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 Peroxisome proliferator-activated receptor  �  (PPAR � ) 
is a member of the nuclear receptor family that serves as 
the master transcriptional regulator of adipogenesis ( 1 ). 
PPAR �  heterodimerizes with retinoid X receptor (RXR) 
and regulates adipogenic target gene expression. Down-
stream targets for PPAR �  include a host of genes involved 
in lipid accumulation and metabolism, such as aP2, CD36, 
LPL, perilipin, and PEPCK. The transcriptional pathways 
that control adipocyte-specifi c expression of PPAR �  re-
main to be fully elucidated. Transcription factors that 
have been reported to affect PPAR �  expression include 
C/EBP �  and C/EBP �  ( 2 ); Kruppel-like zinc fi nger family 
of transcription factors KLF5 ( 3 ), KLF15 ( 4 ), and KLF2 ( 5 ); 
Krox-20 ( 6 ); GATA2/3 ( 7 ); TCF/Lef ( 8 ); E2F ( 9 ); and 
SMAD ( 10 ). The ability of multiple factors to infl uence 
PPAR �  expression suggests a complex mode of regula-
tion that requires the integration of multiple signaling 
pathways. 

 We have developed and validated cell-based screening 
methods for the identifi cation of bioactive small molecules 
that affect lipid metabolism. We previously used this ap-
proach to characterize the small molecule harmine as an 
inducer of PPAR �  expression and adipogenesis that has 
antidiabetic activity in mice ( 11 ). Interestingly, harmine’s 
mechanism of action involves the inhibition of Wnt sig-
naling in preadipocytes. By profi ling the acute effects of 
harmine on preadipocyte gene expression, we subse-
quently identifi ed the transcription factor Id2 as a media-
tor of harmine action in adipogenesis ( 12 ). We have now 
extended our screen for adipogenic small molecules in an 
effort to identify compounds with mechanisms of action 
distinct from that of harmine and PPAR �  agonists. 
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We used following primers for cloning ETV4: 5 ′ -agtggatccgccgc-
catggagcggaggatgaaag-3 ′  (forward) and 5 ′ -agtctcgagctactagtaa-
gagtagccacc-3 ′  (reverse). Full-length cDNA was cloned into 
pBabe-puro and pCMV-SPORT. Oligonucleotides were from In-
tegrated DNA Technologies. 

 Cell culture 
 3T3-L1 and 3T3-F442A preadipocyte cell lines were main-

tained and differentiated as previously described ( 11, 12 ). Retro-
viral overexpression of ETV4 was performed using pBabe-puro 
and the packaging cell line Phoenix E as described ( 13 ). 3T3-L1 
cells were differentiated in 10% FBS supplemented with dexa-
methasone (1  � M), IBMX (0.5 mM), and insulin (5  � g/ml) for two 
days after confl uence, followed by insulin alone. 3T3-F442A cells 
were differentiated in 10% FBS and insulin as described ( 12 ). 

 RNA and realtime PCR 
 Total RNA was isolated using TRIzol reagent (Invitrogen). A 

0.5  � g of total RNA was reverse-transcribed using MultiScribe 
(Applied Biosystems) and random hexamers according to the 
manufacturer’s instructions. Real-time quantitative PCR (SYBR 
green) analysis was performed on a 7900HT Fast Real-Time PCR 
System (Applied Biosystems). Expression was normalized to 
36B4. The following primers were used for ETV expression: 

 We report here the identifi cation of the small molecule 
diuretic phenamil as a stimulator of adipocyte differentia-
tion. Interestingly, phenamil acts by inducing PPAR �  
mRNA expression in preadipocytes through a mechanism 
distinct from harmine. To gain insight into the mecha-
nism of phenamil action, we performed transcriptional 
profi ling of 3T3-F442A cells and identifi ed ETV4 (ETS var-
iant 4) as a putative mediator. Ectopic expression of ETV4 
in preadipocytes promotes PPAR �  expression and differ-
entiation and appears to act upstream of PPAR �  in the 
differentiation cascade. These results identify ETV4 as a 
modulator of adipocyte differentiation that is susceptible 
to small molecule regulation. 

 MATERIALS AND METHODS 

 Reagents and plasmids 
 Phenamil methanesulfonate was purchased from Sigma 

(#P203). GW7845 was kindly provided by T. Willson (Glaxo-
SmithKline). Insulin (#I0516), dexamethasone (#D2915), and 
3-isobutyl-1-methylxanthine (IBMX, #I7018) were from Sigma. 

  Fig. 1.  Phenamil induces adipocyte differentiation and PPAR �  expression in preadipocytes. A: Chemical structures of amiloride deriva-
tives. Amiloride, benzamil, DMA, and phenamil are shown. B–D: Effects of amiloride derivatives on adipocyte differentiation. Phenamil 
(but not other derivatives) induces expression of adipogenic genes and adipocyte differentiation. B–C: Oil Red O staining of amiloride 
derivatives-treated cells. B: Differentiation of 3T3-L1 cells into adipocytes was induced by DMI and amiloride derivatives or GW7845 (GW; 
20 nM). C: 3T3-F442A preadipocytes were treated for six days with the amiloride derivatives. D: 3T3-F442A cells were treated for six days 
with 10  � M amiloride derivatives or GW7845. Expression of adipogenic genes encoding PPAR � , aP2, and adiponectin were measured by 
real time PCR. * P  < 0.05, ** P  < 0.005, *** P  < 0.0005. amil, amiloride; ben, benzamil; DMA, dimethyl amiloride hydrochloride; phe, phe-
namil; PPAR � , peroxisome proliferator-activated receptor  � .   
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( 11 ). Treatment of both 3T3-L1 and 3T3-F442A preadipo-
cytes with phenamil followed by Oil Red O staining and 
morphological analysis confi rmed the adipogenic effects 
of this compound ( Fig. 1B, C ). Consistent with their ability 
to stimulate morphologic differentiation, both phenamil 
and the PPAR �  agonist GW7845 strongly promoted the 
expression of the adipogenic marker genes aP2, LPL, 
adiponectin CD36, and adipsin ( Fig. 1D  and data not 
shown). 

 Since PPAR �  is the central regulator of adipogenesis, we 
fi rst tested whether this pro-adipogenic compound might 
act as an agonist for PPAR � . However, transient transfec-
tion assays for PPAR �  activity using a chimeric GAL4-
PPAR �  receptor and a luciferase reporter containing 
GAL4 binding sites ( 14 ) showed that phenamil was inac-
tive as a PPAR �  agonist. As expected, the control PPAR �  
agonist GW7845 stimulated luciferase reporter activity in a 
dose-dependent manner (supplementary Fig. I-A). Fur-
thermore, phenamil displayed no RXR ligand activity as 
determined by a similar chimeric GAL4-RXR reporter as-
say (supplementary Fig. I-B). These data suggest that 
phenamil promotes adipocyte differentiation through a 

ETV1, 5 ′ -atggagaaaagtgcctgtacaat-3 ′  (forward) and 5 ′ -ggtgtagtg-
gggacactgga-3 ′  (reverse); ETV3, 5 ′ -ctgggtggatgaggagga-3 ′  
(forward) and 5 ′ -acagcctgctttcattttcg-3 ′  (reverse); ETV4, 5 ′ - cag-
caggaagccaccact-3 ′  (forward) and 5 ′ - ttgtctgggggagtcatagg-3 ′  (re-
verse); and ETV5, 5 ′ - gcagtttgtcccagattttca-3 ′  (forward) and 
5 ′ - gcagctcccgtttgatctt-3 ′  (reverse). 

 Microarrays 
 Total RNA from 24 h phenamil- and GW7845-treated F442A 

cells were prepared using TRIzol and further purifi ed using 
RNAeasy columns (Qiagen). cDNA preparation and hybridiza-
tion to Mouse-6 expression Beadchip were performed by the 
Southern California Genotyping Consortium (SCGC). Data were 
analyzed using Beadstring. 

 RESULTS 

 Identifi cation of phenamil as a small molecule regulator 
of PPAR �  expression 

 We identifi ed the amiloride derivative phenamil (  Fig. 
1A  ) as an adipogenic compound by screening a BIOMOL 
library of bioactive compounds using a cell-based assay 

  Fig. 2.  Phenamil is a unique inducer of PPAR �  expression in preadipocytes. A: Gene expression profi le during differentiation of 3T3-
F442A cells treated with GW7845 (20 nM) or phenamil (10  � M). PPAR �  target genes aP2 and LPL were induced by GW7845 and phenamil; 
however, PPAR �  expression was acutely induced by phenamil but not by GW7845. B: Induction of C/EBP �  and C/EBP �  by phenamil and 
standard differentiation cocktail (dexamethasone, IBMX, insulin) in 3T3-F442A cells. Standard differentiation cocktail induced the expres-
sion of C/EBP �  and C/EBP �  starting from 2 h treatment in 3T3-F442A cells, whereas phenamil and GW7845 did not alter expression of 
these two transcription factors. * P  < 0.05, ** P  < 0.005, *** P  < 0.0005. IBMX,   3-isobutyl-1-methylxanthine; PPAR � , peroxisome proliferator-
activated receptor  � .   
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and ENaC � —is not detectable in 3T3-L1 or 3T3-F442A 
preadipocytes (supplementary Fig. II). 

 We next examined the time course of phenamil effects 
on adipocyte gene expression. Interestingly, in contrast to 
GW7845, phenamil induced the expression of PPAR �  within 
24 h, suggesting a distinct mode of action (  Fig. 2A  ). 
Furthermore, cells treated with phenamil showed markedly 
elevated levels of PPAR �  expression compared with GW7845-
treated cells throughout the time course. The transcription 
factors C/EBP �  and C/EBP �  are postulated to induce PPAR �  
in response to IBMX and dexamethasone ( 2, 22 ); therefore, 

mechanism distinct from that of PPAR �  and RXR 
agonists. 

 Amilorides are a class of molecules widely used as diuretics 
in humans ( 15, 16 ), and they are known to inhibit epithelial 
sodium channel (ENaC) activity ( 17–21 ). To determine the 
correlation between the adipogenic effects of phenamil and 
ENaC activity, we assayed three additional amiloride deriva-
tives also known to inhibit ENaC. The adipogenic activity of 
phenamil was not shared by amiloride itself or several closely 
related derivates ( Fig. 1A–D ). In addition, expression of the 
epithelial transporter targets of phenamil—ENaC � , ENaC � , 

  Fig. 3.  Phenamil and harmine act by different pathways. Phenamil does not modulate the Wnt signaling 
pathways. A-B: Phenamil effects on  � -catenin-driven and Wnt-driven TOP FLASH activity in 293-T cells and 
endogenous Wnt target gene expression in 3T3-F442A cells. Wnt inhibitor harmine inhibited the activation 
of Wnt pathway in TOP FLASH (A) and induction of Wnt target genes Axin2 and Id2 (B). Phenamil does 
not regulate Wnt signaling pathways shown in TOP FLASH experiments (A) and expression of endogenous 
Wnt target genes (B). C: Phenamil and harmine showed an additive effect on the expression of PPAR �  and 
its target gene aP2. 3T3-F442A cells were treated with harmine (1  � M), phenamil (1  � M), or both for 48 h. 
* P  < 0.05, ** P  < 0.005; ns, not signifi cant.   
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 Identifi cation of genes induced by phenamil 
 To gain insight into the biological pathway affected by 

this new adipogenic compound, we performed transcrip-
tional profi ling of 3T3-F442A cells treated with either phe-
namil or GW7845 for 24 h. We hypothesized that candidate 
mediators of phenamil action would be induced by phe-
namil but not by GW7845, because GW7845 does not in-
duce PPAR �  expression in 24 h (  Fig. 4A  ). We focused in 
particular on transcriptional regulators. Only a limited 
number of genes, including ETV4, ETV5, EGR5, and 
PPAR �  itself, met our criteria of being upregulated by phe-
namil (2-fold or more) but not regulated by GW7845 (less 
than 1.3-fold change) ( Fig. 4A, B ). Analysis of the time 
course of gene expression changes induced by phenamil 
showed that ETV4 and ETV5 were induced as early as 6 h, 
while PPAR �  expression was induced later ( Fig. 4C ). These 
studies also confi rmed that ETV4, ETV5, and PPAR �  were 
upregulated by phenamil but not by GW7845. ETV3 and 
ETV1, another Pea3 family member, were not regulated 
by phenamil or GW7845, indicating that regulation of 

we considered these factors as potential mediators. However, 
phenamil did not affect the expression of C/EBP �  or C/
EBP �  ( Fig. 2B ). The ability to acutely upregulate PPAR �  ex-
pression in preadipocytes is also reminiscent of harmine, 
another adipogenic small molecule that we have recently 
characterized ( 11 ). Harmine promotes PPAR �  expression 
through inhibition of Wnt signaling and induction of Id2 ex-
pression ( 11, 12 ). However, several lines of evidence suggest 
that the mechanism of action of phenamil is distinct from 
that of harmine. First, phenamil was unable to inhibit Wnt-
dependent TOP-FLASH reporter activity in transient trans-
fection assays (  Fig. 3A  ). Second, harmine (but not phenamil) 
blocked the induction of the Wnt target genes Axin2 and Id2 
by Wnt-3a in preadipocytes ( Fig. 3B ). Third, harmine and 
phenamil had additive effects on adipogenic gene expres-
sion and differentiation, consistent with different mecha-
nisms of action ( Fig. 3C ). Together, these data indicate that 
phenamil acts via a mechanism distinct from that of the previ-
ously identifi ed adipogenic chemicals—GW7845, harmine, 
and cAMP inducers—in adipogenesis. 

  Fig. 4.  Identifi cation of genes rapidly induced by phenamil in 3T3-F442A preadipocytes. A: 3T3-F442A cells were treated with either 
phenamil or GW7845 for 24 h. Comparison of effects by phenamil and GW7845 on ETV1, ETV4, ETV5, and PPAR �  gene expression. Re-
altime PCR analysis confi rmed that ETV4, ETV5, and PPAR �  were upregulated by phenamil but not by GW7845. The other Pea3 member, 
ETV1, was not regulated by either phenamil or GW7845. B: Selective regulation of ETV4 and ETV5 by phenamil. ETV4 and ETV5 display a 
pattern of phenamil-specifi c induction. 3T3-F442A preadipocytes were treated with phenamil (10  � M) or GW7845 (20 nM) for 48 h at 
confl uence, and mRNA levels were measured by real-time PCR. C: Time-course of regulation of selective genes by phenamil. ETV4 and 
ETV5 were induced by phenamil as early as 6 h, while PPAR �  expression was induced later. Comparison of the effects by phenamil and 
GW7845 treatment on PPAR �  and PPAR �  target genes and Id1, trb3 expression are also shown. * P  < 0.05, ** P  < 0.005, *** P  < 0.0005. 
ETV1–5, EST variant 1-5; PPAR � , peroxisome proliferator-activated receptor  � .   
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these cells ( Fig. 4C ). However, it remains possible that un-
identifi ed common upstream targets or mechanisms are 
regulated by the phenamil in both mesenchymal stem cells 
and preadipocytes. 

 ETV4 stimulates PPAR �  expression and adipocyte 
differentiation 

 To address the hypothesis that ETV4 induction by 
phenamil may contribute to its ability promote PPAR �  ex-
pression, we transiently overexpressed ETV4 in 3T3-L1 
preadipocytes. Transient overexpression of ETV4 in-
creased PPAR �  mRNA expression and the mRNA of the 
target genes aP2 and adiponectin (  Fig. 5A  ). This observa-
tion suggests that ETV4 can act upstream of PPAR �  in the 
differentiation cascade. We then tested whether ETV4 
could promote adipocyte differentiation when stably 

Pea3 members is not identical ( Fig. 4A  and data not 
shown). We also expected that candidate mediators of 
phenamil action would not be responsive to amiloride 
derivates that do not promote adipogenesis. Indeed, as 
shown in  Fig. 4B , among amiloride derivatives tested, only 
phenamil induced ETV4 and ETV5 expression. 

 The induction of ETV4 and ETV5 expression by phe-
namil was selective for preadipocyte cells and was not ob-
served in osteogenic or mesenchymal cells (data not 
shown). We recently reported that phenamil promotes the 
osteoblastic differentiation of mesenchymal stem cells 
through a pathway involving the promotion of BMP signal-
ing through Id1 and trb3 ( 23 ). This phenamil-stimulated 
pathway is appears to be selective for mesenchymal stem 
cells and does not operate in determined preadipocytes, 
suggesting that different downstream pathways operate in 

  Fig. 5.  ETV4 stimulates PPAR �  expression and adipocyte differentiation in 3T3-L1 cells. A: Transient overexpression of ETV4 induces 
expression of PPAR �  and its target genes in 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were transiently transfected with an ETV4 expres-
sion vector or empty vector. Four days later, mRNA was collected, and gene expression was determined by real-time PCR. B-C: Promotion 
of adipocyte differentiation by stable overexpression of ETV4 in 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were infected with pBabe-
based retrovirus harboring the ETV4 gene, and large stable pools were selected with puromycin (2  � g/ml). B: Expression of PPAR �  and its 
target genes from day 0 to day 6. Differentiation of 3T3-L1 cells into adipocytes was induced by DI and GW7845 (GW; 30 nM). C: Oil red O 
staining of ETV4 overexpressing 3T3-L1 cells. * P  < 0.05, ** P  < 0.005, *** P  < 0.0005. ETV4, EST variant 1-4; PPAR � , peroxisome proliferator-
activated receptor  � .   
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namil to further induce PPAR �  expression and differenti-
ation. Control cells and ETV4-expressing 3T3-L1 cells were 
treated with DMSO or phenamil in the presence of hor-
monal cocktail. In both control and ETV4-expressing cells, 
phenamil enhanced the expression of PPAR �  and its tar-
get genes. However, the fold induction by phenamil was 
clearly reduced in ETV4-expressing cells, suggesting that 
ETV4 accounts for some of phenamil’s actions in adipo-
cyte differentiation (supplementary Fig. III). However, the 
fact that the adipogenic effects were not completely 
blunted in ETV4-expressing cells implies that ETV4 is not 
the only mediator. 

 We also assessed the effects of phenamil in cells in which 
ETV4 was knocked down using an shRNA vector. These 
studies were inconclusive (data not shown) in that phenamil 
was still able to promote differentiation when ETV4 expres-
sion was knocked down (data not shown). Although it is 
possible that the degree of knockdown we achieved was not 
suffi cient, we favor the interpretation that other factors in-
duced by phenamil are contributing to its effects. In sup-
port of this hypothesis, we found that ETV5, which is also 

expressed. We generated preadipocytes stably expressing 
ETV4 using a retroviral vector ( 1 ). After stimulation of dif-
ferentiation with adipogenic reagents, 3T3-L1 cells stably 
expressing ETV4 showed enhanced expression of PPAR �  
and its target genes aP2, CD36, adiponectin, and C/EBP �  
( Fig. 5B ). Similar to the effects on PPAR �  mRNA expres-
sion by phenamil, ETV4 also increased PPAR �  protein 
expression in 3T3-L1 cells ( Fig. 5C ). Furthermore, 
ETV4-expressing cells showed increased capacity for mor-
phological differentiation and lipid accumulation as de-
termined by Oil Red O staining ( Fig. 5D ). To test whether 
the promotion of adipocyte differentiation by ETV4 was 
also observed in other preadipocytes cell lines, we gener-
ated ETV4-expressing 3T3-F442A cells. As shown in   Fig. 6  , 
stable ETV4 expression also induced adipogenic differen-
tiation, PPAR �  expression, and adipogenic markers in this 
cell line. 

 To further address the relative contribution of ETV4 to 
phenamil’s effects, we employed both overexpression and 
knockdown approaches. First, we asked whether ectopic 
expression of ETV4 would eliminate the ability of phe-

  Fig. 6.  ETV4 stimulates adipocyte differentiation in 3T3-F442A cells. Overexpression of ETV4 induces ex-
pression of PPAR �  and adipocyte differentiation in 3T3-F442A cells. A: Oil red O staining of ETV4 overex-
pressing 3T3-F442A cells. 3T3-F442A preadipocytes were infected with pBabe-based retrovirus harboring the 
ETV4 gene, and large stable pools were selected with puromycin (2  � g/ml). B: Expression of PPAR �  and its 
target genes on day 6. * P  < 0.05, ** P  < 0.005, *** P  < 0.0005. ETV4, EST variant 1-4; PPAR � , peroxisome 
proliferator-activated receptor  � .   
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regulate differentiation of preadipocytes ( 11 ). In the pres-
ent work, we have identifi ed a new proadipogenic com-
pound, phenamil, and utilized it as a chemical tool to 
identify transcriptional factors with the potential to affect 
preadipocyte differentiation. 

 Phenamil was previously characterized as an inhibitor of 
epithelial sodium channels (ENaC) and the Na + /H +  ex-
changer ( 17–21 ). Phenamil and benzamil were also re-
ported to inhibit diamine oxidase ( 25 ). Interestingly, our 
data indicate that these targets are not responsible for the 
adipogenic effects of phenamil. First, other amiloride de-
rivatives that target these proteins, such as benzamil, are 
not adipogenic ( Fig. 1 ). Second, these putative protein 
targets of amiloride derivatives are not detectable in 3T3-
L1 or 3T3-F442A preadipocytes (supplementary Fig. II). 
We also tested whether phenamil modulates previously 
recognized signaling pathways in adipogenesis, including 
the harmine-sensitive Wnt pathway. In contrast to harmine, 
phenamil did not alter Wnt signaling in preadipocytes 
( Fig. 3 ). Furthermore, harmine and phenamil had addi-
tive effects on adipogenic expression, consistent with dis-
tinct mechanisms of action (supplementary Fig. III-C). 

 The ETS genes encode a family of transcriptional regu-
lators mediating tumorigenesis, proliferation, and differ-
entiation. The Pea3 group of ETS-family transcription 
factors consists of three members: ETV1 (Er81), ETV4 
(E1AF), and ETV5 (Erm) ( 26, 27 ). Pea3 members share 
the conserved ETS-domain and transactivating domains 
and are involved in wide range of cellular processes, in-
cluding development, cell cycle control, proliferation, dif-
ferentiation, and tumor metastasis. Previous studies have 
shown that ETVs can regulate the expression of target 
genes such as P21 (Cip), cyclooxygenase-2, and metallo-
proteases (MMP) ( 26, 28 ). Of note, P21 has been linked to 

induced by phenamil ( Fig. 4 ), is functionally redundant 
with ETV4 in preadipocytes. We generated 3T3-L1 preadi-
pocytes stably expressing ETV5 using a retroviral vector. Af-
ter stimulation of differentiation with adipogenic reagents, 
3T3-L1 cells stably expressing ETV5 showed enhanced ex-
pression of PPAR �  and adipocyte differentiation (supple-
mentary Fig. IV). Taken together, these data are consistent 
with the hypothesis that ETV4 and ETV5 are functionally 
redundant and that their induction by phenamil likely con-
tributes to the adipogenic effects of this compound. 

 ETV4 and ETV5 act upstream of PPAR �  in adipogenesis 
 The above data strongly suggest that ETV4 and ETV5 act 

upstream of PPAR �  to promote adipogenesis. To verify this 
idea, we generated stable 3T3-F442A cells expressing a shRNA 
directed against PPAR � . We and others have previously used 
this validated reagent to inhibit PPAR �  mRNA and protein 
expression ( 12, 24 ). As expected, 3T3-F442A cells expressing 
PPAR �  shRNA showed reduced PPAR �  expression and mark-
edly reduced differentiation and lipid accumulation (  Fig. 7   
and data not shown). Expression of the downstream target 
genes of PPAR � , including aP2, adiponectin and Aqp7, was 
greatly reduced in PPAR �  shRNA-expressing cells, both in 
the presence and absence of phenamil ( Fig. 7 ). These data 
indicate that phenamil’s adipogenic effect is dependent on 
PPAR �  expression. By contrast, the expression of both ETV4 
and ETV5 was not affected by knockdown of PPAR � , suggest-
ing that phenamil acts upstream of PPAR �  ( Fig. 7 ). 

 DISCUSSION 

 We previously developed high-throughput screening 
approaches for the identifi cation of small molecules that 

  Fig. 7.  Knockdown of PPAR �  blocks the adipogenic effects of phenamil but does not affect induction of ETV4. Stable 3T3-F442A cells 
expressing shRNAs against PPAR �  were generated. ShRNAs effectively reduce PPAR �  mRNA expression (upper left). Expression of ETV4 
and ETV5 is not affected by knockdown of PPAR � , demonstrating that ETV4 is upstream of PPAR �  (upper middle and right). Expression 
of downstream target genes of PPAR � , including aP2, adiponectin, and Aqp7, is reduced in PPAR �  shRNA-expressing cells, both in the 
presence and absence of phenamil (bottom). Gene expression was determined by real-time PCR. * P  < 0.05, ** P  < 0.005, *** P  < 0.0005; ns, 
not signifi cant. ETV4, EST variant 4; PPAR � , peroxisome proliferator-activated receptor  � .   
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adipogenesis through analysis of P21 null and knockdown 
cells ( 29 ). P21-null mice fed a high-fat diet showed 
reduced adipose tissue mass and improved insulin 
sensitivity. 
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( 32, 33 ). The clinical use of TZDs is limited by unfavorable 
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