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Neurotransmitters are signaling molecules secreted by neurons to coordinate
communication and proper function among different sections in the central neural
system (CNS) by binding with different receptors. Some neurotransmitters as well as
their receptors are found in pancreatic islets and are involved in the regulation of glucose
homeostasis. Neurotransmitters can act with their receptors in pancreatic islets to
stimulate or inhibit the secretion of insulin (b cell), glucagon (a cell) or somatostatin (d
cell). Neurotransmitter receptors are either G-protein coupled receptors or ligand-gated
channels, their effects on blood glucose are mainly decided by the number and location of
them in islets. Dysfunction of neurotransmitters receptors in islets is involved in the
development of b cell dysfunction and type 2 diabetes (T2D).Therapies targeting different
transmitter systems have great potential in the prevention and treatment of T2D and other
metabolic diseases.
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INTRODUCTION

Glucose homeostasis is critical for life maintenance, and the normal glucose ranges for the body are
set by the biological defended level of glycemia (BDGL) in the central nervous system (CNS). The
neuronal populations in the arcuate nucleus of the hypothalamus are crucial for the regulation of
energy balance, primarily in the control of food intake (i.e., appetite), which makes the CNS an
indispensable part of metabolism (1). The pancreatic islets are key parts of glucose homeostasis.
Pancreatic b cells are the only source of the glucose-lowering hormone insulin in the body.
Dysfunction of b cells leads to impaired or insufficient insulin secretion, which results in
hyperglycemia and diabetes. Nutrients in circulation, such as glucose, fatty acids and amino
acids, can act on islets directly or indirectly to modulate the secretion of hormones from islets to
regulate blood glucose.

Glucose is the most important insulin secretagogue. When blood glucose is higher than the Km
of glucose transporters on the b cell membrane, they work to take up glucose into cells. The
metabolism of glucose generates adenosine triphosphate (ATP), resulting in closure of ATP-
sensitive K+ channels (KATP) to trigger membrane depolarization, electrical activity and opening of
voltage-dependent Ca2+ channels (VDCCs), increasing the intracellular Ca2+concentration ([Ca2+]i)
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and initiating exocytosis of insulin granules (2, 3). The other cells
in the islets share a similar secretion pattern and play roles in the
maintenance of glucose homeostasis. The a cells of the
pancreatic islets secrete glucagon to raise blood glucose in
response to hypoglycemia, and the d cells secrete somatostatin
to inhibit the secretion of both insulin and glucagon. Appropriate
communication within the islets as well as between islets and
other organs is needed to maintain glucose homeostasis under
different situations (4).

Neurotransmitters are a group of signaling molecules secreted
by neurons that modulate the function of the nervous system,
including amino acids, monoamines, peptides, and purines (5).
The blood–brain barrier (BBB) restricts the communication of
neurotransmitters between the CNS and periphery to keep the
brain functioning correctly. The islet is a mini-organ vascularized
and innervated substantially, and CNS-derived neurotransmitters
can function on islets through sympathetic and parasympathetic
nerves (6, 7). Moreover, neurotransmitters in the CNS can also be
synthesized in the periphery, including islets, and regulate insulin
secretion in a glucose-dependent or glucose-independent manner
to maintain glucose homeostasis. Upon binding with
corresponding receptors on the membrane, the signaling
molecules exert stimulatory or inhibitory effects on hormones
secretion. There are two major types of neurotransmitter
receptors: inotropic receptors and metabotropic receptors (8).
Ionotropic receptors provide ligand-gated channels for ions and
alter the membrane potential to excite or inhibit cell activity. Most
metabotropic receptors are G protein-coupled receptors (GPCRs),
which rely on second messengers inside the cell to modulate ion
channels or trigger signaling cascades to release calcium from
cells (9).

Functional GPCRs can be divided into four families depending
on the a subunit type: the Gas family, Gai/Gao family, Gaq/11
family, and Ga12/Ga13 family. The Gas and Gai/o pathways target
the cyclic adenosine monophosphate (cAMP)-generating enzyme
adenylyl cyclase (AC) to stimulate or inhibit the conversion of
cytosolic ATP to cAMP. Cytosolic cAMP determines the activities
of ion channels and is considered a second messenger of GPCRs.
The effector of the Gq/11 pathway is phospholipase C-b, which
produces the second messengers inositol (1,4,5) trisphosphate
(IP3) and diacylglycerol (DAG) to increase cytosolic Ca2+ levels.

The pancreatic islets are key parts of glucose homeostasis.
Appropriate communication between islets and other organs is
needed to maintain glucose homeostasis under different
situations (4).

The neuronal populations in the arcuate nucleus of the
hypothalamus are crucial for the regulation of energy balance,
primarily in the control of food intake. In addition, the normal
glucose ranges are set by the biological defended level of glycemia
(BDLG) in the central nervous system (CNS) (1). Nutrients in
circulation, such as glucose, fatty acids and amino acids, can act
on islets directly or indirectly to modulate the secretion of
hormones from islets to regulate glucose levels. The endocrine
cells in islets (a, b and d cells) share the same vesicular formation
and secretion mechanisms as those in the CNS.

In this paper, we will review the function of neurotransmitters
and their related receptors in islets and their roles in the
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development of type 2 diabetes (T2D), and discuss their
potential in the treatment of T2D and other metabolic diseases.
AMINO ACIDS

Glutamate
Glutamate is a nonessential amino acid in the body and a primary
excitatory neurotransmitter in the CNS (10). Glutamate is
synthesized in most tissues and is contained in many foods.
Intracellular glutamate is formed in mitochondria by glutamate
dehydrogenase (GDH) or in the cytosol with the malate-aspartate
shuttle (MA). In islets, glutamate mainly comes from a cells, and
glutamate infiltration from blood through vessels is insignificant
(11). Once formed, intracellular glutamate can be loaded into
secretory granules by vesicular glutamate transporter 2 (VGLUT2)
and released with glucagon under low-glucose conditions (12).

The glutamate receptors include ionotropic receptors N-
methyl-D-aspartate (NMDA) receptors and non-NMDA
receptors and metabotropic receptors named mGluR1-8.
NMDA receptors can be activated by glycine and glutamate,
regulating intracellular sodium and calcium balance. Non-
NMDA receptors, including a-amino-3-hydroxy-5-methyl-4-
isoxazole propionate (AMPA) receptors and kainate receptors,
mediate fast excitatory synaptic transmission. In islets, NMDA
receptors are expressed on b cells, and non-NMDA or AMPA/
kainate receptors are expressed on a and d cells. The activation
of NMDA receptors on b cells facilitates calcium influx and
induces transient insulin secretion. However, the net effect of
NMDA receptor activation is inhibiting repolarization after
depolarization, resulting in inhibited glucose-stimulated insulin
secretion (GSIS). Continuous NMDA receptor activation causes
excitotoxicity and death of neurons in the CNS, so does b cells in
islets (13). Inhibition of NMDA receptors can enhance GSIS and
increase insulin content in islets to improve glucose tolerance in
mice (14, 15). AMPA/kainate receptors have less affinity for
glutamate than NMDA receptors, and they mediate the
excitatory effect of glutamate on neurons in the CNS and a
cells in islets. Glutamine is an amino acid with known
glucagonotropic effects. Activation of AMPA/kainite receptors
on a cells induces influxes of sodium and calcium, leading to
depolarization and secretion of glucagon along with intracellular
glutamate. The released glutamate can bind with AMPA/kainate
receptors again to form a positive feedback loop for glucagon
secretion (15, 16). Rat d cells express the AMPA receptor, and
glutamate induces somatostatin release from d cells under low-
glucose conditions, inhibits the secretion of glutamate and
glucagon from a cells and forms negative feedback in islets (17).

The mGluRs and related GPCRs have also been shown to
regulate islet function, in addition to their roles in the CNS and
diabetic neuropathy (18). Group I mGluRs (mGluR1,5) belong to
the Gq/11 family, and group II mGluRs (mGluR2,3) and group III
mGluRs (mGluR4,6,7,8) belong to the Gi/o and Gs families,
respectively. The mGluR4 was identified in rat islets and plays
a role in PP cells as well as a cells (19, 20). The mGluR8 was
detected in male Wistar rat islets, rodent insulin-secreted cell
lines RINm5F and MIN6 cells (20), in which the specific agonist
May 2022 | Volume 13 | Article 884549
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of group III receptors inhibited insulin release. However,
mGluR8 is also present in a cells of female Sprague–Dawley
rats, and the mGluR8 agonist inhibited glucagon release; the
group III receptor antagonist reduced this effect (21). The
mGluR3 and mGluR5 were detected in rat and human islets
(20), and agonists specific to group I or group II increased the
release of insulin. The mGluR5 was shown to functionally
interact with NMDARs and is needed for optimal insulin
secretion (22). The expression of mGluRs in other cells of islets
and their function needs further research.

Plasma glutamate levels are elevated in many chronic
oxidative stress conditions, such as obesity, insulin resistance,
diabetes and cancer (23), and in acute injuries, such as head
trauma or cerebral ischemia, creating excitotoxicity and
facilitating inflammation (24). Prolonged high glutamate levels
accelerate the onset of T2D and increase the risks of
cardiovascular diseases in obesity and T2D patients (25, 26).
Type 1 diabetes (T1D) patients have higher glutamate levels in
their brains, which can be used as an early marker of diabetes-
related neurodegenerative diseases (27). Recently, therapies
targeting glutamate receptors have been developed to treat
T2D. NMDAR antagonists, such as dextromethorphan (DXM),
amantadine and memantine, have been successfully used in the
treatment of many diseases for decades, including nonproductive
cough, nonketotic hyperglycemia, Parkinson’s disease, and
Alzheimer’s disease (28). DXM was proven to improve insulin
secretion and glycemic control in T2D patients (14, 29). The
DXM derivative Lam39M increased the duration and frequency
of Ca2+ oscillations, extended the time of insulin secretion, and
protected mouse and human pancreatic islets from cell death.
Lam39M also has lower penetration to the BBB, minimizing the
NMDA inhibition effects on the CNS (30). Hence, developing
NMDA receptor antagonists with higher specificity to b cells or
islets can be a promising road for the treatment of T2D.

Gamma-Aminobutyric Acid
Gamma-aminobutyric acid (GABA) is synthesized by glutamate
and glutamate decarboxylase (GAD) in GABAergic neurons and
is the most important inhibitory neurotransmitter in the
mammalian CNS. Bacteroidetes in the gut are the main source
of GABA in the periphery (31). Although the BBB separates
peripheral GABA from the CNS, supplemental GABA or
precursors of GABA can orally feedback to the CNS through
the enteric nervous system (ENS) (32) and GABA receptors on
adrenergic and cholinergic nerves (33, 34).

The islet has a density of GABA and GABA receptors
comparable to that of the CNS (35). The receptors of GABA
include the ligand-gated ion channel GABAA and the GPCR
member GABAB. GABAA activation induces chloride influx,
inhibiting depolarization and reducing excitability of target
cells. GABAB couples with the Gi/o protein and inhibits cAMP
production to exert an inhibitory effect.

The GABA in islets is supplied by b cells by the time of insulin
secretion (36). The simultaneously released GABA can bind with
GABAA receptors on b cells to inhibit insulin secretion as an
autocrine signal. Activation of GABAA receptors also enhanced
proliferation of b cells (37). Meanwhile, GABA from b cells can
Frontiers in Endocrinology | www.frontiersin.org 3
inhibit glucagon secretion and cell proliferation by binding with
GABAA receptors on a cells as a paracrine signal (38).When the
glucose level is not high enough to evoke action potentials on
membranes of b cells, the chloride potential made by the GABAA

receptor can moderately depolarize b cells to induce insulin and
GABA release (39), but when the glucose level is higher than
BDLG, GABA will inhibit excessive release of insulin (40). It has
been reported that human d cells express GABAA receptors and
that the GABAA antagonist SR95531 reduces the secretion of
somatostatin at different glucose concentrations (39).

The mRNAs of GABAB receptors 1 and 2 were identified in
islets of rats and human and MIN6 cells, and the GABAB

receptor agonist inhibited the release of insulin in the presence
of 25 mmol/l glucose (20, 41). Knockout of the GABAB receptor
improved glucose tolerance and increased insulin content in the
islets of mice, but constitutive absence of the GABAB receptor
induced insulin resistance in mice (42).

The GABA content in islets of T2D patients and animals is
lower than normal, accompanied by b cell dysfunction and lower
insulin content (43). The presence of GAD autoantibodies is
important for the diagnosis of autoimmune diabetes (44). In
addition to endocrine cells in islets, GABA also works on innate
immune cells such as T cells, inhibiting NF-kB signaling and
protecting b cells from inflammation, especially in conditions
such as T1D and islet transplantations (45).

Glycine
Glycine is the simplest stable amino acid acting as an inhibitory
neurotransmitter in the CNS (46). The glycine level in human
cerebrospinal fluid is 5 µM but increases to 150-400 µM in blood.
Extracellular glycine can bind with glycine receptors (GlyRs) or
be transported into cells by glycine transporters (GlyTs). GlyR is
an ionotropic receptor that mediates the transport of chloride.
Both GlyR and GlyT are expressed on a cells and b cells of
human islets but are barely detected in rodents (47, 48).
Although glycine inhibits the activity of neurons in the CNS, it
actually excites b cells in islets due to different intracellular
chloride concentrations (7 mM in neurons and 32 mM in b
cells). Glycine induced depolarization and increased intracellular
calcium in b cells (47). Glycine can be coreleased with insulin,
and insulin can enhance the effect of glycine-activated current
(47, 49). In a cells of islets, glycine can induce glucagon secretion
in vitro and in vivo without a significant change in insulin levels
(48, 50). Moreover, glycine can bind with and saturate NMDA
receptors as an endogenous antagonist (51), block the excitotoxic
effect of glutamate and help maintain normal GSIS (14, 15).

The lower glycine levels in circulation are related to obesity,
diabetes and nonalcoholic fatty liver disease (NAFLD), and GlyR
expression and glycine-induced currents on b cells of T2D
patients is also reduced (52, 53). Supplementation with glycine
can alleviate oxidative stress, lower blood pressure, and reduce
risks for T2D (54). The elevation of glycine might be protective
for people with higher metabolic risks.

D-Amino Acids
Natural amino acids can be divided into L-type and D-type based
on their chirality (except glycine). D-amino acids can be derived
May 2022 | Volume 13 | Article 884549
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from L-amino acids by racemases or under oxidative stress, and
some of them also come from food and gut microbiota (55). D-
aspartate (D-Asp) and D-serine (D-Ser) are major D-amino
acids in mammals.

D-Asp is a racemase product of L-aspartate and a precursor of
NMDA and is located at the pineal gland and pituitary in the
CNS and adrenal gland (56). D-Asp can stimulate hormone
secretion from pituitary glands and the hypothalamus (57).
Hyperglycemia can induce the release of D-Asp from the
retina of diabetic rats and is related to diabetic retinopathy
(58). Although D-Asp is found in a cells and can be released
from the rat insulinoma cell line INS-1 along with insulin
(59, 60), the function of D-Asp in islets is unclear.

D-Ser is a neuromodulator derived from serine under serine
racemase (SRR) in the CNS. D-Ser can inhibit high-fat diet
consumption and reduce body weight in mice (61). The content
of D-Ser is highest in the CNS, others are also present in the liver,
kidney and pancreas (62).The key enzyme of D-Ser synthesis,
SRR, is expressed in b cells of human and mouse (63). SRR-
knockout mice (Srr-KO) have similar D-Ser content but less
insulin content in the pancreas than wild-type (WT) mice (64).
Srr-KO mice have lower blood glucose and fasting insulin levels
and better glucose tolerance and insulin sensitivity (65). D-Ser
acts as a coactivator of NMDA receptors in the CNS, and deletion
of SRR in the brain impairs the function of NMDA receptors. Not
surprisingly, Srr-KO mice have fewer NMDA receptors on islets,
and the NMDA receptor antagonist MK-801 failed to suppress
insulin secretion in the islets of Srr-KO mice (65).

A high D-Ser diet increases D-Ser levels in blood and leads to
hyperglycemia and impaired glucose tolerance in mice, which
can be blocked by a2-adrenergic receptor antagonists (61).
Therefore, the adrenergic system might participate in the effect
of D-Ser in islets. Polymorphisms of the SRR gene are associated
with T2D susceptibility (66) and metformin efficiency (67). Thus
researches on the metabolism and effects of D-amino acids are
worthwhile in the treatment of T2D.
MONOAMINE

Monoamine neurotransmitters (MNTs), including serotonin,
norepinephrine, dopamine and histamine, exist broadly in the
central and peripheral neural system (68). MNTs are degraded by
monoamine oxidase (MAO) or reuptake by monoamine
transporters (vesicular monoamine transporters, dopamine
transporters, norepinephrine transporters) to halt the effects
(69). Dysregulation ofMNTs is a primary cause of mental diseases.

Serotonin
Tryptophan is processed by tryptophan hydroxylase (TPH) and
aromatic-L-amino acid decarboxylase (AADC) to form 5-
hydroxy tryptamine (5-HT, serotonin) in the CNS and
intestines. Entrochromaffin cells (ECCs) contribute
approximately 90% of 5-HT in the body, and the others
function separately due to the existence of the BBB (70).
The receptors of 5-HT belong to GPCRs except 5-HT receptor
3 (5-HT3R), which is a ligand-gated ion channel.
Frontiers in Endocrinology | www.frontiersin.org 4
b cells have the key enzymes TPH and ADCC to synthesize 5-
HT (71) and vesicular monoamine transporters (VMATs) to
load 5-HT on vesicles, so the 5-HT can be released with insulin,
GABA and glycine from b cells (72). 5-HT has multiple effects on
b cells. Action through 5-HT2BR increases b cell proliferation,
and activation of 5-HT3R increases insulin secretion and
improves glucose sensitivity. The add-on effects of receptors
are critical for compensatory insulin secretion during metabolic
stress conditions such as pregnancy and a high-fat diet, by which
the expression of TPH also increases. After the physical stresses
finish, 5-HT1DR can help to recover b cell mass back to normal
(73, 74). In addition to receptor-mediated effects, 5-HT can
regulate insulin secretion by serotonylation of GTPase in b cells
and facilitate the secretion of insulin (75).

Some 5-HTRs couple with Gi/o to reduce cAMP levels and
inhibit depolarization. In islets, the inhibitory receptors 5-
HT1FR and 5-HT5AR are expressed on a cells, and 5-HT1DR
is expressed on d cells. Therefore, 5-HT inhibits the release of
glucagon and SS (76, 77). Although d cells can also synthesize
and release 5-HT, the major source of 5-HT in islets is still b
cells, and the inhibition of glucagon by 5-HT also comes from
paracrine signals of b cells (78).

5-HT is necessary to maintain glucose homeostasis in
humans and mice. The 5-HT1FR on a cells is lower in T2D
patients, which might contribute to hyperglycemia (78, 79).
Obesity and hyperglycemia are common side effects of the
antipsychotic drugs 5-HT receptor antagonists and MAO
antagonists, which can be relieved after drug withdrawal (80).

Catecholamine
Catecholamine (CA) is a group of chemicals synthesized from
phenylalanine or tyrosine in the central and peripheral nervous
systems, including dopamine, epinephrine and norepinephrine.

Dopamine comes mainly from dopaminergic neurons in the
substantia nigra and ventral tegmental area in the CNS and
peripheral nerves, the adrenal medulla and some neuroendocrine
cells are the main sources of dopamine in the periphery (81).
Norepinephrine is synthesized and released by the locus
coeruleus in the CNS and sympathetic nerves in the periphery.
Epinephrine is released from the adrenal gland and some
neurons in the brain stem. Both a and b cells in islets of
humans and rodents possess enzymes of CA synthesis and
specific transporters for CAs, which means they could be
possible sources of CAs in islets (82).

The receptors of CAs are GPCRs. The CAs couple with Gs or
Gi/o subunits to induce excitation and inhibition, respectively.
The excitatory receptors increasing cAMP concentration include
the D1 and D5 dopamine receptors and the a1, b1, b2 and b3
adrenergic receptors. The inhibitory receptors D2, D3 and D4
dopamine receptors, the a2 adrenergic receptors, reduce the
cAMP level in cells (83).

The dopamine receptors D1, D5 (82, 84) and the adrenergic
receptor a2 are expressed on b cells (85), while the dopamine
receptors D2 and D3 (82) and the adrenergic receptors a1, b1,
and b2 are expressed on a cells (86, 87). The effects of dopamine
and norepinephrine on islets are inhibiting insulin secretion and
promoting glucagon secretion (87, 88). The activation of a2
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adrenergic receptors on b cells can suppress insulin secretion,
insulin gene expression and insulin synthesis (89, 90). There is
clear evidence that overexpression of a2 adrenergic receptors in
rodent b cells causes impaired insulin secretion and is associated
with spontaneous onset of T2D in GK rats and increased risk of
T2D in human (91, 92). Knockout of the a2 adrenergic receptor
in mice showed lower blood glucose levels and higher plasma
insulin levels, as well as improved glucose tolerance, than the
wild type (93). A high level of dopamine inhibits b cell
proliferation and induces apoptosis of b cells (94). However,
dopamine is necessary for the survival and development of islets,
and mice lacking synthesis enzymes or receptors of dopamine
develop glucose intolerance and impaired GSIS early in their life
(95). b3 adrenergic receptors exist on adipose tissue and induce
lipolysis and fatty acid production upon activation (96).

The dopamine transporter (DAT) is located on the surface of
b cells. DAT can take up dopamine and store them in vesicles
together with intracellularly synthesized dopamine with the help
of VMAT2. When b cells depolarize and secrete insulin,
dopamine will act on dopamine receptors and adrenergic
receptors to inhibit insulin release as an autocrine signal in
negative feedback (97).

Bromocriptine is a dopamine D2 receptor agonist used in the
treatment of Parkinson’s disease and hyperprolactinemia.
Additionally, it has been used as a central antidiabetic drug for
years and is still recommended by the American Diabetes
Association (ADA) in the latest guidelines (98). Bromocriptine
can cause metabolic alterations in patients with insulin resistance
and obesity by resetting the hypothalamic circadian rhythm of
monoamine neuronal activities. The agonistic action of dopamine
may reduce the hypothalamus drive for increased lipid and
hepatic glucose production and insulin resistance (99). Elevated
prolactin levels are frequently associated with weight gain and
obesity, which are common in hyperprolactinemia patients (100).
Bromocriptine has the ability to suppress prolactin levels, thereby
augmenting glucose tolerance and regulating GSIS (99).

The adrenergic nerve system is activated under stresses such as
cold, nervousness and hypoglycemia, promoting heat generation,
glucose supplementation, lipolysis and glycolysis. The a cell is
able to synthesize and release dopamine and norepinephrine and
stimulate glucagon secretion by binding with the adrenergic b1
receptors themselves (82). The autocrine, paracrine and nerve-
derived signals in islets can partly explain the higher risk of T2D
under prolonged stresses.

T2D patients have higher norepinephrine levels in blood,
which inhibits the secretion of insulin (101) and impairs the
responsiveness of b cells to adrenergic signals (102). Insulin
resistance is characterized by a higher insulin level in the
periphery, which will inhibit the reuptake of CAs and activate
adrenergic receptors on a and b cells constantly, resulting in
damage to glucose homeostasis and accelerating the progression
to T2D (79, 103).

Pheochromocytoma is a rare neuroendocrine tumor capable of
producing CAs. Hyperglycemia is a common metabolic
dysfunction of Pheochromocytoma patients, mostly because of
impaired insulin secretion and insulin sensitivity. Epinephrine
and norepinephrine disturb glucose homeostasis in different ways.
Frontiers in Endocrinology | www.frontiersin.org 5
Epinephrin tends to impair insulin secretion, while norepinephrine
tends to promote insulin resistance (104). The metabolic
mechanism of hyperglycemia in Pheochromocytoma patients
depends on the dominant CAs released by Pheochromocytoma
and the distribution of adrenergic receptors (105). In addition, it has
been reported that the Pheochromocytoma cell line PC12 is rich in
D-Asp (62), which can inhibit GSIS by acting on NMDA receptors
on b cells (14, 15).

Histamine
Histamine is synthesized from histidine by histidine
decarboxylase (HDC) and stored in mast cells and basophils in
an inactive form. The tuberomammillary nucleus (TMN)
neurons expressing HDC are the primary source of histamine
in the CNS, and the parietal cells in the stomach also express
HDC and secrete histamine. mast cell-derived histamine is scarce
in the CNS and periphery under normal conditions (106).

Histamine receptors (HRs), including H1-4, are GPCRs with
potential ion ligand-gated channel activity. H1R couples with the
Gq/11 subunit to induce calcium current and cell excitation. H2R
and H3R are inhibitory receptors that bind the Gs and Gi/o

subunits, respectively. HDC is expressed in a and b cells in islets,
but is more highly expressed in tumors (107). The main sources
of histamine in islets are mast cells and basophils.

H1R, H2R and H3R are expressed in islet b cells of human
and rodents (88, 108). The general effect of histamine on b cells is
inhibition of insulin secretion and cell proliferation (109).
Agonists of H1R can facilitate insulin secretion and partially
counteract cytokine-induced b cell destruction (108, 110). The
first generation of the antihistamine drug trimeprazine can
incompletely activate H1R and increase b cell proliferation in
mice (111). The H1R antagonist cetirizine did not affect diabetes
development in NODmice but did improve the glucose tolerance
of high-fat diet-fed mice (112). A selective H3R inverse agonist
(antagonist), JNJ-5207852, facilitates insulin secretion and
possibly promotes b cell proliferation, while a selective H3R
agonist inhibits insulin secretion and cell proliferation of MIN6
cells (108). Both agonists and antagonists of H2R can inhibit
insulin secretion, possibly due to species variation and different
receptor distributions (88, 108). H3R is expressed on a cells in
islets and can inhibit glucagon release (113). Although direct
evidence of H4R expression in islets is lacking, blocking H4R
with its selective antagonist JNJ-39758979 was efficient in the
prevention of diabetic nephropathy progression (114), possibly
by inhibiting inflammatory activities in tissues.

Chronic H3R agonist treatment shows multiple metabolic
benefits in mice with diet-induced obesity (DIO), such as
reducing food intake and body weight and alleviating
hyperleptinemia and hyperinsulinemia (115). Proxyfan is an
H3R protean agonist that can be used as an agonist, inverse
agonist and antagonist of H3R. In T2D mice, oral administration
of Proxyfan can lower blood glucose and glycosylated
hemoglobin A1c (HbA1c), and intracerebroventricular
administration of Proxyfan can increase plasma insulin levels
via a glucose-independent mechanism (116).

Systemic histaminergic activity is elevated in T2D patients
and animals (117). Reactive oxygen species (ROS) are necessary
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Pan et al. Transmitters in Pancreatic Islets
for histamine release, and hyperglycemia can increase ROS and
might contribute to the higher histamine levels in T2D patients
(118). Higher histamine levels in the plasma of T2D patients also
accelerate vascular injury, especially in the aorta, increasing the
risk of cardiovascular diseases (119). The islets of T1D patients
and streptozotocin-induced diabetic animals have significant
mast cell infiltration, and the histamine released by mast cells
can aggravate immune injury and lead to cell death through the
caspase pathway (120). H2R antagonists are widely used as
antacid agents to treat peptic ulcers, and H2R antagonist
treatment is associated with a lower prevalence of NAFLD in
men (121). It is possible that they have antioxidant properties
and direct effects on inflammatory cells, including monocytes,
which might prevent inflammation. However, prolonged
treatment with H2R antagonists increases the risk of T2D in
peptic ulcer patients (122, 123).
ACETYLCHOLINE

Acetylcholine (ACh) is a product of choline and acetyl-coenzyme
A (CoA), synthesized by choline acetyltransferase (ChAT) and
stored by vesicular acetylcholine transporter (vAChT) in the
CNS cholinergic neurons and peripheral autonomic nervous
system (sympathetic and parasympathetic nerves). The ACh in
islets mainly comes from cholinergic nerve terminals in rodents
but comes from both nerves and a cells in humans. The ACh in
a cells is loaded into different vesicles from glucagon by vAChT
so that they can be released separately (124, 125). The a cells are
scattered in human islets but are located on the boundary of islets
in rodents, which facilitates paracrine ACh signals from a cells
passing to neighboring cells easily in human islets.

Cholinergic receptors can be divided into muscarinic (M) and
nicotine (N) receptors. M-type receptors (mAChRs) are GPCRs
that couple with the Gq/11 (M1, M3, M5) or Gi/o (M2, M4)
subunits to induce excitatory or inhibitory effects on cells. The
N-type receptors (nAChRs) are a ligand-gated ion channel
consisting of subunits.

The M3 and M5 receptors are present on b cells and can
increase insulin release upon activation (124). M3 receptor-
deficient mice displayed lower glucagon and insulin levels and
impaired postprandial insulin release (126). Decreased expression
of M3 receptors in islets was observed under hyperglycemic
conditions both in vivo and in vitro (127). These results suggest
the therapeutic potential of the M3 receptor. In addition, ACh
can also be involved in paracrine regulation within islets
indirectly, which increases or reduces the secretion of
somatostatin by binding with M1 receptors on d cells of human
or (128) with M3 and M4 receptors on d cells of mice (129).The
effects mediated by nAChRs are much more complex than those
mediated by nAChRs. Isoforms of nAChRs, including a2, a3, a4,
a5, a7, b2, and b4 subunits, assemble to form functional
nAChRs. The predominant subunits expressed in islets are a5
and b2 in human, a7 and b2 in rodents (130, 131). Nicotine is a
natural agonist of nAChRs. Smoking is one of the most famous
risk factors for T2D (132). However, chronically treating db/db
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mice with a small amount of nicotine could improve glucose
metabolism and insulin sensitivity (133). The activation of
nAChRs can increase b cell mass and enhance insulin secretion
(134, 135), as well as protect b cells against cytokine toxicity
(130). Loss of a5nAChR in mice was related to increased nicotine
intake, of which the impact on glucose homeostasis remains
unclear (136). Deletion of a7-nAChR in mice impairs glucose
tolerance and causes insulin resistance (133). PUN-282987 is a
selective a7-nAChR agonist capable of enhancing insulin
sensitivity in muscle, liver and adipose tissue in mice and
reducing inflammation via the STAT3 pathway (137). Recently,
nicotine was found to act on TCF7L2 in the pineal gland and
transmit nicotine signals to islets, leading to dysregulation of
insulin and glucagon (138).
PEPTIDES

Peptide signals play a role in both endocrine and neural systems.
The term “neuropeptide” is defined by small proteinaceous
substances produced and released by neurons through the
regulated secretory route and acting on neural substrates.
Neuropeptides may act as neurotransmitters or neuromodulators
and commonly bind to GPCRs to affect the activities of neurons
and other tissues, including pancreatic islets (139, 140). With the
help of genetics and multiomics techniques, the family of
neuropeptides has expanded quickly during decades. We only
discussed several members of the large family and their roles in
pancreatic islets due to limited space, including glucagon-like
peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide
(GIP), cholecystokinin, oxytocin and vasopressin. Other
neuropeptides present in islets, such as peptide tyrosine-tyrosine
(PYY) (141), neuropeptide Y (142) and somatostatin (129, 143),
have been extensively reviewed elsewhere.

Incretin
Incretins are a group of metabolic hormones released after eating
that augment the secretion of insulin by a blood glucose-
dependent mechanism. GLP-1 and GIP are two main
candidate molecules that fulfill the criteria for incretin (144).
Both GLP-1 and GIP are rapidly inactivated by dipeptideyl
peptidase-4 (DPP-4).

GLP-1 is secreted by preproglucagon neurons in the solitary
nucleus in the CNS, regulating the activities of the hypothalamus
and brain areas (145). GLP-1 in the periphery mostly comes from
enteroendocrine L cells (146). The a cells in islets also express the
preproglucagon gene and synthesize and secrete propglucagon-
derived peptides, including glucagon and GLP-1 (147).
The receptors of glucagon and GLP-1 share significant
homology and both belong to the Gs family of GPCRs and are
expressed on b cells in islets, which contribute to the cross-
reactivity of glucagon and GLP-1 and induce insulin secretion
(148, 149). GLP-1 promotes insulin synthesis and secretion upon
stimulation (150) and acts synergistically with glucose to promote
insulin gene transcription, mRNA stability, facilitate insulin
biosynthesis to replenish insulin stores and prevent exhaustion
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and apoptosis of b cells (151). GLP-1R agonists enhance b cell
proliferation and expand b cell mass even in normoglycemic
rodents (152). Some researchers also found GLP-1 receptors on d
cells to control the release of somatostatin (153).

GIP is synthesized by K cells of the duodenum and small
intestine. The GIP receptor is a Gs family member of GPCRs
widely expressed within the CNS (154), a cells and b cells in
islets (155) and white adipose tissues (156). The GIP receptor
(GIPR) is expressed in similar amounts in a and b cells. GIP
stimulates glucagon secretion directly through GIPRs on b cells,
while GIP can potentiate the release of glucagon by activating
GIPRs on a cells. Glucagon then binds with GLP-1R or the
glucagon receptor and stimulates insulin secretion (155, 157). In
addition to stimulating the secretion of insulin, such as GLP-1,
GIP promotes triglyceride storage by directly activating GIP
receptors on adipocytes and indirectly through the lipogenic
actions of insulin (158) and enhances glucose uptake and insulin
sensitivity of adipocytes, therefore improving the long-term
storage of lipids by facilitating the healthy expansion of white
adipose tissues (159). Our previous work found that GLP-1 levels
in the plasma of T2D and prediabetes patients were lower than
those in healthy people but did not differ between T2D and
prediabetes patients (160). The genes encoding the human GLP-
1 or GIP receptors have not been linked to enhanced genetic
susceptibility to diabetes (63). GLP-1-targeted treatments can
reduce body weight and risks of cardiovascular events, which are
independent of glucose-lowering effects (161, 162). The new
generation of anti-diabetic drugs GLP-1 receptor agonists (GLP-
1RAs) have shown promising benefits on T2D treatment, as well
as the DPP-4 inhibitors, which raises levels of GLP-1 and GIP to
augment insulin release after a meal. Central and peripheral
administration of GIP receptor agonists lowers body weight by
reducing caloric intake (163, 164).

Clinical trials employing liraglutide (human GLP-1 analogue)
or exenatide (exendin-4 derivates, animal GLP-1) in addition to
intensified insulin regimes in T1D patients did not demonstrate
convincing hypoglycemic benefits or describe potential adverse
outcomes such as a higher risk of ketoacidosis. Only body weight
and insulin doses were consistently reduced (165, 166). Some
GLP-1RAs can improve the metabolism and function of the CNS
when administered in the periphery they are strongly
recommended by ADA for the treatment of T2D and might
play positive roles in the treatment of neurodegenerative
diseases (167).

Cholecystokinin
Cholecystokinin (CCK) is secreted by specialized neurons in the
CNS and ENS and by enteroendocrine I cells in the intestine (168).
The receptors of CCK belong to GPCRs, including CCK1 (CCKA)
receptor and CCK2 (CCKB) receptor. CCK plays roles in inducing
anxiety and satiety in the CNS, regulating gastric emptying and
distension and gallbladder contraction in the gastrointestinal
system. It is also a potent stimulator of pancreatic acinar cells
that release digestive enzymes after meals (168).

The CCK1 receptor is colocalized with insulin and glucagon
in the islets of pigs, rodents and human (169). Activation of
CCK1 receptors initiates the Gs and Gq/11 signaling pathways in
Frontiers in Endocrinology | www.frontiersin.org 7
islet b cells under high- and low-glucose conditions, respectively
(170). The biologically active fragment CCK-8 and agonists of
the CCK1 receptor can induce insulin secretion and protect b
cells against apoptosis (170, 171). CCK2 receptors were found in
a cells and d cells of islets. The CCK2 receptor is also called the
gastrin receptor because another gastrointestinal peptide, gastrin,
secreted by G cells in the gastric antrum shares a similar
sequence with CCK and can bind to the CCK2 receptor with
almost the same affinity and potency (172). Gastrin and CCK
induced glucagon secretion from purified human islets, which
was blocked by an antagonist of CCK2 (173).

Recently, the gene encoding cholecystokinin (Cck) was found
to be expressed and upregulated in islets of obese and insulin-
resistant mice. CCK was detected in both a and b cells (174).
Overexpression of CCK was able to protect b cells from apoptosis,
while loss of CCK resulted in reduced islet size and b cell mass
and induced a diabetogenic phenotype in mice (174, 175).

The insulinotropic and protective role of CCK in islets makes
it a promising therapeutic target for T2D and obesity. Structural
modified CCK analogs (such as glycated CCK8 and (pGlu-Gln)-
CCK8) have been proven to suppress appetite and improve
glucose tolerance and plasma lipids and reduce lipid
accumulation in the pancreas and body weight in obese and
diabetic rodents (176). CCK has been thought to be an incretin
candidate because it originates from guts and responses to
nutrients, but CCK receptor blockade failed to affect
postprandial insulin secretion, like GLP-1 and GIP (177).
However, CCK has the potential to reduce weight and blood
glucose and could be an effective adjunct therapy for T2D (178).

Oxytocin and Vasopressin
Oxytocin and vasopressin have similar structures and are
synthesized in the supraoptic nucleus and paraventricular
nucleus of the hypothalamus, respectively. They are stored in
the neurohypophysis and released upon stimulation, such as
labor and hypertonicity. Peripheral OT also comes from the
uterus, placenta, amnion and heart.

The receptors of VP (V1a, V1b, V2) and oxytocin are GPCRs
expressed broadly in the CNS and periphery (179). The V1a, V1b
and oxytocin receptors belong to the Gq/11 family and induce
excitatory effects. The V1a receptor is expressed on vessels to
regulate vasoconstriction, and the V1b receptor in the CNS assist
the release of andrenocorticotropic hormone (ACTH). Oxytocin
plays an anorexigenic role in the CNS and primarily stimulates
uterine contraction and lactation in peripheral. The V2 receptor
couples with the Gs subunits to control water absorption in the
kidney (180).

The pancreas is unable to generate oxytocin or vasopressin
but has receptors for them on a and b cells (181, 182). The
vasopressin receptor V1b is expressed both on a and b cells and
can regulate glucose homeostasis in a glucose-dependent way,
which increases insulin during hyperglycemia and increases
glucagon during hypoglycemia (183, 184). The structure of
oxytocin is similar to vasopressin, oxytocin can also bind with
V1b on a cells to d induce glucagon secretion (182). V1b
knockout mice present reduced fasting insulin, glucagon and
blood glucose along with enhanced insulin sensitivity (185).
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Oxytocin can protect b cells from metabolic stress and
cytokines, promoting insulin secretion and cell proliferation
(186, 187). Infusion of oxytocin can improve GSIS in healthy
unpregnant humans (188), induce insulin secretion and improve
glucose tolerance in DIO mice (189). In pregnant mice, oxytocin
can not only initiate parturition but also increase b cell
proliferation and mass (189). Gestational diabetes mellitus
(GDM) patients have lower plasma oxytocin levels than
healthy pregnant women, and oxytocin antagonists can impair
insulin secretion and lead to the development of GDM
symptoms in pregnant mice (190). Intracerebroventricular
application of nanogram amounts of oxytocin causes a rise in
insulin levels but can be blocked by atropine, indicating that
cholinergic neurons are involved in the CNS regulation of
oxytocin on glucose homeostasis (191).

T2D patients have higher vasopressin but lower oxytocin
levels in plasma (185). Chronic vasopressin infusion impairs
fasting glucose and glucose tolerance in lean rats, which can be
observed earlier in the obese rats (184). Treatment with oxytocin
can reduce food intake and body weight in human and alleviate
metabolic syndromes by improve insulin resistance (192, 193).
However, therapies targeting receptors of vasopressin and
oxytocin or themselves for diabetes treatment might be difficult
due to safety concerns, especially chronic effects on the function
of neurohypophysis.
PURINES

Purines are basic components synthesized biologically as
nucleosides in cells, functioning as energy molecules and
mediating the purinergic signaling cascade by acting on
purinergic receptors in the CNS and periphery (194). Adenosine,
ATP and other nucleotides, such as uridine triphosphate (UDP),
are ligands of purinergic receptors P1 (adenosine receptor), P2Y
and P2X receptors. P1 and P2Y receptors are GPCRs, P2X
receptors are ligand-gated ion channels.

The P1 receptors A1, A2A, A2B andA3 are all found in islets. A1
receptor is a Gi/o member expressed in a and b cells, inhibiting
secretion of glucagon and insulin upon activation (195–197).
Knockout of A1 receptor mice had no significant effect on the
first phase of insulin secretion, but prolonged and amplified the
second phase of insulin, glucagon and somatostatin secretion (195).
It is also reported that the expression of A1 receptor in a cells
declined during the progression of autoimmune diabetes and
contributed to the hyperglucagonemia in prediabetic NOD mice
(198). The role of another Gi/o member A3 receptor in islets is
unclear, possibly involved in the survival of b cells (197). A2A
receptor and A2B receptor belong to Gs family. Activation of A2B
induce insulin release in islets of rodents (199). However, the effect
of A2A receptor showed species heterogeneity, which is increasing
insulin secretion in mice but suppressing insulin secretion in rat
b cell lines upon activation (200, 201). While in the islets of
zebrafish, the nonselective adenosine receptor agonist 5’-N-
ethylcarboxamidoadenosinne (NECA) was found to increase the
proliferation of b cells (202).
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The P2Y receptors are highly conserved across species, eight
P2Y receptors have been discovered in human and six of them
are expressed in the islets of either human or rodents, which are
P2Y1, P2Y4, P2Y6, P2Y11, P2Y13 and P2Y14 (196, 203–208).
Nucleotides including purines and pyrimidines are ligands of
P2Y receptors (209). Activation of P2Y1 and P2Y6 receptors
increased insulin secretion in MIN6 cells (203), P2Y6 agonist
MRS 2957 induced insulin secretion at high glucose
concentrations (16.7mM) (206). P2Y13 antagonist MRS2211
increased the secretion of both insulin and glucagon
independent of glucose concentrations (204).

All of the known subunits of P2X receptors (P2X1-7) have
been found in islets b cell of human and/or rodent (207, 210–214),
the P2X7 was also found in a cells of human and mice (207, 210,
215). Activation of P2X receptors induces insulin secretion from b
cells. ATP is the ligand of P2X receptors, which is generated
during glucose metabolism within cells and is co-released with
insulin from b cells (2). Therefore ATP plays an autocrine or
paracrine role via P2X receptors in the islets (216). The expression
of P2X receptors can be various in different developmental and
functional state of the islets. The P2X1 and P2X4 receptors in
islets of mice only emerged after birth and progressively
upregulated with age (210). The P2X7 receptors in b cells of
islets were upregulated in non-diabetic obese human compared
with the leans possibly as a compensation, but undetectable in
T2D patients (215). It is reasonable to consider P2X7 receptor a
promising target for treatment of obesity and T2D (217).
SUMMARY AND DISCUSSION

Signals from the central and peripheral nervous systems act on islets
collaboratively to maintain glucose homeostasis, which is critical for
life. The isolated islets are unable to survive for a long time without
the regulation of transmitters and fail to proliferate and secrete
insulin, which is also an obstacle for islet transplantation therapies
(218, 219). The dysregulation of signals in the CNS can impair
BDLG and push the onset of T2D (4). Obesity and glucose
dysregulation are common side effects of antipsychotic drugs,
which bring a higher risk of developing T2D (80).

Here, we review the evidence of the neurotransmitters
presented out of the CNS and their roles in the glucose
homeostasis, especially the transmitters that can be synthesized
in the islets and their corresponding receptors expressed on cells
in islets (Supplementary Table 1). With developments in
imaging skills and multiomics methods, our understanding of
transmitters in organisms has been expanded largely during the
past decades (220, 221). As a matter of course, the transmitters
synthesized by islets also function on the CNS as feedback
signals, such as 5-HT and insulin (222, 223), but the specific
mechanism needs further study.

Signal molecules in the CNS and periphery are promising
treatment targets for many diseases. It is known that T2D is a
metabolic disease caused by multiple risk factors. Hyperglycemia,
which is a marker of T2D, can be found in various physiological
and pathological conditions. Islet dysfunction in diabetes also
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promotes the progression of neurodegeneration (224). The
success of GLP-1RAs is a good example of transmitter-targeted
therapy (161, 162).

The gut-brain axis is a hot section of researches on glucose
homeostasis, especially for a great variety of peripheral
transmitters are derived from the intestines, not only
endocrine cells but also bacteria capable of producing multiple
neurotransmitters in the gut, such as dopamine, norepinephrine
and GABA (225), which can act on both the central and
peripheral regions (225). It is not surprising that some
medicines for the digestive system also influence the metabolic
system (122). The germ-free mice display increased turnover
rates of dopamine, norepinephrine and serotonin in the brain,
which could generally reduce pools in systemic circulation
independent of microbial production (although factors
influencing that increased turnover rate remain to be
determined) (226). It is not surprising that some medicines for
the digestive system also influence the metabolic system (122).
Supplementation with GABA or glycine or the consumption of
natural products such as resveratrol, which can influence GLP-1
and 5-HT levels in the peripheral and brain-gut axes, are
beneficial to glucose homeostasis and could lower oxidative
stress (32, 54, 227). Except for GLP-1, GABA and 5-HT, the
intestine secretes dozens of other hormones that probably
interact with the CNS to regulate glucose homeostasis, such as
GIP, CCK, ghrelin, and peptide YY. The relationship between
intestine-derived hormones and metabolic conditions deserves
more attention and should be a promising therapeutic target for
the treatment of both metabolic diseases and neural diseases.

Therapies targeting on more than one signaling molecules may
bring more benefits. For example, LY3298176, a novel dual GIP
and GLP-1 receptor agonist developed for the treatment of T2D,
has been proven to improve glucose control and reduce body
weight in T2D mice and humans (228) Another dual agonist is
GEP44, a weight-loss drug acting on both receptors of GLP-1 and
peptide YY, which performs better than each single drug and
has less unfavorable gastrointestinal reactions (229). Direct
supplementation of GABA with sitagliptin (a DPP-4 inhibitor)
in T2D patients can promote b cell proliferation and protect cells
against apoptosis (230). Recently, the GLP-1/GIP/Glucagon
receptor triagonist SAR441255 has been proven effective in
glycemic control and weight loss in humans (231). These
findings show great potentials of multitarget therapies in the
treatment of T2D and obesity and encourage the development
of more multitarget therapies in the future. Remarkably, there
is interaction among different neurotransmitters and their
Frontiers in Endocrinology | www.frontiersin.org 9
receptors, for example, L-cells cosecrete ATP together with
GLP-1 and PYY, and ATP acts as an additional signal triggering
vagal activation and potentially synergizes with the actions of
locally elevated peptide hormone concentrations (232). The cross
reactivities among neurotransmitter signals expand their effects,
clarifying the detail procedures of their interaction can promote
the development of new therapies with higher efficiency and less
side effects. In addition to drugs, implanted devices directly acting
on nerves also find their way in the field. Implantable vagal nerve
stimulators (IVNSs) have been approved by the Food and Drug
Administration (FDA) to treat epilepsy and depression, which can
manipulate target tissues more precisely than planted in the CNS
(233, 234). In obesity and T2D patients, the application of IVNSs
has also improve glucose homeostasis (235).

Research on transmitters in the central and peripheral nervous
systems can extend our understanding of neurodegenerative
diseases, mental diseases and metabolic diseases, assisting in
disease prevention and the development of new antipsychotic
drugs with higher selectivity and fewer side metabolic effects. New
therapies based on the function of neural transmitters and
corresponding receptors targeting pancreatic islets or beyond
are also promising for the treatment of T2D and other
metabolic diseases.
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