-GCN) was designed, which is an end-to-end
model with a relatively simple structure design to achieve a
high detection accuracy in public datasets.

(2) The model was validated by some of the current clinical
findings on PFPS, which is verified by experiments
to show that accurate and effective common features
(gender information) can significantly improve
diagnostic accuracy.

(3) Feature optimization through expert knowledge
remains high diagnostic accuracy while reducing
experimental costs.
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FIGURE 1

An overview of the FBI-GCN model.

Materials and methods

Datasets and pre-processing

The experimental data used in this paper was downloaded
from the public datasets published on the website,1 which was
accessed on 18 October 2020. This dataset provides lower limb
kinematics and sEMG of 26 patients (16 females and 10 males)
with patellofemoral pain and 15 pain-free control subjects (8
females and 7 males) during walking and running.

The biometric information available in this dataset
includes demographics and gait biosignal (sEMG and joint
kinematics) of subjects. The lower limb kinematics involves
the hip, knee, and ankle flexions. The muscles that are used
to collect sEMG signals include the rectus femoris (RF),
vastus medialis (VASMED), vastus lateralis (VASLAT), medial
hamstrings (SEMIMEM), lateral hamstrings (BIFEMLH),
medial gastrocnemius (MEDGAS) and lateral gastrocnemius
(LATGAS). The sEMG signals were low-pass filtered using
a zero-lag fourth-order Butterworth filter with a cut-off
frequency of 15 Hz. Details about the collection process of the
entire dataset can be found in reference (Besier et al., 2009).
A summary of the subjects is shown in Table 1.

Since the inconsistent feature scales (measurement units) of
the data are not conducive to model convergence, normalization
of the raw data is required. The Z-score is used to normalize the
data:

X′i =
Xi − µi

σi
(1)

whereXi is the node feature vector, µi and σi represent the
expected value and standard deviation of Xi.

1 https://www.sciencedirect.com/science/article/pii/
S0021929009000396?via%3Dihub

Construction of the population graph

The input of GCN requires a graph in addition to feature
vectors of nodes. Improperly constructed graph (the graph
that does not properly represent similar relationships between
subjects) will have a negative impact on the classification
performance. The population was represented as a weighted
graph G = (V, E, Ã), where Vdenotes the nodes of the graph;
Edenotes the set of edges connecting these nodes; Ãdenotes the
weighted adjacency matrix of the graph. The adjacency matrix
describes the connectivity between any two nodes, where the
importance of the connection between the node i and node j is
represented by aij.

The goal is to assign a label l ∈ {0, 1} to each graph node
that describes whether the subject is pain (l = 1) or control
(l = 0). Previous studies have shown that demographic data can
provide useful information to mine the association with subjects
(Zheng et al., 2022). Here the demographic information (gender,
height, weight, etc.) is defined as M = {Mh}, H is the number
of demographic data types to be calculated. The GCN modeling
method is referenced to that proposed in Parisot et al. (2018) and
the adjacency matrix Wof a graph is calculated by equation (2).

Ã(i, j) = Sim(Vi, Vj)

H∑
h=1

γ[Mh(i), Mh(j)] (2)

where γ is a measure of the distance between demographic
information, andSim(Vi, Vj)represents the edge weight
constructed based on the feature similarity vector between node
i and node j. The threshold Gaussian similarity kernel function
is used in this paper, which is worked out by equation (3).

Sim(Vi, Vj) =

{
exp(−

[ρ(Xi,Xj)]
2

2θ2 ), if ρ(Xi, Xj) ≥ τ

0, otherwise
(3)
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TABLE 1 Mean ± standard height and mass of the subjects.

PFPS Control

Males (n = 10) Females (n = 16) Males (n = 7) Females (n = 8)

Height (m) 1.78± 0.08 1.68± 0.06 1.80± 0.05 1.66± 0.05

Mass (kg) 73.5± 15.7 62.7± 10.0 73.4± 18.1 58.3± 4.6

Body mass index 22.60± 2.80 23.03± 3.20 21.21± 1.87 21.89± 2.00

where ρ(Xi, Xj) is the similarity between node feature vectors
Xi and Xj, τ is the threshold, and θ represents the width of the
kernel. Ideally, subjects belonging to the same category (control
or pain) should have a greater similarity weight than those
belonging to different categories. In order to ensure the sparsity
of the adjacency matrix and make it easier to separate the nodes,
a threshold τ is set. When the similarity of two nodes is greater
than the threshold, the two nodes are considered connected.
This method was inspired by Zeng et al. (2022).

The Kronecker delta function δ (Parisot et al., 2018) was
used for function γ. The value of γis 1 if the two variables are
equal, otherwise it is 0. But in the case of real numbers, such as
weight, height, etc., they cannot be exactly equal. Therefore, we
define it as a unit step function with respect to a threshold by
equation (4):

γ(Mh(i), Mh(j)) =

{
1, if |Mh(i)−Mh(j)| ≤ λ

0, otherwise
(4)

where λ is the threshold. The value of γ can be adjusted based on
some prior knowledge. For example, females are susceptible to
PFPS at a 2–3 times higher rate than males (Boling et al., 2010).
It means that females should have a higher influence on the edge
weight of the graph, so we define the function γ as equation (5):

γ(Mh(i), Mh(j)) =


λ1, if Mh(i) = Mh(j) = Male
λ2, if Mh(i) = Mh(j) = Female
0, otherwise

(5)

where λ1 and λ2 are adjustable constants and λ1<λ2. For
other demographic information, piecewise functions can also
be established based on expert knowledge, and the modeling
method can refer to equation (5).

Spectral-GCN

The structure of the graph is usually complex and irregular,
where each node carries its own local features and does not have
general translation invariance. The traditional convolutional
neural network (CNN) is not suitable for such classification
problems. Therefore graph-oriented convolution operations
need to be introduced, and spectral-GCN is one of the applicable
methods which convolves on graphs (Kipf and Welling, 2016).

The GCN model used in this paper follows that proposed
by Kipf and Welling (2016) because it simplified the graph
convolution layer using the following equation:

Z = D̃−
1
2 ÃD̃−

1
2 X2 (6)

whereÃ = A+ IN , IN denotes the identity matrix, A denotes the
adjacency matrix, D̃ii =

∑
j Ãij, X ∈ RN×C is the eigenvector of

dimension C in each node, 2 ∈ RC×F is the parameter matrix of
the filter, Z ∈ RN×F is the convolution signal matrix, and Fis the
number of filters.

The algorithm overview is shown in Figure 2. The FBI-
GCN is relatively simple, which is designed as a two-layer GCN
with each convolutional layer followed by a rectified linear unit
(ReLU) activation function for the introduction of non-linearity.
The output layer is followed by a softmax activation function
and the maximum value of the output is assigned labels to
unlabeled nodes. The forward phase is expressed as follows:

Z = f (X, A) = softmax(ÃReLU(ÃXW(0))W(1)) (7)

where W(0)
∈ RC×H is the weight matrix from input to the

hidden layer and H is the number of neurons in the hidden layer,
and W(1)

∈ RH×F is the weight matrix from the hidden layer to
the output layer. The neural network weights are trained using
gradient descent. The cross-entropy is used as the loss function
and its equation is as follows:

L = − [yi log zi + (1− yi) log(1− zi)] (8)

where yi and zi are the true and predicted labels of the nodes.
The specialty of our FBI-GCN lies in its ability to

fuse biometrics information of individuals and the common
characteristics of subjects when classifying PFPS diseases. As
shown in Figure 1, when diagnosing PFPS, priority should
be given to the subject whose population is with a high
prevalence (e.g., female group, overweight group, etc.). The
biosignal similarity of the subjects is also considered. These
biometrics information is fused by weighting, and a graph
is used to represent the association between subjects. The
operation of GCN focuses on the biosignal information of the
subject individuals with their common features. In this way, the
classification of PFPS is made more reliable. When training the
GCN, it focuses on the common characteristics of the subjects
and the individual biosignal information so as to obtain a good
classification capability.

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.976249
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-976249 July 25, 2022 Time: 15:42 # 5

Xiong et al. 10.3389/fnins.2022.976249

FIGURE 2

The algorithm overview of GCN.

Results

Experimental parameters and
evaluation indexes

In the experiments, we chose the k-fold cross-validation
(Refaeilzadeh et al., 2016) method to evaluate the generalization
ability of our model with k = 5. To ensure the reliability
of the results, each experiment was repeated 50 times
independently and the mean and standard deviation were used
for comparison. The evaluation indexes mainly include accuracy
(ACC), sensitivity (also known as precision, represented by P),
specificity (also known as recall, represented by R), and F1-Score
(Cao et al., 2021). Their expressions are as follows:

ACC =
TP + TN

TP + FP + FN + TN
(9)

P =
TP

TP + FN
(10)

R =
TN

TN + FP
(11)

F1− score =
2× P × R

P + R
(12)

where TP, FP, TN, and FN represent the number of samples
corresponding to the true positive, false positive, true negative,

and false negative (positive is the subject predicted by the
model as pain, and negative is the subject predicted as control)
(Wu et al., 2022).

The parameters of our GCN model are set as follows:
dropout rate: 0.5; learning rate: 0.01; epochs: 300; the number
of hidden layers: 1; the number of nodes in the hidden layer: 64.

Graph construction strategy

GCN aggregates node information according to the graph
and the graph structure has a great impact on the performance of
classification. In order to investigate the effect of different graph
structures on the average classification accuracy, the following
variations of the graph were analyzed: (1) select only the
Sim(Vi, Vj) as the edge of the graph, (2) use equation (2) to fuse
node feature similarity and subject demographic information,
and (3) use γ to calculate the adjacency matrix of the graph.

The running information in the dataset, including
kinematics of three joints and sEMG signals of seven muscles
during running, was used as the node input. It is because
the population with PFPS suffers from more pronounced
pain during strenuous activities such as running (Glaviano
et al., 2022). There are three options to use individual feature
similarity to construct the graph: running, walking, and both.

As can be seen from Figure 3, the graph constructed
using all the information of running and walking with a
threshold value of 0.70 has the highest accuracy. Based on
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FIGURE 3

The impact of input information and threshold selection on classification performance expressed as accuracy. τ represents the threshold value
being set in equation (3).

this graph, demographic characteristics (gender, height, weight)
were further added to compare their performance separately.

As there is a significant difference in the probability of PFPS
between males and females (Rothermich et al., 2015), we set
λ1 = 1 and λ2 = 2 in equation (5) to express gender differences
and compared them using the Kronecker function. The input of
the node still used all the biosignal information in running. The
result is shown in Figure 4.

From Figure 4, we know that adding gender information to
construct the graph has improved the classification performance
and combining clinical knowledge gives better results. λ1

and λ2 should be set in the appropriate region. If the
parameters were set too large, it results in other biometric
information not being well represented. Relying on gender
information cannot lead the model to better classification
(refer to Table 2). If the parameter was set less than 1, it
reduces the edge weight of the corresponding object, which
is not conducive to the representation of prior knowledge.
After repeated tests, λ1 = 1 and λ2 = 2 performed the best
in the experiment.

The dataset contains the information of the subjects’ height
and weight in addition to their gender. To test the effect
of using this information on PFPS classification, we tried
to conduct the experiment using equation (4). A significant
correlation between the weight of the subjects and gender was
observed in Table 1 (the weight of males differed more from
that of females). In order to better observe whether excess
weight is correlated with PFPS, we chose to use BMI for
further experiments.

FIGURE 4

Comparison of different methods of fusing similarity and gender
information: ACC = precision, P = sensitivity, and
R = specificity; Sim denotes the similarity of node features,
Sim + Gender (Kronecker) represents the use of the Kronecker
delta function to express the function γ, and Sim + Gender
denotes the use of equation (5) to express the weight matrix of
the graph.

From Table 2, we find that the accuracy of the classification
is low when only the subjects’ gender, height, weight, or BMI
is used to construct the graph, indicating that demographic
information alone does not guarantee effective classification
of PFPS. The performance of classification is improved when
subjects’ demographic information fuses with the similarity of
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TABLE 2 The effect of feature fusion on classification performance.

Accuracy Specificity Sensitivity F1-Score

Sim 0.8130± 0.048 0.8770± 0.059 0.8253± 0.061 0.8360± 0.052

Gender 0.4902± 0.079 0.6100± 0.092 0.5152± 0.100 0.5333± 0.085

Height 0.4573± 0.068 0.3198± 0.069 0.4373± 0.137 0.3501± 0.088

Mass 0.4872± 0.073 0.6420± 0.102 0.4357± 0.090 0.4943± 0.085

BMI 0.6046± 0.020 0.6207± 0.010 0.9492± 0.036 0.7410± 0.019

Sim + Gender 0.8531± 0.047 0.9056± 0.047 0.8532± 0.071 0.8637± 0.055

Sim + Height 0.7872± 0.056 0.8756± 0.054 0.7833± 0.078 0.8101± 0.060

Sim + Mass 0.8222± 0.044 0.7224± 0.089 0.8273± 0.084 0.7430± 0.072

Sim + BMI 0.8197± 0.042 0.8949± 0.055 0.8132± 0.054 0.8372± 0.048

Sim + Gender + Height + Mass 0.8198± 0.044 0.8934± 0.045 0.8148± 0.068 0.8381± 0.051

Sim + Gender + BMI 0.8454± 0.044 0.7750± 0.092 0.8076± 0.077 0.7652± 0.069

The bold values mean the best performing results in the experiment.

individual characteristics. Also, the classification accuracy after
fusing BMI with similarity does not change much compared
to the graphs constructed using only similarity. Combining the
experimental results, we find that the graph constructed from
similarity and gender showed the highest ACC and F1-scores
among various methods.

Selection of node input information

In the previous section, the graph construction strategy was
discussed. This section will focus on the relationship between
the node input information and the classification accuracy.

Running and walking are dynamic muscle contractions and
joint rotation (McGill, 2004), so the sEMG and joint angles are
used as inputs for each node. The PFPS classification results
using running, walking and both as input are explored separately
in Figure 5. The graph used in the comparison experiment
was the fusion of all biosignal in running and the gender
information (Sim + Gender was mentioned in Figure 4, it had
the best performance in the previous section). The results verify
our initial conjecture that higher classification accuracy can be
obtained by using the running data as the input.

Feature optimization for input variables

To collect effective signals, the sensors measuring biological
information are often high-precision instruments, so the
experimental cost is relatively high. In some cases, irrelevant
and misleading features may reduce the accuracy and speed of
the prediction algorithm. On the other hand, the raw sEMG
signals are redundant and sometimes contradictory (Oskoei
et al., 2013). Therefore, it is meaningful to optimize the input
features to improve the diagnostic performance of FBI-GCN.

The related heatmap of the input variables’ intraclass
Pearson correlation coefficient is shown in Figure 6. In the

FIGURE 5

Comparison of running, walking, and both as node inputs.

control group, the correlation is stronger for the knee and
ankle joints among the three variables of joint kinematics. The
correlations are strong for the same muscle groups, except for
the rectus femoris of the quadriceps. However, correlations
between the quadriceps and other muscle groups were
significantly lower in the pain group than in the control group.

The presence of high correlation between variables of
the same muscle group implies the possibility of redundant
information. To further explore the influence of different
node input information on the PFPS classification accuracy,
different combinations of variables were used as the input to
observe their effects on the PFPS classification performance. The
experiment was conducted using the following three groups:
(1) all sEMGs and all joint angles used as the input; (2) three
muscle groups’ sEMG: hamstrings (HAM), quadriceps (QUA)
and gastrocnemius (GAS) used as the input; and (3) individual
joint angles and individual muscle sEMGs used as the input.
The graph also used the fusion of all biosignal in running and

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.976249
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-976249 July 25, 2022 Time: 15:42 # 8

Xiong et al. 10.3389/fnins.2022.976249

FIGURE 6

A heatmap of correlations between groups of variables. (A) the control group, (B) the PFPS pain group.

the gender information. The experiment results are shown in
Figure 7.

From Figure 7, we find that using all sEMG as node input
has higher classification accuracy than using all joint angelas
the input. Among the three muscle groups, using quadriceps’
sEMG as the input obtained the highest accuracy for PFPS
classification. When using the three joint angles separately as
the input, the combination of the knee and ankle joint angles
results in a similar accuracy, but higher than the combination
of the hip joint angles. In the seven muscles tested, using the
combination of the lateral hamstrings, vastus medialis, and
lateral gastrocnemius as inputs showed better accuracy than
using the other muscles.

Based on the results in Figure 7, we selected the top
five variables for testing in order of accuracy. These are
LATGAS, Knee, BIFEMLH, VASMED, and Ankle, and they
have exactly one of the sEMGs in each muscle group,
as well as the joint kinematics of the knee and ankle
joints. To deal with optimization problems, it is good to
use metaheuristic algorithms based on swarm intelligence
techniques (Li et al., 2022a). However, in this experiment, the
variety of combinations is lower than the range of applicability
of the heuristic intelligent algorithms. It is acceptable to use the
exhaustive method for comparison. There are (25–1) different
combinations, we only show the cases with the highest accuracy
using different numbers of variables, as is shown in Table 3.

As is shown in Table 3, when more than 1 variable is
used, the accuracy is higher than 83%. We can also see from
this table that the performance is the best when both variables
LATGAS and BIFEMLH are used. Therefore, in the subsequent
experiments, LATGAS and BIFEMLH will be used as the input
information of the node.

In addition to the information of the node inputs, the
graph structure also needs to be optimized. By comparing
the two correlation heat maps in Figure 7, we find that the
correlation between the three muscle groups in the PFPS pain
group is weaker than that in the control group. In our FBI-
GCN model, the graph focuses on the common biometric
information of the subjects so that their association should
be as differentiable as possible from the pain-free population.
As the weakness of muscle groups above the knee has been
well documented in young adults with PFPS (Crossley et al.,
2016), it is speculated that using EMG signals from the
quadriceps and other muscle for the composition could be a
good representation.

Based on the discussions above, we try to use the following
three kinds of combinations of features to optimize the graph
construction: (1) the information from a single muscle group
or a single joint kinematics; (2) the combination of only a few
features; and (3) the data from one type of sensor, such as from
only sEMG or joint kinematics.

In the first experiment, the input information to the
nodes was composed of the sEMG signals from LATGAS
and BIFEMLH during running. The graphs were constructed
according to the biosignal information of individual joint
kinematics and single muscle groups. The results are shown in
Figure 8, their prediction accuracy for PFPS ranged from 0.55
to 0.75, which is at a relatively low level.

It is impossible to get good classification results by relying
only on a single bioinformatic composition of either joint
dynamics or muscle groups. Therefore, we are going to test
whether removing the EMG signal of a few muscle groups
could contribute to the improvement of diagnostic accuracy.
The results are shown in Table 4.
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FIGURE 7

Patellofemoral pain syndrome (PFPS) classification accuracy for different node input information selection strategies: Joint, the joint angles of
Hip Flexion, Knee Flexion, and Ankle Flexion when subjects in running; sEMG, the sEMG signals of 7 muscles in the dataset; HAM, hamstrings’
sEMG, including BIFEMLH and SEMIMEM; QUA, quadriceps’ sEMG, including RF, VASMED and VASLAT; GAS, gastrocnemius’ sEMG, including
MEDGAS and LATGAS.

TABLE 3 Variable combinations for node input.

Number of variables LATGAS Knee BIFEMLH VASMED Ankle ACC

1 1 0 0 0 0 0.7406± 0.050

2 1 0 1 0 0 0.8406± 0.037

3 1 0 1 1 0 0.8327± 0.046

4 1 0 1 1 1 0.8422± 0.050

5 1 1 1 1 1 0.8319± 0.052

The bold values mean the best performing results in the experiment.

As can be seen from Table 4, the best classification
performance was obtained from our FBI-GCN model when
the biosignal from the gastrocnemius muscle was removed
(accuracy = 0.9245± 0.034, sensitivity = 0.9419± 0.074). If only
the biosignal of joint kinematics and quadriceps were used, it
achieved a better performance (accuracy = 0.8627± 0.047) than
when all information was retained.

The final experiment was conducted by removing some
variables separately, using the same type of sensor. Results
are shown in Table 5. We can see from the above table that
using only joint kinematic information as the input combination
did not ensure correct classification of PFPS. Using the sEMG
of the quadriceps and hamstrings as the input combination

could result in good classification performance with 40% fewer
measured variables.

Comparison with other methods

In order to further confirm the performance of our
method, we compare it against the following five methods:
Extreme Learning Machines (ELM), Support Vector Machine
(SVM), Multilayer Perceptron (MLP), Back Propagation
Neural Network (BP) and Long Short-Term Memory (LSTM)
(Shi et al., 2019; Shi et al., 2021b). Among them, the kernel
function of the SVM is linear, the C-value is set to 0.04. In
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FIGURE 8

Classification accuracy of joint kinematics and muscle group conformation. The accuracy values shown in the figure are the result of the best
performance of the post-configuration threshold selection between 0.7 and 0.85.

TABLE 4 Classification performance of FBI-GCN with removed composition variables.

Name of removed variables Accuracy Specificity Sensitivity F1-Score τ Mh

Hip 0.8355± 0.047 0.7432± 0.087 0.8162± 0.081 0.7505± 0.078 0.75 None

Knee 0.8003± 0.038 0.8676± 0.039 0.8138± 0.048 0.8283± 0.036 0.8 Gender

Ankle 0.8252± 0.035 0.8896± 0.039 0.8358± 0.053 0.8460± 0.034 0.75 None

HAM 0.8393± 0.041 0.7700± 0.086 0.7799± 0.074 0.7493± 0.062 0.85 None

QUA 0.8309± 0.046 0.9072± 0.040 0.8258± 0.072 0.8455± 0.048 0.8 None

GAS 0.9245± 0.034 0.8635± 0.072 0.9419± 0.074 0.8836± 0.064 0.75 None

Hip and GAS 0.8217± 0.051 0.8885± 0.043 0.8359± 0.070 0.8435± 0.052 0.75 None

Knee and GAS 0.7734± 0.049 0.8726± 0.048 0.7583± 0.077 0.7929± 0.058 0.75 Gender

Ankle and GAS 0.8029± 0.040 0.6857± 0.085 0.8079± 0.090 0.7168± 0.075 0.75 Gender

HAM and GAS 0.8627± 0.047 0.8113± 0.089 0.8440± 0.072 0.7973± 0.068 0.85 Gender

QUA and GAS 0.6798± 0.034 0.8022± 0.044 0.8021± 0.077 0.7123± 0.044 0.85 Gender

Hip, HAM and GAS 0.799± 0.044 0.7162± 0.097 0.7277± 0.090 0.6856± 0.079 0.8 None

The bold values mean the best performing results in the experiment.

TABLE 5 Classification performance of FBI-GCN by removing some variables separately according to different outline quantities.

Name of variables Accuracy Specificity Sensitivity F1-Score τ Mh

Hip, Knee and Ankle 0.5657± 0.057 0.4337± 0.068 0.5974± 0.1223 0.4738± 0.079 0.75 Gender

HAM, QUA and GAS 0.8010± 0.051 0.8517± 0.052 0.8256± 0.074 0.8258± 0.056 0.75 Gender

HAM and QUA 0.8806± 0.031 0.8180± 0.072 0.8791± 0.072 0.8235± 0.064 0.8 None

HAM and GAS 0.6800± 0.047 0.7739± 0.049 0.7118± 0.061 0.7236± 0.045 0.85 Gender

QUA and GAS 0.7417± 0.046 0.8275± 0.054 0.7585± 0.060 0.7710± 0.051 0.8 None

The bold values mean the best performing results in the experiment.

the MLP, there is one hidden layer with 150 neurons trained
for 3000 iterations (Shi et al., 2019). The ELM uses one
hidden layer with 174 neurons. There is also one hidden

layer in the BP network, and the number of neurons in
the hidden layer is 37. The LSTM uses 32 neurons and the
number of iterations is 3000. The learning rate for all of these
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FIGURE 9

Comparison of classification results between GCN and other common algorithms.

FIGURE 10

Comparison of the accuracy after input optimization.

models is set to 0.01 (Shi et al., 2021b). Each experiment
was performed with a fivefold cross validation method and
the experiment was repeated 50 times to work out the mean
and the standard deviation. The input of all algorithms was
biosignal information during running (three joint kinematics
and sEMG of seven muscles). The graph in GCN was used

the same input to construct. The results are shown in
Figure 9.

We can see from Figure 9 that compared with the other
algorithms, our method achieved the best performance in
all evaluation indexes with lower deviation. The optimized
performance of FBI-GCN is more prominent, and the
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comparison experiment is shown in Figure 10. We chose
the cases of “Removed GAS” (listed in Table 4) and “HAM
and QUA” (listed in Table 5), two different input information
of FBI-GCN, as control tests. The input of the other
algorithms, respectively, used the same information as the two
optimization case.

We can see from Figure 10 that the combination of input
variables has a significant impact on the performance of the
classification. The selection of input variables, combined with
the method of biometric fusion, can obtain significantly
higher classification performance than using common
machine learning.

Discussion

We have proposed an end-to-end GCN method as an
auxiliary tool for PFPS diagnosis. By optimizing the sparse
map based on clinical knowledge, a more accurate diagnostic
result can be obtained. Extensive experiments on a public
PFPS dataset have been carried out to verify the effect of our
model and obtained an average accuracy of 0.8531, specificity of
0.9056, sensitivity of 0.8532, and F1-Score of 0.8637. The highest
classification accuracy (mean accuracy = 0.9245 ± 0.034) was
obtained after optimal selection of input variables and a higher
accuracy (mean accuracy = 0.8802 ± 0.035) was also obtained
after 40% of the measured variables had been removed.

Previous studies showed that anterior knee pain elicited
during a squatting maneuver, which is evident in 80% of those
who are positive in the test (Crossley et al., 2016). The specificity
of palpation using the patellar margin is evident in 71–75%
of patients (Nunes et al., 2013). There are also tests with
limited diagnostic usefulness, such as patella grinding and fear
tests (Doberstein et al., 2008). Compared with conventional
PFPS clinical tests, the overall performance of our proposed
complementary diagnostic method is proved better.

From the above experiments, the most important parts that
affect the performance of GCN classification are the overall
graph selection and input information. Therefore, it is crucial
to design an effective graph. The results showed that adding
redundant biometric information can lead to a severe decrease
in classification performance. In contrast, accurate clinical
guidance information (gender) can significantly improve
diagnostic performance. In the experiments, the accuracy of
the classification did not change much after the node similarity
fused the information of BMI, because there is no significant
correlation between BMI and PFPS in this dataset. The BMI of
the subjects was basically in normal condition (see Table 1) and
there were no obese or overweight subjects, so the classification
performance could not be improved by adding the information
of BMI in the composition. This situation was also observed by
Hart et al. (2017), which showed that higher BMI was present
in PFPS but not in the adolescents with PFPS. Since GCN

only works with structurally fixed graphs, although replacing
a certain node does not have a significant impact on the
classification performance, the model needs to be retrained
based on the modified graph. Therefore, it is more cost effective
to apply the auxiliary detection method to group detection than
to single detection.

Another important factor is the node input information. It
is generally necessary to reconstruct the data and extract the
features (Bi et al., 2019). Ideally, it is better to use an end-to-
end strategy when the desired results are obtained using the
raw data as the input to the model. This is the main advantage
of deep learning and one of the reasons why people are keen
to use it to solve real-world problems. The GCN diagnostic
method does not require the use of biomechanical models along
with complex input variables, but only a small amount number
of joint angles and the sEMG. These data can be collected
in everyday environments without any physical impact on the
subject. The method is more objective, convenient and versatile
than traditional testing ones.

In addition, in the optimization experiment of node
input, using only the sEMG of lateral hamstrings and lateral
gastrocnemius as node input information can achieve better
classification performance. During exercise, early activation
of the lateral hamstrings relative to the medial hamstrings
plays a role in PFPS (Karagözoðlu Coşkunsu et al., 2022).
Therefore, as the input variable of the node, the sEMG
signal of the lateral hamstrings plays an important role in
the diagnosis of PFPS. In the experiment of optimizing the
structure of the observation graph, using only the quadriceps
with other muscle groups or joint kinematics can obtain
better classification. Other researches have shown that the
decrease of quadriceps strength is an important factor in
PFPS (Vora et al., 2017; Malmir et al., 2022). It is known
that the identified positive potential risk factors included:
gastrocnemius, hamstring or quadriceps tightness, deficient
hamstring or quadriceps strength, among others (Waryasz and
McDermott, 2008; Petersen et al., 2014). In terms of joint
kinematics, Lankhorst et al. (2012) comprehensively evaluated
the results of previous related studies and found that lower
knee extension strength was a risk factor for PFPS. Bolgla
et al. (2011) indicated that the range of motion of the ankle
dorsiflexors was reduced in patients with PFPS. That is, the knee
and ankle information of PFPS patients will be more important
for the diagnosis. Our experimental results shown in Table 4
also observed these relationships. Relative to the knee and ankle
joints, the removal of information about the hip joint has less
impact on the classification performance.

Conclusion

In this paper, we proposed a GCN-based disease diagnosis
method, FBI-GCN, which focuses on both individual biosignal
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information and common features of patients by fusing
biometric information for improving the diagnostic
accuracy. After optimization of node inputs and graph
structure, better diagnostic performance was obtained with
40% fewer measured variables. Our future work would
mainly focus on the following three aspects. One is to
validate on a larger dataset and classify various gait
diseases. The second is to further optimize the model to
improve the accuracy in PFPS detection. The third is to
further explore the hidden relationship between PFPS and
human biosignal.
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