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ABSTRACT
The permanent human settlement of the Tibetan Plateau (TP) has been suggested to have been facilitated
by the introduction of barley agriculture∼3.6 kilo-years ago (ka). However, how barley agriculture spread
onto the TP remains unknown. Given that the lower altitudes in the northeastern TP were occupied by
millet cultivators from 5.2 ka, who also adopted barley farming∼4 ka, it is highly possible that it was millet
farmers who brought barley agriculture onto the TP∼3.6 ka. To test this hypothesis, we analyzed
mitochondrial DNA (mtDNA) from 8277 Tibetans and 58 514 individuals from surrounding populations,
including 682 newly sequenced whole mitogenomes. Multiple lines of evidence, together with radiocarbon
dating of cereal remains at different elevations, supports the scenario that two haplogroups (M9a1a1c1b1a
and A11a1a), which are common in contemporary Tibetans (20.9%) and were probably even more
common (40–50%) in early Tibetans prior to historical immigrations to the TP, represent the genetic
legacy of the Neolithic millet farmers. Both haplogroups originated in northern China between 10.0–6.0 ka
and differentiated in the ancestors of modern Tibetans∼5.2–4.0 ka, matching the dispersal history of millet
farming. By showing that substantial genetic components in contemporary Tibetans can trace their ancestry
back to the Neolithic millet farmers, our study reveals that millet farmers adopted and brought barley
agriculture to the TP∼3.6–3.3 ka, and made an important contribution to the Tibetan gene pool.
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INTRODUCTION
With an extreme and harsh environment that is
generally considered inhospitable to humans, the
Tibetan Plateau (TP) has been inhabited since
the late upper Pleistocene [1–3]. In contrast to
the earliest occupation by hunter gatherers during
the Late Paleolithic era, whose contribution to the
current Tibetan gene pool was rather limited [1],
migration onto the plateau appears to have occurred
during the Neolithic period [1,4–7]. Archaeological
evidence further suggests that permanent human
occupation began∼3.6 kilo-years ago (ka), and was
most likely facilitated by the introduction and uti-
lization of cold-tolerant barley agriculture and sheep
[8], which were first domesticated in west Asia
around 10 ka [9,10]. However, it remains unknown
whobrought this exotic crop and livestock to theTP.

As revealed by archaeological evidence, modern
humans settled extensively in the northeastern TP
(below 2500 m above sea level (masl)) with millet
cultivation around ∼5.2 ka, and further expanded
to high-altitude plateau areas (above 2500 masl)
∼3.6 ka with barley and sheep from west Asia
[8]. These observations have raised the question
of whether barley agriculture was introduced to
the TP by millet farmers from lower elevations or
mediated by immigrations from the west. According
to previous genetic studies, most Tibetan genetic
components can be traced back to Neolithic immi-
grations from northern China [1,5,6], raising the
possibility that it was millet farmers who brought
barley agriculture to theTP around 3.6 ka.However,
these studies, especially those on mitochondrial
DNA (mtDNA), have also observed abundant
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Figure 1. Locations of samples in the present study. Black dots: populations with hypervariable segments (HVS) sequence data. Triangles: populations
with complete mtDNA sequence data, including 671 newly sequenced samples from 11 Tibetan populations in this study (black outline) and 9789 from
109 populations from previous literature. Locations are indicated by different colors.

lineages likely introduced to the Tibetans during
the Holocene (which began ∼11.7 ka) [1,5,6,11].
Given the limited molecular resolution, and a
lack of both genetic and archaeological evidence
in previous studies, it remains unclear whether
these lineages are associated with millet farmers or
with the immigration of foragers during the early
Holocene (∼11.7–8.3 ka) [12,13].

In this study, by exploring mitogenomes in
Tibetans and surrounding populations (especially
those with suggested Neolithic millet farmer ances-
try) (Fig. 1 and Supplementary Tables S1-S3), as
well as radiocarbon dating of cereal remains from
archaeological sites on the TP and northern China
(SupplementaryTables S4-S6),we aimed to address
whether millet farmers contributed to the Tibetan
gene pool at the time of barley dispersal to the TP
(∼3.6 ka), thus providingdeeper insight into theori-
gin of Tibetans.

RESULTS
Haplogroups M9a1a1c1b1a and A11a1a
are genetic legacies of Neolithic millet
farmers
Comparing mtDNA variations between Ti-
betans and populations from surrounding regions

(Supplementary Tables S1-S3), we found that
70.5% (473/671) of lineages—e.g. M9a1a1c1b1a,
A11a1a, G3a1a, M13a1b, M13a2, M62b1 and
M62b2—displayed de novo differentiation in
contemporary Tibetans (Supplementary Fig. S1),
with the remaining (29.5%) possibly introduced
via recent gene flow (Supplementary Information
(SI)-1; Supplementary Fig. S1, Supplementary
Table S7). Among the de novo differentiation
lineages, most (78.9%; 373/473) were <6 ka
in age (Supplementary Table S8) when the
Neolithic period on the TP began [13], consis-
tent with previous suggestions of immigrations
to the TP during the Neolithic period [1,5,6].

We analyzed the radiocarbon dates of cereal re-
mains from different elevations along the TP and
northernChina, and found thatmillet was cultivated
at Loess Plateau (<2500 masl and located to the
northeast of TP) between 5.2 and 3.6 ka (Fig. 2a).
Of note, barley and wheat remains began to appear
in theHexi Corridor, and the lower elevations of the
northeastern TP, ∼4 ka [8,14], leading to a coexis-
tence of indigenous millet and exotic barley–wheat
cultivation in the area ∼4.0–3.6 ka (Fig. 2a). Thus,
we shifted attention to haplogroups with ages within
5.2–4.0 ka, includingA11a1a, A15a, A21,D4g2a1c1,
D4j1a1f, D4s1, C4a1a1 and M9a1a1c1b1a (Fig. 2b,
Supplementary Table S8).
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Phylogeographic analyses, very useful in iden-
tifying the origins and migrations of haplogroups
[15], were performed to determine whether these
haplogroups have roots in northern China (SI-2),
where millet agriculture originated [16,17]. As
a result, we identified two haplogroups (A11a1a
and M9a1a1c1b1a), both with ancestor nodes
(A11a and M9a1a1c1, respectively) distributed
mainly in northern China (Fig. 3, Supplementary
Fig. S2 and S3) and thus most likely originating
from northern China. Coalescent ages of the
two ancestor nodes were estimated to be 12.7–
11.7 ka (A11a) and 10.1–6.4 ka (M9a1a1c1)
(Table 1). These results matched the origin
and development of millet agriculture, which
originated about 11–9.5 ka [16] and subsequently
became dominant in northern China from 10–6 ka
[18,19], suggesting a close relationship between
these two haplogroups and millet farming. Further
support came from the observation that A11a2 (a
subhaplogroup of A11a) and M9a1a1c2 (a sister
haplogroup of M9a1a1c1) were also distributed
in northern China (Fig. 3 and Supplementary Fig.
S2) with ages estimated to be 7.0–5.0 ka (Table 1),
thus showing a strong association with the intensive
expansion of millet farming in the Yangshao period
(7.0–5.0 ka) [18,19]. These findings strongly link
A11a1a and M9a1a1c1b1a with the origin, devel-
opment and westward spread of millet agriculture,
and thus suggest that both haplogroups most likely
represent the genetic legacy of the Neolithic millet
farmers.

M9a1a1c1b1a and A11a1a were more
frequent in Tibetans ∼3.6 ka
Of note, both haplogroups showed the highest
frequencies (M9a1a1c1b1a: 16.5% and A11a1a:
4.3%) in Tibetans, accounting for 20.9% of the
Tibetan gene pool (Supplementary Fig. S4). As
this result does not necessarily represent their past
distribution frequencies, we estimated their propor-
tions through time and found that their percentages
continued to increase since 5.14 ka, reaching 48.8%
at 3.3 ka (Fig. 4 and Supplementary Table S9). After
this, the proportion began to decrease and reached
19.1% by the present day (a result very close to the
observed value of 20.9% in our Tibetan samples;
Supplementary Table S9), which is probably due

to immigrations to the TP during the historical
period [20].Thus, these results suggest a substantial
genetic contribution of the Neolithic millet farmers
from the Loess Plateau of northern China to the
Tibetans ∼3.3 ka (Fig. 4; Supplementary Table
S9), a time frame very close to that (3.6 ka) revealed
by archaeological evidence when higher altitudes
began to be permanently populated by groups who
engaged in barley cultivation and sheep herding [8].

M9a1a1c1b1a and A11a1a played
important roles in shaping the genetic
landscape of current Tibetans
Both M9a1a1c1b1a and A11a1a are distributed
ubiquitously in contemporary Tibetans, with total
frequencies ranging from 12.0% (Baqing County,
Naqu) to 37.5% (Ngari) across all regional Ti-
betan populations studied (Fig. 3c). This suggests
that the millet farmer lineages contributed to and
existed in the proto-gene pool of Tibetans be-
fore their expansion to different regions on the
TP. Indeed, much closer genetic affinity was ob-
served among all regional Tibetan populations
(Fig. 5a), with haplogroupM9a1a1c1b1a contribut-
ing most to this clustering pattern (Fig. 5b), imply-
ing that millet farmer components played an im-
portant role in shaping the genetic landscape of
Tibetans.

DISCUSSION
In this study, we combined archaeological and
genetic data to investigate the mode of spread of
barley agriculture to the TP. Specifically, we iden-
tified that haplogroups A11a1a and M9a1a1c1b1a,
which can trace their ancestry back to northern
China ∼10 ka and underwent in situ differentiation
in Tibetans 5.2–4.0 ka, likely represent the genetic
legacy of Neolithic millet farmers in contemporary
Tibetans. Interestingly, ancient samples excavated
from different Neolithic sites in northern China, in
which millet was the most important crop and thus
most likely represent the remains of the Neolithic
millet farmers, show close genetic affinity to our
identified genetic legacy of millet farmers in the
Tibetans. For example, haplogroup M9a1a1c
(defined by HVS-I variants 16223–16291-16234–
16316-16362), an ancestor type to M9a1a1c1b1a,

Figure 2. Paleoclimatological, archaeological and genetic chronologies on the Tibetan Plateau. (a) Radiocarbon dates of
cereal remains (Supplementary Tables S4 and S5) and human bones with carbon isotope signals from different elevations
in northern China (Supplementary Table S6). (b) Schematic tree of mtDNA lineages in Tibetans. Ages of independently dif-
ferentiated nodes are shown. Coalescent ages estimated by coding regional variants, synonymous positions, and complete
mitogenome variants are indicated by black, red and orange dots, respectively. Haplogroups within the 5.2–4.0 ka timeframe
are in red. Paleolithic and other Neolithic haplogroups are in blue and green, respectively.
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Table 1. Age estimations of haplogroups M9a1a1c1b1a and A11a1a, as well as their ancestor and sister lineages.

Coding region synonymous
substitution† Coding region (577–16 023)† Complete mtDNA genome†

Haplogroup N ρ ± σ Age (ka) ρ ± σ Age (ka) ρ ± σ Age (ka)

A11a 53 1.51 ± 0.93 11.88 ± 7.36 3.30 ± 1.30 11.67 ± 4.58 4.92 ± 1.49 12.73 ± 3.86
A11a2 (Northern China) 3 1.00 ± 1.00 7.87 ± 7.87 1.67 ± 1.00 5.89 ± 3.53 2.67 ± 1.25 6.89 ± 3.22
A11a1a (Tibet) 47 0.55 ± 0.13 4.36 ± 1.06 1.45 ± 0.21 5.11 ± 0.74 3.10 ± 0.85 8.03 ± 2.21

M9a1a1c1 166 0.81 ± 0.13 6.40 ± 1.05 2.19 ± 0.95 7.73 ± 3.37 3.89 ± 1.34 10.06 ± 1.47
M9a1a1c1a (Northern

China)
11 0.64 ± 0.24 5.01 ± 1.89 1.09 ± 0.30 3.85 ± 1.06 2.00 ± 0.43 5.17 ± 1.10

M9a1a1c1b1a (Tibet) 154 0.65 ± 0.09 5.11 ± 0.75 1.20 ± 0.15 4.24 ± 0.52 1.92 ± 0.19 4.97 ± 0.51

†Mutation rates from Soares et al. [36].

Neolithic

Figure 4. Proportional changes of two lineages of millet farmers (A11a1a and
M9a1a1c1b1a) in Tibetans through time. (a) BSPs of all Tibetans (red), M9a1a1c1b1a
and A11a1a (blue), Paleolithic lineages (green) and other Neolithic haplogroups (or-
ange). (b) Proportions of M9a1a1c1b1a and A11a1a (blue), Paleolithic lineages (green)
and other Neolithic haplogroups (orange) in Tibetans through time since the beginning
of the Neolithic period.

has been observed at the Miaozigou (5.5–5.0 ka)
[21,22] and Zhukaigou sites (4.2–3.5 ka) [23,24].
The above evidence argues for the existence of
an ancestor lineage of haplogroup M9a1a1c1b1a
in northern and northwestern China during the
Neolithic period, thus strongly supporting their
close relationship with Neolithic millet farmers.

Thematernal genetic components of millet farm-
ers, which accounted for 20.9% of current Tibetans
andmay have beenmore frequent prior to historical
immigrations (40–50%), demonstrated substantial
genetic contributions of Neolithic millet farmers
from northern China into Tibetans. Moreover,
this contribution, represented at least by the two
haplogroups (A11a1a andM9a1a1c1b1a) identified
in the present study, existed in Tibetans at relatively
high frequencies for >3 ka, and even contributed
to the genetic differentiation observed between the

Tibetans and other ethnic groups. Therefore, by
showing that the ancestry of the Tibetans on the
TP can largely be traced back to millet farmers from
northern China, our study indicates substantial
migration of millet farmers onto the TP, which
probably occurred during the Neolithic period.
Although it was barley agriculture that finally pro-
moted the permanent settlement of humans at high
altitudes after 3.6 ka [8], the genetic origins of these
settlers were primarily fromNeolithic millet farmers
in the Yellow River Basin, rather than immigrants
from the west. Given that barley joined or displaced
millet at some archaeological sites on the northeast
TP during 4.0–3.6 ka [8], the most reasonable ex-
planation for our observation is that millet farmers
adopted barley agriculture after their arrival to the
northeast TP, and further migrated to high altitudes
after 3.6 ka with barley cultivation technology.

Of note, our observation based on mtDNA is
somewhat similar to the Neolithic migration of
males from northern China, in which a westward
expansion of males initiated in the middle Yellow
River Basin during 10.0–5.0 ka [4,25]. However,
controversy still exists regarding whether thesemale
lineages from northern China dispersed onto the
TP [4], or just moved to the upper basin of the
Yellow River and mixed with local people therein,
who further occupied high altitudes after 3.6 ka
[25]. To better understand the migration history
of the Tibetans, investigations based on large-scale
and high-resolution Y chromosome data are needed
to explore whether the migration of millet farm-
ers onto the TP also involved the expansion of
males.

CONCLUSIONS
In summary, by combining archaeological and high-
resolution genetic data, we have identified a sub-
stantial genetic contribution of Neolithic millet
farmers, represented by haplogroups A11a1a and
M9a1a1c1b1a, to contemporary Tibetans, which
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has even played an important role in shaping the
Tibetan matrilineal landscape. Therefore, our study
provides the first piece of evidence demonstrat-
ing that it was Neolithic millet farmers originating
from northern China, rather than immigrants from
the west, who brought barley agriculture to the TP
∼3.6 ka and contributed to the permanent human
occupation of the TP.

METHODS
mtDNA sequencing
Blood samples from 671 Tibetans from 11 Ti-
betan populations were collected, covering all seven
districts of Tibet (Fig. 1, Supplementary Table
S1). Blood samples from an additional 11 Chi-
nese individuals belonging to haplogroups of inter-
est were also collected for mitogenome sequenc-
ing. The experimental protocol was approved by
the Ethics Committee at the Kunming Institute of
Zoology, Chinese Academy of Sciences. Informed
consent was obtained from each individual before
the study. Complete mtDNA genomes of the sam-
ples were enriched by capture-based strategies us-
ing a MyGenostics Human Mitochondria Capture
Kit (MyGenostics Inc., Beijing, China). Sequenc-
ing was carried out using an Illumina HiSeq X
Ten platform at MyGenostics. The average depth
of sequencing was 4212×, ranging from 1003× to
40 278×.

mtDNA data collection
Additionally, 201wholemitogenomes (Supplemen-
tary Table S2) and 7405 mtDNA hypervariable
segments (HVS) sequences (Supplementary Table
S3) from Tibetans were collected from previous
literature and analyzed. For comparison, mtDNA
data from surrounding areas, including 9588 mi-
togenomes (Supplementary Table S2) and 41 320
HVS data (Supplementary Table S3), were also in-
cluded.

Archaeological data
Published radiocarbondates ofmillet (n=120, Sup-
plementary Table S4), wheat and barley remains
(n = 131, Supplementary Table S5) from archaeo-
logical sites at different elevations in northern China
were collected. In addition, analysis of human bones
with carbon isotope (δ13C) values (n= 81, Supple-
mentary Table S6), which reflect the dietary con-
sumption ofC4 (millets) andC3plants (rice, barley,
wheat, and other natural vegetation) [26], were also
collected from the literature.
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Quality control and haplogroup
allocations
Quality control was performed according to pre-
vious research [27]. Potential phantom mutations
were checked and corrected. The sequencing
outputs were edited and aligned by Lasergene
(DNAStar Inc., Madison, Wisconsin, USA) and
compared with the revised Cambridge Reference
Sequence [28]. Haplogroup allocations of all mtD-
NAs (including freshmitogenomes; Supplementary
Table S10) were determined according to our
previous work [29–31] and mtDNA tree Build 17
(http://phylotree.org/) [32].

Phylogeographic analysis
Phylogenetic trees of lineages of interest were re-
constructed manually based on the complete se-
quences and confirmed by mtphyl software [33].
Rho (ρ) and standard errors (σ )were used to evalu-
ate the coalescent ages of haplogroups [34,35]. The
adoptedmutation rateswereobtained fromprevious
research [36]. Contour maps of haplogroup spatial
frequencieswere constructed using theKriging algo-
rithm in Surfer 8.0 (Golden Software Inc. Golden,
Colorado, USA).

Bayesian skyline plot analysis
Bayesian skyline plots (BSP) for effective popula-
tion size (Nef) through time were reconstructed
based on 13 protein coding regions using BEAST
v1.7.5. [37], as described elsewhere [38,39]. In
the BSP analysis, a general time-reversible substi-
tution model with site-specific rates for the first,
second and third codons was adopted to infer
the ancestral gene trees. To estimate the timescale
to the Nef change, a strict molecular clock with
a fixed rate of 1.691e−8 substitutions per site
per year [40] was chosen. Each Markov chain
Monte Carlo simulation was run for 40 000 000
generations and sampled every 4000 generations,
with the first 40 000 generations discarded as
burn-in.The results were visualized with Tracer v1.5
(http://tree.bio.ed.ac.uk/software/tracer/). Popu-
lation growth rate and time of population growth
were calculated based on skyline plots, as per our
previous study [41]. To avoid potential biases
caused by sampling, we applied the pooled sampling
strategy, which provides the best scheme for infer-
ring demographic history [42], for BSP analysis. In
detail, 20 samples were picked randomly from each
of the11Tibetanpopulations andpooled asonedata
set to performBSP analysis. Proportional changes of
certain haplogroups in Tibetans through time were

calculated based on Nef values of the haplogroups
and all Tibetans in the BSP analyses.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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