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Abstract

Squamate reptiles are a major component of vertebrate biodiversity whose crown-clade

traces its origin to a narrow window of time in the Mesozoic during which the main subclades

diverged in rapid succession. Deciphering phylogenetic relationships among these lineages

has proven challenging given the conflicting signals provided by genomic and phenomic

data. Most notably, the placement of Iguania has routinely differed between data sources,

with morphological evidence supporting a sister relationship to the remaining squamates

(Scleroglossa hypothesis) and molecular data favoring a highly nested position alongside

snakes and anguimorphs (Toxicofera hypothesis). We provide novel insights by generating

an expanded morphological dataset and exploring the presence of phylogenetic signal,

noise, and biases in molecular data. Our analyses confirm the presence of strong conflicting

signals for the position of Iguania between morphological and molecular datasets. However,

we also find that molecular data behave highly erratically when inferring the deepest

branches of the squamate tree, a consequence of limited phylogenetic signal to resolve this

ancient radiation with confidence. This, in turn, seems to result from a rate of evolution that

is too high for historical signals to survive to the present. Finally, we detect significant sys-

tematic biases, with iguanians and snakes sharing faster rates of molecular evolution and a

similarly biased nucleotide composition. A combination of scant phylogenetic signal, high

levels of noise, and the presence of systematic biases could result in the misplacement of

Iguania. We regard this explanation to be at least as plausible as the complex scenario of

convergence and reversals required for morphological data to be misleading. We further

evaluate and discuss the utility of morphological data to resolve ancient radiations, as well

as its impact in combined-evidence phylogenomic analyses, with results relevant for the

assessment of evidence and conflict across the Tree of Life.

Introduction

Squamate reptiles (hereafter referred to as lizards, including snakes and amphisbaenians) con-

stitute a major component of vertebrate biodiversity. With 10,336 described species as of
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March 2018 [1], Squamata constitutes one of the main radiations of extant Tetrapoda, and has

been a dominant element in terrestrial ecosystems since at least the Early Cretaceous ([2–4] and

references therein). With a long history of comparative research stretching back to the early 19th

century, lizards have been elevated to the status of model organisms in fields as disparate as behav-

ior, ecology, functional morphology, biogeography and developmental biology ([5–8] and refer-

ences therein). Likewise, their unique evolutionary history has inspired theoretical and practical

innovations in many topics within evolutionary biology, such as species delimitation [9], ancestral

state reconstruction [10, 11], extinction patterns [12], and adaptive radiations [13].

In sharp contrast with the ecological and taxonomic diversity of Squamata today, its lepido-

saurian sister clade is represented by a single extant species: Sphenodon punctatus, the New

Zealand tuatara [14]. This was not always the case, however, as the situation was reversed for

much of the Mesozoic, when rhynchocephalians predominated (e.g., [15–17] and references

therein). Early representatives of the S. punctatus total clade were diverse and disparate, glob-

ally distributed and ecologically dominant throughout the Triassic and Jurassic [18–20]. Sphe-

nodontian rhynchocephalians are, moreover, abundant in Late Triassic localities from which

lizards have yet to be recovered (e.g., [21]). Sphenodon punctatus is but a relict of an ancient

divergence from the lizard total clade that took place by at least ~240 Ma (Anisian; Middle Tri-

assic; [22]), when most of the early rhynchocephalian radiation had apparently already

occurred [23]. Only one potential stem lizard, Megachirella wachtleri (~240 Ma; Anisian; Mid-

dle Triassic), has so far been identified from the Triassic and Early Jurassic [24]. The crown

lepidosaur divergence could have occurred even earlier [24], as representatives of the lepido-

saur total clade (Pan-Lepidosauria), such as Sophineta cracoviensis [25], are known from ~245

Ma (late Olenekian, Early Triassic), and the oldest fossil referred to Pan-Archosauria, Aenig-
mastropheus parringtoni [26], is about 265 million years old (Capitanian, Middle Permian).

A literal reading of the fossil record indicates that lizards rose to dominance as part of the

Early Cretaceous Terrestrial Revolution along with the decline (at least in Laurasia [27, 28]) of

sphenodontian rhynchocephalians. Stem-members of several of the major crown squamate

clades are known from the Late Jurassic [29], but they are rare in comparison to coeval sphe-

nodontians [15]. In stark contrast, recent molecular estimates suggest that squamate origin

and diversification occur very close to the end-Triassic extinction [23, 30–32], coinciding with

major changes in climate and vegetation [33, 34]. Even though reconciling molecular and pale-

ontological evidence in order to precisely time the divergence of the main lineages of crown

lizards has proven challenging [23], one pattern seems common to most studies performing

temporal inferences: the main lineages within crown Squamata diverged in a very short time

span a long time ago. All major surviving clades of lizards (Anguimorpha, Dibamidae, Gek-

kota, Iguania, Lacertoidea, Scincoidea and Serpentes) seem to have originated in rapid succes-

sion, spanning an interval of time estimated to range between 23.1–43.5 Ma [23, 30–32, 35].

This means that the short internodes connecting the major clades that constitute the backbone

of the squamate tree have lengths that are on an average of only 4.6–8.7 Ma (S1 Table).

Ever since the first explicit phylogenetic analyses of Squamata ([36], see also [37]), most

studies based on morphological evidence have found unambiguous support for a basal split

between Iguania and all remaining lizards [29, 38–41], a taxon for which Estes et al. [36]

coined the name Scleroglossa. The name of this clade derives from the flattened and kerati-

nized tongue that characterizes all its members, which contrasts with the fleshy, highly muscu-

lar tongue of both iguanians and Sphenodon punctatus [36, 42, 43]. This transition in tongue

morphology signals a major shift in foraging mode from the visually oriented, sit-and-wait

strategy of non-scleroglossan lepidosaurs, that capture their prey using lingual prehension (a

technique epitomized by chameleons), to the active hunting style of scleroglossans that rely

more on chemoreception to target prey, and use only their jaws to secure them [44]. Under
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this evolutionary scenario, the release of the tongue from its predatory role facilitated further

elaboration of its vomero-olfactory function. As a consequence, a large set of nested evolution-

ary innovations relating to the morphology of the tongue, the vomeronasal organ and the adja-

cent cranial elements, is evident as one traverses the scleroglossan tree leading to crown

caenophidian snakes [29, 42, 45–48].

The foundations of this taxonomy, as well as its evolutionary implications, were under-

mined with the advent of molecular phylogenetics. Although the first molecular approaches

based on mitochondrial genes were unable to resolve confidently the oldest branches within

Squamata [49, 50], later attempts using nuclear genes found support for a highly nested posi-

tion of Iguania, closely allied with snakes and anguimorphs [51–56]. The clade uniting these

three lineages was named Toxicofera due to the shared expression of toxin genes in their sali-

vary glands [57], suggesting an early origin of venom [58]. This conclusion was overturned by

subsequent research indicating that these genes are likely to have housekeeping functions, and

are expressed in multiple tissues by species both inside and outside Toxicofera [59, 60]. Fur-

thermore, this topology requires that the similarities between iguanians and Sphenodon punc-
tatus are the product of a complex history of reversals and convergences, implying astonishing

levels of homoplasy among morphological characters [29, 36, 38, 46]. Nonetheless, this alterna-

tive position for Iguania received further support as the field transitioned into phylogenomics,

with Toxicofera being found across datasets based on both transcriptomes [61] and ultra-con-

served elements (UCEs) [62].

In light of these results, many have favored the molecular topology, assuming that the mis-

leading signal must come from morphology [63–66]. As explained by Wiens & Lambert [67],

the decision to accept Toxicofera as the best depiction of lizard interrelationships is warranted

based on two lines of evidence: the same higher-level structure is generally supported in studies

combining molecular and morphological evidence, and phenotypic data have been shown to

harbor misleading signal. The latter refers to the fact that morphological evidence often unites

all or most long-bodied, limb-reduced, head-first burrowing lizards into a single (poorly sup-

ported) clade, when there is ample evidence that fossorial habits, body elongation and limb

reduction/loss has in fact occurred multiple times independently [64, 65]. Using this same

logic, a recent publication claimed to have solved the conflict over deep-time relationships

among lizards [56], a claim that received further support from the first study in which Toxico-

fera was inferred based on morphological apomorphies alone [24].

While a proper response to these claims is beyond the scope of this paper, we note that both

studies pose significant problems. For example, all six of the unambiguous apomorphies said

to diagnose Toxicofera [56], are not in fact present in Iguania, and therefore must reverse to

their ancestral conditions in that clade [29]. Reversals can be consistent with a tree, but the

topology of that tree depends fundamentally on there being a sufficient number of un-reversed

apomorphies supporting it. Thus, the six toxicoferan apomorphies only seem unambiguous

because their uniformly contrary message was overridden by more numerous molecular char-

acters, not because morphology actually supports a nested position for Iguania on its own mer-

its [29]. The recent study arguing that Gekkota, rather than Iguania, is sister to all other

squamates [24] could serve as a stronger case in that several (poorly supported) trees inferring

that topology were based exclusively on morphology. That extraordinary claim is, however,

more difficult to evaluate as Simões et al. [24] did not explicitly identify (much less figure or

discuss) any apomorphies relevant to relations among crown squamates.

Many have expressed doubts that this matter is settled [29, 31, 44, 45, 68]. Some authors

have even chosen to continue employing a scleroglossan phylogenetic framework [69, 70],

while others have used both topologies to explore the evolutionary history of novel characters

and particular sub-taxa [71–75], further indicating that a consensus has yet to be reached.

Phylogenetic position of Iguania and the behavior of molecular data
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Although phenotypic convergence has routinely been proposed to explain this conflict—given

the similarity in feeding habits shared by Sphenodon punctatus and iguanians—the diversity of

anatomical regions, in disparate ecological and functional contexts, and embryological origins

for the morphological synapomorphies supporting Scleroglossa implies that this likely consti-

tutes a simplistic explanation [29, 46]. Further research has also shown that toxicoferan mono-

phyly is not only statistically rejected by cranial morphological data (as would be expected in a

scenario in which the convergent evolution of lingual prehension is the source of the mislead-

ing signal), but also by data from vertebral and, more generally, postcranial morphology [56].

Furthermore, although combining evidence has been justified on philosophical grounds [76],

as well as considered a method that maximizes explanatory power [77, 78], it is equally true

that combining conflicting datasets can produce misleading results [79–82]. Finally, there have

been suggestions that the erroneous signal might come from the molecular dataset, with possi-

ble confounding factors including the extreme distance to the outgroup [68], the heterogeneity

in rates of molecular evolution across clades [83], and the extremely short and deep internodes

that constitute the backbone of the lizard tree [45]. We provide novel insights into this prob-

lem by generating an expanded morphological dataset and performing new analyses in order

to explore the presence of phylogenetic signal, noise and biases in the molecular data.

Results

We assembled an expanded morphological dataset consisting of 848 characters (S1 File), of

which 165 were treated as ordered and the remainder were left unordered. This represents

an increase of roughly 11% with respect to the largest morphological dataset for the clade

published to date. The majority of characters were taken from Gauthier et al. [29], with modifi-

cations proposed by Hsiang et al. [71] and Longrich et al. [41], and with significant contribu-

tions of external morphological characters from Reeder et al. [56]. The molecular matrix on

the other hand is the same as used by Reeder et al. [56], and is composed of sequence data

from 46 protein-coding genes (S2 File).

In order to assess the placement of the main clades comprising the squamate ‘backbone’

(namely: taxa traditionally assigned to Anguimorpha, Gekkota, Iguania, Lacertoidea, Scincoi-

dea, and Serpentes) in both molecular and morphological datasets, we had to restrict taxon

sampling. First, we only considered extant taxa represented in both datasets, leading to the

exclusion of all fossils, including potentially influential backbone clades such as Polyglyphano-

dontia and Mosasauria, the critically important stem squamatans (Huehuecuetzpalli mixtecus
and Megachirella wachtleri), as well as less modified members of the rhynchocephalian out-

group. Second, we excluded all serpentiform taxa with the exception of Serpentes

(hereafter = snakes) as the repeated evolution of a snake-like habitus has confounded morpho-

logical analyses since at least Cuvier’s day (e.g., [84]). This prevents us from considering the

phylogenetic position of a number of enigmatic clades, most notably Dibamidae, that have

proven problematic for both types of data. Other snake-like taxa are well nested within the

main clades included in all datasets, so their exclusion is not expected to bias our phylogenetic

results. In the end, we retained 46 species for all analyses as they largely conserve the same

topological relationships to one another seen in more comprehensive analyses while maximiz-

ing coverage within the aforementioned clades. Although the benefits of increased taxon sam-

pling have been proven repeatedly [85–88], the backbone topology for lizards, while differing

markedly between data sources, is nonetheless remarkably stable within them across a wide

range of taxon sampling [68]. So, we do not expect our restricted sample to affect significantly

our results, especially as this potential shortcoming is largely irrelevant to the question being

addressed here: the radically different hypotheses for the position of Iguania within Squamata.

Phylogenetic position of Iguania and the behavior of molecular data
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The molecular and morphological phylogenies (Fig 1 and S1–S6 Figs) proved fully congru-

ent with the results of previous studies based on those data sources (but see [24]). Molecular

data strongly support the successive branching of Gekkota, Scincoidea, Lacertoidea, and Toxi-

cofera (which includes Iguania), but with weak support for the resolution of the main clades

Fig 1. Summary of phylogenetic relationships obtained using morphological (left), molecular (center) and combined datasets (right). Topologies correspond to

the strict consensus of the optimal trees under equal-weights maximum parsimony and Bayesian inference for each dataset (original trees can be found in S4 File).

Main lizard clades are color coded: light blue = Anguimorpha, purple = Gekkota, green = Iguania, brown = Lacertoidea, orange = Scincoidea, red = Serpentes. Circles

on nodes correspond to support values, coded as shown at the lower left corner. JK = jackknife, PP = posterior probability.

https://doi.org/10.1371/journal.pone.0202729.g001
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within the latter. In contrast, the morphological phylogeny differs by strongly supporting a

first split between Iguania and Scleroglossa, as well as by uniting Scincoidea with Lacertoidea

in a clade (= Scincomorpha Camp 1923 as that name was defined by Estes et al. [36]). Synapo-

morphies supporting this deeper structure are not concentrated in any single anatomical mod-

ule, but are rather drawn from a range of morpho-functional systems (S3 File). As in previous

analyses, Serpentes is nested inside Anguimorpha, being more closely related to Varanoidea

than to Anguidae. Beyond the starkly conflicting placements among backbone taxa, relatively

few differences are found in topologies inferred inside these major clades, and these are gener-

ally restricted to nodes with low support values in either one or both the morphological and

molecular analyses (e.g., the relationships among main subclades of Iguanidae and Acrodonta,

the internal resolution of Gekkota, as well as a few problematic nodes within snakes). In fact,

as highlighted previously [31], the alternative topologies are highly congruent, with an SPR

similarity in the range of 0.77–0.79. This similarity further increases to 0.81–0.84 if poorly sup-

ported nodes are collapsed, leaving most incongruence restricted to the resolution of the earli-

est nodes in the tree. However modest, this incongruence is statistically significant, as

determined by Templeton [89], ILD [90], and AU [91] tests (P< 0.01 in all cases).

As previously shown for lizards [56, 92], the combined tree is not identical to the topology

derived from molecular data alone. This confirms that adding a comparatively small morpho-

logical dataset can still have an impact in combined analyses (see also [71]). However, all dif-

ferences are restricted to nodes with limited support in the molecular analyses. Some studies

have reported that the signal from morphology can overturn nodes strongly supported by phy-

logenomic datasets [92]. In our study, however, we found that all nodes that are resolved dif-

ferently after the addition of morphological data are present in less than 50% of the gene trees

(S7 Fig), and that the resolution obtained in the combined-evidence analysis is always among

the alternatives present in the set of gene trees (S2 Table). This suggests that the role of mor-

phology in studies employing phylogenomic datasets might be restricted to shifting the balance

between alternative topologies already supported by molecular data, independent of whether

the conflicting molecular signal is evident or masked by high support values [93, 94].

The analysis of the topological differences across gene trees reveals a surprising degree of

conflict in the relationships supported by individual genes (Fig 2A), with the morphological

topology lying within the region of treespace occupied by molecular data. In fact, the Robin-

son-Foulds distance (RF distance; the sum of bipartitions in each tree not present in the other,

as a fraction of the total number of bipartitions present in both) between the concatenated

molecular and morphological trees is very similar to the average distance between pairs of

gene trees (see histogram of Fig 2A). This reveals that the topological incongruence found

when comparing different molecular estimates of phylogeny is of similar magnitude to that

found when comparing molecular data against morphology. Further exploration of gene trees

(available as S4 File) indicates that most of this incongruence is restricted to the earliest

branches of the lizard tree, as well as to some undisputed higher-level clades such as Lacertoi-

dea, Scincoidea and Iguania, which are not inferred to be monophyletic in 46%, 41% and 26%

of gene trees, respectively. This uncertainty in the pattern of early branching is especially clear

when split frequencies are used to build a supernetwork (Fig 2B), revealing that gene-tree dis-

agreement almost entirely stems from difficulties with inferring interrelationships among the

major clades of lizards, as well as some early divergences within them (S7 Fig).

Multiple factors could explain this pattern of incongruence. Different genes can support

different topologies when they have experienced different evolutionary histories, a phenome-

non that can occur through the process of incomplete lineage sorting (ILS). This has been con-

sidered a possibility given the short internode lengths at the base of the lizard tree [54, 56]. The

impact of ILS has, however, been demonstrated to contribute a minimal fraction of the total

Phylogenetic position of Iguania and the behavior of molecular data
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Fig 2. Incongruence in the inference of the lizard tree based on individual genes. (A) Projection of topological differences among gene trees on a two-dimensional

treespace. The histogram shows the distribution of pairwise Robinson-Foulds (RF) distances among gene trees, with grey bars representing the fraction of distances

larger than the that between the morphological and concatenated molecular topologies (yellow circles). (B) Supernetwork condensing gene tree incongruence. Clades

are colored as in Fig 1. Most topological variability is restricted to the backbone (black branches), characterized by different resolutions (reticulations) found at a low

frequencies (C) Histogram showing the types of topologies found in the confidence set of trees for all genes. Light grey bars show numbers of genes for which the

confidence set contains more than one option (85%), revealing insufficient levels of phylogenetic signal to distinguish among competing resolutions of the lizard

backbone clades.

https://doi.org/10.1371/journal.pone.0202729.g002

Phylogenetic position of Iguania and the behavior of molecular data

PLOS ONE | https://doi.org/10.1371/journal.pone.0202729 August 22, 2018 7 / 29

https://doi.org/10.1371/journal.pone.0202729.g002
https://doi.org/10.1371/journal.pone.0202729


phylogenetic conflict for deep divergences [95–97]. Simulations have also found maximum

parsimony (MP) to succeed at recovering the correct species tree even in the presence of ILS

[98], while the backbone divergences in our MP and Bayesian inference (BI) trees inferred

from the concatenated molecular dataset are identical. Alternatively, phylogenetic inference

can also be led astray when relatively few characters are sampled (i.e., due to sampling error),

or when phylogenetic signal is too weak to confidently resolve a particular set of nodes. In the

first of these two scenarios, recovering the true tree is expected as character sampling increases,

although this might not be the case if characters lack sufficient information. In support of the

first of these two scenarios, Reeder et al. [56] argued that genes supporting Toxicofera are sig-

nificantly longer, and therefore are expected to be less affected by sampling biases, than those

rejecting this clade. Nonetheless, gene-alignment length is a product of both the true physical

length in the genome (i.e., the number of sampled nucleotide positions, presumed to be inde-

pendent replicates of the evolutionary process) and the procedure used to obtain a multiple-

sequence alignment (MSA). The use of three different methods to assess MSA quality demon-

strates that the longer genes in this dataset are in fact significantly enriched in poorly-aligned

positions (linear regression between the total number of columns in the MSA of a gene and

the proportion of columns eliminated by trimAl [99], BMGE [100], and Gblocks [101];

P = 0.044, 0.029 and 0.045, respectively; S8 Fig). Therefore, it seems that the set of genes sup-

porting Toxicofera is unlikely to be enriched in loci that have overcome sampling errors, but

are instead enriched in genes with uncertain alignments and poorly supported primary

homologies.

In order to specifically test whether the high levels of gene tree discordance affecting the

resolution of the lizard backbone topology is a consequence of limited phylogenetic signal, we

statistically compared alternative topologies using AU tests [91]. Using a series of monophyly

constraints, we tested the ability of each gene to distinguish between alternative hypotheses

that support scleroglossan vs. toxicoferan monophyly, or simultaneously contradict both. Our

results show that at least two of these options are included in the confidence set of trees for

85% of the genes (Fig 2C), confirming that most of the genes in the molecular dataset offer lev-

els of phylogenetic signal too low to distinguish statistically between alternative resolutions of

the most ancient divergences among lizards. Furthermore, of the remaining seven genes, four

statistically reject a Toxicofera-bearing topology, with significant phylogenetic signal for this

clade restricted to just three genes (or about 6.5% of all molecular data).

Phylogenetic informativeness (PI) profiles seem to further support the idea that gene tree

incongruence derives from low levels of phylogenetic signal, revealing an informativeness

peak for the molecular dataset at around 116 Ma and a decay of between 6.5 and 9.2% at the

time spanned by the initial crown-squamate radiation (Fig 3A). The analysis of individual PI

profiles per gene show similar patterns, with the vast majority of genes displaying profiles that

peak at much younger times than those corresponding to the timespan of interest (S9 Fig).

Genes that support toxicoferan monophyly do not peak at ages significantly different from

those of genes rejecting it (one-way ANOVA: F1,44 = 2.42, P = 0.13) and, therefore, cannot be

considered a subset better disposed to resolving deeper nodes. However, by not considering

the detrimental effects of homoplasy, this method is expected to offer only a conservative esti-

mate when branches are short and evolutionary rates are high [102]. To better estimate the

potential impact of this decay, a signal and noise analysis was performed to estimate the proba-

bilities of correct, incorrect and polytomous resolutions of the four internodes determining

relationships among the major lizard clades [103]. The results indicate that rates of molecular

evolution are too high to enable accurate resolution of these four short and ancient branches

(Fig 3B). Across all genes employed, we found high probabilities of incorrect resolution for

each of those four internodes (on average, between 11 and 74% more likely than correct

Phylogenetic position of Iguania and the behavior of molecular data
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Fig 3. Analysis of the rate of evolution in the molecular dataset. (A) Time-calibrated topology of Zhen & Wiens

(2016) with the PI profile of the molecular dataset superimposed (red curve). The informativeness of the dataset decays

by the time spanned by the initial crown squamate radiation (branches highlighted in color). (B) Signal and noise

analysis of individual genes. The y-axis represents the probability with which individual genes contribute to the correct

resolution of the quartets centered on each of the four backbone branches (colored as in A). The stronger the color, the

more likely a given probability-outcome is in the set of genes analyzed.

https://doi.org/10.1371/journal.pone.0202729.g003
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resolutions, S3 Table), stemming from the accumulation of high levels of phylogenetic noise.

Given that a monophyletic Toxicofera requires that the first three of these internodes are

simultaneously correct, for any given gene tree supporting Toxicofera, the probability that this

clade is the product of true phylogenetic signal is less than 0.1.

In order to attempt to mitigate the potential detrimental effects of fast-evolving sites, we

performed a set of new maximum likelihood (ML) phylogenetic analyses after excluding dif-

ferent subsets of fast-evolving sites, a practice that has become common when dealing with

ancient divergences [104–108]. We used two different tree-independent methods to estimate

the rate of evolution of molecular characters [109, 110] and inferred phylogenies after remov-

ing progressively larger subsets of fast-evolving sites. Both methods yield the same result: the

first topological change observed as fast characters are eliminated from the dataset is the simul-

taneous collapse of both Toxicofera and Iguania + Anguimorpha nodes (S10 Fig), even when

the molecular dataset still contained between 8.5 and 10 thousand parsimony-informative

characters, depending on the method employed (see Methods). Further character removal col-

lapses all remaining backbone nodes in the phylogeny inferred. This paradoxical result exem-

plifies the extent to which the backbone topology of Squamata derived from the molecular

dataset is determined by noisy characters that are unlikely to still retain true historical signals.

Additional evidence suggests that the apparent support for a nested position of Iguania

might be the result of systematic biases. As already suggested by previous studies [83], we find

that both snakes and iguanians (as well as lacertoids), have elevated rates of molecular evolu-

tion, about 60% faster than those of the remaining clades (Fig 4A). Furthermore, a chi-square

test reveals significant levels of base-frequency heterogeneity (P< 1016). Detailed exploration

Fig 4. Systematic biases in the molecular dataset. A. Inferred rate of evolution for each of the main clades of lizards studied. Both the median and 95% confidence

intervals are represented. In the case of Iguania, the white dots also show the median values for the rate of evolution estimated individually for Acrodonta (right) and

Iguanidae (left). B. Nucleotide composition of snakes and iguanians differs systematically from that of the remaining squamates. Values correspond to the average

percentage of AT ± 1 standard deviation. C. Clustering of snakes and iguanians (grey dot) due to similar patterns of AT skewness. The tree represents a hierarchical

clustering dendrogram, estimated using Euclidean distances of AT skewness per gene.

https://doi.org/10.1371/journal.pone.0202729.g004
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of nucleotide use indicates that iguanians and snakes share a genome that is, on average, 1.3%

AT-richer than that of the remaining lizard clades (Fig 4B), a difference that is significant

under a phylogenetic ANOVA (F = 16.92, P = 0.035). Moreover, we find that iguanians and

snakes cluster together due to similar patterns of AT skewness across genes (Fig 4C).

The presence of branch-length and compositional heterogeneities might result in a mis-

placed Iguania. For this to be true, however, these biases need to be genome-wide, as Toxico-

fera has been recovered from a wide variety of coding and non-coding loci (e.g., [56, 61, 62]).

To explore this possibility, we further analyzed the phylogenetic signal and compositional

spectrum of a molecular dataset consisting of 4,178 squamate UCEs [62]. Once again, we find

that iguanians and snakes share a genome that is AT-richer (phylogenetic ANOVA, F = 5.45,

P = 0.03), even when this dataset includes only three members of each of these clades.

Although UCEs have been considered especially suitable for phylogenetic inference in deep-

time [111, 112], few studies have characterized their temporal performance (such as [113]).

Surprisingly, our results reveal that the phylogenetic informativeness of the squamate UCE

dataset peaks at times even younger than that of the protein-coding loci dataset previously ana-

lyzed (Fig 5), which in turn shows a shallower maximum informativeness than the morpholog-

ical dataset. Phylogenetic signal surviving from the initial squamate radiation might be scant

Fig 5. Comparison of the PI profiles for the protein-coding (same as in Fig 3) and UCE datasets with morphology.

Morphology evolves at a slower rate, leading to a PI-profile peak at around 171.5 Ma, an age markedly older than

either molecular dataset. The rate of decay is also less steep for the morphological data. Thus, morphology accumulates

noise at a much slower pace, potentially retaining more phylogenetic signal to resolve ancient and short branches. The

height of the profiles is standardized to emphasize their temporal dynamics; when calculated without standardization,

peak informativeness is 75% lower for morphology, and 55% lower for UCEs, than is the peak for protein-coding data

measured on a per character basis. This standardization is applied in recognition of the fact that morphological

characters are preselected to be informative during the timeframe under study; therefore, their absolute

informativeness cannot be compared directly, whereas the shape of their informativeness profile—when their rate of

change implies that they will be useful for phylogenetic inference—remains of interest.

https://doi.org/10.1371/journal.pone.0202729.g005
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irrespective of the type of molecular data employed, while systematic biases seem to be present

throughout the genomes of lizards.

Discussion

The development of methods that allow genome-scale molecular data to be sequenced revolu-

tionized the field of phylogenetic systematics [114]. Like many previous revolutions, it arrived

with a renewed faith that the Tree of Life, depicting the true relationships among all organisms,

was finally within reach [115, 116]. More than a decade has passed since the first pioneering

works in phylogenomics, and although this approach has contributed mightily toward resolv-

ing diverse phylogenetic problems [117–122], other regions of the Tree of Life have remained

immune to the exponential growth in the amount of data. These include the position of turtles

among reptiles [123], the initial radiation of Neoaves [124], the earliest divergences among pla-

cental mammals [125], the internal resolution of Chelicerata [126] and Lophotrochozoa [127],

and the deepest nodes of animal phylogeny [128]. In all of these cases (as well as several oth-

ers), the virtual eradication of sampling error through massive sequencing has not proven to

be the panacea once hoped for [115].

The elimination of stochastic errors has thus opened a new chapter for phylogenetic infer-

ence, in which systematic biases, coupled with the use of models of evolution that are simplistic

compared to the complexity of genomic data, are expected to play a central role [129–131].

The fact that alternative phylogenomic analyses built to tackle the same questions arrive at

conflicting results as, for example, in the case of birds [132, 133] and metazoans [134, 135],

indicate that these problems are sufficiently important to render phylogenomic inference

inconsistent. These issues are sometimes difficult to diagnose, as researchers continue to rely

on measures of support that are expected to conceal signs of conflict and systematic error [93,

94, 123, 136]. Furthermore, an often unstated assumption is that the characters employed are

evolving at a rate appropriate to estimate with accuracy the phylogenetic problem at hand

[137]. If this assumption is not met and characters evolve at a rate faster than optimal, true his-

torical signal will be eroded as phylogenetic signal is replaced by random noise [138]. As the

phylogenetic signal-to-noise ratio decays, non-phylogenetic signals stemming from processes

such as heterotachy and compositional heterogeneity can dominate the analysis, a phenome-

non that is unlikely to be overcome by increasing the amount of data through random sam-

pling of the genome [103, 114, 128, 130, 139]. Although there has been significant progress

toward detecting and accounting for these phenomena, we are still far from understanding

how phylogenetic signal, noise and biases interact to determine the outcome of genome-scale

phylogenetic studies [95, 123, 140, 141].

Ancient rapid radiations are expected to be disproportionally affected by these issues [94,

142–144]. Given the bush-like shape of these trees, with short branches close to the base and

long ensuing timespans, characters are required to evolve fast enough to capture the radiation

as it unfolds, but slow enough that this information is not erased by subsequent evolution

[138, 145–147]. Increasing the amount of data by random sampling is not expected to yield

many characters that fulfill these prerequisites [142], while rendering analyses more vulnerable

to systematic biases [130]. These problems are thought to cause persistent difficulties in resolv-

ing many of the aforementioned empirical examples. Further simulation studies have shown

that—even under ideal conditions that are never met in the analysis of empirical data—the

probability of recovering the true basalmost split for “bushy” trees can be negligible [148].

The phylogeny of Squamata has become a paradigmatic example of character incongruence

[46], with morphological and molecular data displaying strong disagreement regarding the

position that iguanian lizards occupy [29, 54]. Given this signal incompatibility, many have
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assumed that morphology must be providing an incorrect estimate of phylogeny [56, 67]. Mor-

phology does indeed have problems resolving some parts of the lizard tree, most conspicuously

when inferring relationships of long-bodied, limb-reduced, head-first burrowing lizards [65].

However, this problem should not affect the placement of Iguania, a clade that has never pro-

duced any serpentiform taxa. Indeed, our results show that once the potentially confounding

factor of independent adoption of a snake-like habitus is excluded, morphological data are

capable of providing a well-supported alternative hypothesis for the interrelationships of the

main clades of lizards (Fig 1). The proposal that morphology is confounded by apomorphies

in the feeding behaviors of Iguania and Sphenodon punctatus (interpreted as convergent on the

molecular tree) has received little support from a recent study showing that the signal rejecting

the position of Iguania within Toxicofera is distributed across cranial and postcranial charac-

ters ([56], see also S3 File). Although convergence among these taxa related to feeding behavior

remains plausible, it has yet to be firmly established, and at the very least it seems overly sim-

plistic [29, 45, 46, 68].

A second reason why Toxicofera has been favored by molecular systematists is the fact that

combined analyses also infer this clade. This justification is based on the idea that, even when

morphology represents a minimal fraction of the total dataset, morphological signals still con-

tribute to the result of a combined analysis, altering resolution of even strongly supported

nodes [92], a counterintuitive result [149]. Our analyses indicate that the regions of the tree

that change with the addition of morphology are all subject to strong conflict within the molec-

ular partition itself, and that the resolution obtained in the combined analysis is always among

the options supported by individual gene trees. Although morphology does indeed affect the

tree obtained, it seems unable to propose new topologies when it constitutes a minimal frac-

tion of the total evidence. Thus, the role of morphology in the genomic era might be restricted

to tipping the balance between alternative resolutions supported by molecular evidence, plac-

ing significant limits on its influence in combined analyses.

As expected for an ancient radiation, we find that individual genes harbor very limited phy-

logenetic signal to resolve interrelationships among the main clades of lizards emerging during

the relevant time interval (Fig 2). This result was fully acknowledged in the early days of molec-

ular phylogenetics, when studies still relied on individual genes [49, 50]. This lack of power

seems to reflect a rate of molecular evolution that is too high for true historical signals to sur-

vive until the present day (Fig 3). The phylogenetic signal–to–noise ratio is low enough that

the probability of having greater support for an incorrect topology exceeds that of obtaining

the correct resolution across all genes and for all four backbone internodes. Genes supporting

Toxicofera do not appear any more reliable than those rejecting it, they do not evolve at signifi-

cantly different rates, nor do they seem less subject to sampling biases, as previously proposed

[56]. In fact, they seem to be genes with low alignment certainty, a property recently found to

predict a gene’s lack of reliability for phylogenetic inference [123]. These results suggest that

confidence in any given higher-level resolution of the lizard tree, including Toxicofera, is

unwarranted. That being said, almost every molecular study relying on more than a handful of

genes seems to have converged on similar higher-level topology, a seemingly paradoxical

result.

The combination of data derived from multiple genes reduces the impact of sampling

errors, therefore increasing the signal-to-noise ratio of a dataset [150]. However, this signal

need not result from evolutionary relatedness, as it may also stem from similarities in the pro-

cesses that shape genomic variation. Intriguingly, we find that snakes and iguanians share both

faster rates of molecular evolution and similarly biased nucleotide compositions in their

genomes (Fig 4). These potentially confounding factors were initially considered possible

causes of the topological incongruence in lizard phylogeny [52], but were discarded owing to a
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lack of sufficient evidence stemming from small molecular datasets. Other studies have sug-

gested that acrodont iguanians and snakes shared a particularly high rate of molecular evolu-

tion [83], which could ultimately influence their inferred relationships [151]. Our results show

that although molecular evolution in acrodonts is especially fast, a shift toward higher rates

seems to have happened along the branch leading to all iguanians. This could, in turn, affect

the position of the entire clade due to long-branch attraction artifacts. Furthermore, both igua-

nians and snakes seem to share similar values of both GC content and AT skewness. The

simultaneous effect of these systematic biases, coupled with a weak phylogenetic signal, might

be sufficient to result in a misplaced Iguania. We find evidence for similar issues in a phyloge-

nomic dataset composed of non-coding UCEs [62], showing the aforementioned problems are

likely to characterize molecular information genome-wide. Given the complex set of morpho-

logical convergences and reversals required for Toxicofera to be true (S3 File), we believe

attributing biases to either molecular or morphological data to be equally plausible explana-

tions for the conflict over deep-time squamate relationships, indicating that the conflict over

lizard phylogeny is still unresolved.

A comprehensive understanding of evolution requires the integration of genomic and phe-

nomic evidence [152, 153]. Even though morphological data are prone to problems arising

from convergent evolution and lack of character independence, it is expected to be relatively

free of other types of biases affecting molecular data [150], such as those described above. Mor-

phological evolution is in many respects fundamentally different from evolution at the molec-

ular level [31, 147, 154], and characters are generally preselected to be useful for a given

phylogenetic question, all of which might make morphological data especially suited to resolv-

ing deep and “bushy” areas of the Tree of Life for which molecular evidence is expected to be

scant [31, 149, 155–157]. In fact, the PI profile for our morphological dataset peaks at substan-

tially deeper times than both of the molecular datasets explored (Fig 5), suggesting morphology

might provide a more accurate resolution of the initial crown-lizard radiation. A dismissive

attitude toward phylogenetic hypotheses based on morphology is therefore not warranted [68,

149, 155, 158, 159]. Many recent publications have employed phylogenomic data to resolve

apparent conflicts between morphological and molecular data in favor of topologies originally

supported by morphology alone, including the Strepsiptera problem [160], sponge paraphyly

[161] and the relationships among the main clades of myriapods [162], copepods [163] and

otophysan [95] and siluriform actinopterygians [164]. These examples illustrate that congru-

ence between morphological and molecular evidence is still crucial for phylogenetics [149] and

should be sought regardless of the amount of molecular data supporting any given hypothesis.

Methods

Datasets and phylogenetic inference

Taxon-character datasets employed can be found as S1 and S2 Files. Throughout, three termi-

nals are identified using generic epithets only, as morphological and molecular data were

obtained from different species within those clades. Although novel characters were added

exclusively to the morphological dataset, both matrices were modified with respect to previous

studies due to the reduction in taxonomic coverage. The molecular matrix contains 619 fewer

positions than the equivalent matrix of Reeder et al. [56], all of which were represented entirely

by gaps among the 46 terminals selected. Likewise, the number of states for some morphologi-

cal characters was reduced with respect to those of Gauthier et al. [29], eliminating states not

observed among the sampled taxa, thus leading to more accurate estimates of rate matrices

[165]. A more complete morphological matrix coded for a wider sample of living and extinct
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lizards, as well as appropriate character descriptions and illustrations, will be published

elsewhere.

Phylogenetic inference was performed on the morphological, concatenated molecular and

combined matrices under MP, ML and BI. Because ML phylogenies derived from morphologi-

cal data failed to support iguanian monophyly, a clade otherwise supported across all methods

and analyses, results from ML are not shown. This is in line with recent results suggesting that

ML analyses under the Mk model [166] might be the least accurate method of phylogenetic

inference from phenotypic data [167].

Parsimony analyses for all datasets were performed in TNT v. 1.5 [168] under equal

weights. In all cases, we performed a driven tree search using new technologies [169–171] until

the same minimum tree length was found fifty independent times. A round of TBR branch

swapping was then performed on the trees in memory. Support was evaluated using absolute

node frequency in 1,000 replicates of jackknife resampling, with tree search parameters set to

100 replicates, employing TBR branch swapping and holding up to 10 optimal trees. For BI,

runs for the molecular data were performed under independent GTR+Γ+I models after parti-

tioning by gene and codon position. Morphological data were run under the Mk+Γ model,

with correction for ascertainment bias. MrBayes 3.2.2 [172], running 4 chains of Metropolis-

coupled Markov-chain Monte Carlo for either 50 million generations (morphological and

molecular datasets) or for 300 million generations (combined dataset), storing every 10,000th

generation and discarding the initial 25% of samples as burn-in. In every case, four indepen-

dent runs were performed and the posterior samples were combined after confirming statio-

narity and convergence by examining traces and posterior distributions of parameters using

Tracer v. 1.6 [173], as well as treespace exploration with R package rwty [174]. Gene trees were

inferred under ML in PAUP� 4.0 [175] using the optimal model of evolution for each accord-

ing to the Bayesian Information Criterion, as determined by that program. Concatenated

molecular and morphological topologies were compared using SPR distances (i.e., the comple-

ment of the number of subtree-pruning and re-grafting moves required to convert one topol-

ogy into the other divided by the maximum number of moves possible given the number of

taxa), as implemented in TNT v. 1.5

Assessment of conflict between genes

Gene trees were imported into the R environment [176] where topological differences were

measured as unweighted RF distances [177] using package phytools [178]. For a pair of topolo-

gies, RF distances represent the sum bipartitions present in each tree and absent from the

other, divided by the total number of bipartitions in both. In order to account for the fact that

different gene trees contained different terminals, distances were calculated only after pairs of

trees were pruned to the set of shared tips. For reference, the Bayesian topologies for the mor-

phological and concatenated molecular datasets were also included in the set of compared

topologies. RF distances were then used to build a graphical representation of topological con-

flict [179] in the program TreeScaper [180]. Variability was condensed into two dimensions

using singular value decomposition of the distance matrix, minimizing the curvilinear compo-

nents analysis stress [181].

Although this method visually depicts the degree of conflict among members of a set of

topologies, it does not reveal whether differences are concentrated in a particular region of the

tree. For this purpose, gene trees were employed to build a supernetwork using SuperQ v. 1.1

[182]. This approach decomposes trees into bipartitions, and a supernetwork was built in

which branch lengths were calculated as the frequency of bipartitions in the set of ML gene

trees using SplitsTree [183].
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The length of a MSA depends on both the number of sites sampled and the alignment pro-

cedure. The use of the length of the alignment as a proxy for the strength of sampling errors

assumes that the effect of the latter is negligible, or at least constant across MSAs of different

lengths. Although disentangling the contributions of these two factors is not straightforward,

we checked the quality of the MSA using the programs trimAl v. 1.2 [99] (using the strictplus
method), BMGE v. 1.12 [100], and Gblocks v. 0.91b [101] (for the last two, the proportion of

gaps tolerated was increased to 0.5; for Gblocks the minimum number of sequences for both

conserved and flank positions was set to half the number of sequences). If final length is in fact

a product of alignment procedures, these programs should detect a higher proportion of

poorly aligned positions as the length of the alignment increases. By using a variety of pro-

grams that differentially rely on the proportion of gaps, degree of conservation, residue simi-

larity, and entropy-based metrics, we hoped to recover a true signal of poorly aligned

positions.

To assess whether topological conflict across gene trees is the result of low levels of phyloge-

netic signal, alternative resolutions of the backbone were statistically compared using site like-

lihoods after performing a set of constrained tree searches in PAUP� (similar to the approach

of Arcila et al. [95]). Specifically, all searches were performed after constraining monophyly of

each of the main lizard clades, as well as Squamata as a whole. Under these conditions, there

are 945 possible resolutions of the lizard backbone tree [184]. We simplified the problem by

comparing, for each gene, only the trees with the highest likelihood out of: 1) 105 possible

alternatives supporting the monophyly of Scleroglossa; 2) 45 supporting the monophyly of

Toxicofera; and 3) 795 rejecting both. Site likelihoods for these three competing hypotheses

were used to perform approximately unbiased (AU) tests [91] using CONSEL v. 0.1 [185]. The

AU test employs multiscale bootstrap of site likelihoods to simultaneously compare multiple

trees and assign P-values to them. All trees with P> 0.05 cannot be statistically rejected as the

best explanation for the observed data, and are referred to as the confidence set of trees.

Rates of evolution

In order to explore the informativeness of molecular data, we calculated the rate of evolution

of individual characters using HyPhy [186]. Rates were calculated for both the protein-coding

dataset of Reeder et al. [56] and the UCE dataset of Streicher and Wiens [62]. For the latter,

calculations were automated using TAPIR [187], increasing to five the minimum number of

taxa without gaps for a site to be considered informative. We employed the time-calibrated

topology of Zheng and Wiens [32], pruned to the set of taxa represented in each dataset (for

taxa identified only to genus, a random species was selected for each genus), and estimated the

ML rate of evolution per site under the optimal model for each gene. PI profiles were then plot-

ted using the R package PhyInformR [188]. This enabled us to assess the relative utility of a set

of characters to resolve relationships at different timescales [138], based on a comparison

between their estimated rates of evolution and a theoretical optimum rate that maximizes the

probability of correct resolution at a specific point in time. Given a set of rates, the PI profile of

a dataset is expected to increase as one moves further back in time, up until the point at which

characters start to evolve too fast to allow accurate phylogenetic resolution. The PI profile then

decays, evidencing the expected accumulation of noise in the data.

For the morphological data, rates of evolution were estimated using BayesTraits V2 [189]

under the simplest possible model including one parameter describing transition rates

between states (Mk1 model [166]). Polymorphic entries, accounting for 0.2% of the morpho-

logical dataset, were transformed to missing data before the analysis. A direct comparison of

rates of evolution for morphological and molecular data estimated on the same phylogeny
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would be unfair, as this topology would be far from optimal for one dataset, resulting in overly

high inferred rates of evolution. Therefore, rates for the morphological partition were esti-

mated in a tree in which Iguania was placed as sister to all other lizards, but with the rest of the

topology being identical to the BI molecular tree (S4 Fig). We caution that the rates inferred

for the morphological dataset on this tree are likely to be overestimated, and accordingly its

informativeness shallower than the one estimated on an optimal topology. Branch lengths for

this tree were calculated using the molecular dataset in PAUP� under a GTR+Γ+I model, and

the tree was transformed to ultrametric using penalized likelihood [190] in R package ape
[191]. The optimum value of the rate-smoothing parameter was determined through twofold

cross-validation.

PI profiles do not account for the probability that homoplastic site patterns result in mis-

leading support for spurious resolutions, and is therefore expected to perform poorly when

characters evolve at fast rates and internodes are short [102]. Therefore, we employed the sig-

nal and noise framework [103] to estimate the probabilities of correct, incorrect, and polyto-

mous resolution of the deepest internodes in the lizard tree, according to each gene. This

approach has been recently found to be an accurate predictor of a gene’s utility to resolve a

given phylogenetic question [148]. Probabilities of resolution for each of the four branches

connecting the major lizard clades across all genes were calculated using optimal models of

evolution, as well as accounting for the lengths of all five branches in the phylogenetic quartet

of interest [188, 192, 193].

These methods rely on the molecular tree being correct, and can give biased estimates of

the rate of evolution if the tree is misspecified. Therefore, we further explored the impact of

fast evolving characters on phylogenetic inference using the tree-independent methods TIGER

[109] and OV [110]. The first of these is based on character congruence, given that slow-evolv-

ing characters are expected to partition terminals into subgroups that will show little disagree-

ment with those generated by other sites, while the partitions defined by fast-evolving

characters will likely be the result of noise and therefore show low repeatability and high dis-

agreement [104, 194]. The second method is much simpler, and only relies on calculating the

number of character-state matches relative to mismatches across terminals and independently

for each site, with the expectation that fast-evolving characters will explore more of the state

space and therefore have a reduced state-matching probability. We used the molecular align-

ment obtained after using trimAl, that eliminated 16.9% of the characters, all of which were

either extremely noisy or had high proportions of gaps (S11 Fig). All characters were then

ordered from slowest to fastest according to both methods, and a set of matrices were gener-

ated by successively eliminating the 500 fastest-evolving characters, therefore obviating the

need to define a strict fast/slow cut-off. ML inference was performed on these matrices with

RAxML v. 8.2.10 [195] through the CIPRES gateway [196], using a GTRCAT+I model. It

should be noted that tree-independent methods have recently been shown to produce biased

character exclusion [197, 198], and should therefore be interpreted in the context of the other

results, as a complement to methods that are tree-aware and ML-based. However, we find that

both methods, but especially OV, were accurate at identifying fast-evolving sites, selecting

characters that were also among those with the highest rates of evolution as estimated with ML

in the time-calibrated topology (S12 Fig).

Systematic biases

Two possible systematic biases in the molecular matrix were explored, namely among-lineage

rate variation and compositional heterogeneity. For the first of these, a tree was inferred from

the complete molecular dataset using PhyloBayes MPI v. 1.7 [199] under the site-heterogenous
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CAT+GTR model [200], which better accommodates scenarios of rate variation across line-

ages. Two independent chains were run for 10,000 cycles, discarding the first 25% as burn-in,

and combined after checking for convergence. We randomly subsampled 10% of the trees in

the posterior distribution to calculate a root-to-tip distance for all terminals. Distances for ter-

minals in each of the main lizard clades were averaged to obtain a mean root-to-tip distance

per clade, thus obtaining an estimate of the relative amount of molecular evolution for each

(similar to the relative rate test [201, 202]). Rates across clades were explored by plotting the

interval containing 95% of calculated distances, and rate differences were considered signifi-

cant if intervals did not overlap.

Compositional biases were assessed using BaCoCa v. 1.103 [203]. Nucleotide frequencies

for all terminals were calculated and subjected to a Chi-square test of homogeneity, as well as

used to explore different parameters such as GC content and skew values for nucleotide pairs

[204], known to negatively affect phylogenetic inference. GC content describes the general

nucleotidic composition of the double-stranded molecule of DNA, while skew values describe

compositional differences between strands [204]. Significance of the GC content difference

found between Iguania + Serpentes and the remaining lizards was tested using simulation-

based phylogenetic ANOVA [205] in phytools [178], with 1,000 simulations.

Supporting information

S1 Fig. Optimal tree for the morphological dataset under maximum parsimony. Values

along branches represent jackknife support.

(TIF)

S2 Fig. Majority rule consensus tree of the Bayesian inference analysis for the morphologi-

cal dataset. Values along branches represent posterior probabilities.

(TIF)

S3 Fig. Optimal tree for the molecular dataset under maximum parsimony. Values along

branches represent jackknife support.

(TIF)

S4 Fig. Majority rule consensus tree of the Bayesian inference analysis for the molecular

dataset. Values along branches represent posterior probabilities.

(TIF)

S5 Fig. Optimal tree for the combined dataset under maximum parsimony. Values along

branches represent jackknife support.

(TIF)

S6 Fig. Majority rule consensus tree of the Bayesian inference analysis for the combined

dataset. Values along branches represent posterior probabilities.

(TIF)

S7 Fig. Gene tree topological incongruence as a function of node age. Gene support fre-

quency (GSF) corresponds to the fraction of gene trees showing a node present in the

concatenated, time-calibrated tree of Zheng & Wiens [32] out of the set of genes sampling all

terminals in the corresponding clade. The red curve is a loess regression, and shows a strong

decay in GSF for the oldest 7 nodes of the topology. These correspond to the four backbone

nodes plus the nodes for Iguania, Scincoidea and Lacertoidea. The degree of conflict in the res-

olution of those 7 nodes is also clear in the supernetwork of Fig 2. White dots show regions of

the tree resolved differently after the addition of morphological data, all of which are among
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the nodes with lowest GSF.

(TIF)

S8 Fig. Negative relationship between gene length and alignment certainty. Three different

methods were employed to eliminate poorly aligned positions (trimAl, BMGE and Gblocks).

All three methods eliminated a proportion of sites per gene that significantly correlates with

the length of the multiple-sequence alignment (MSA, top). The targeted positions are shown

in the bottom: each column of the alignment is represented as a box, with yellow, orange and

red colored boxes showing positions targeted by any one, two or three of the methods, respec-

tively. Genes are also ordered according to length of the MSA, decreasing from top left to bot-

tom right by column. Most genes with low alignment certainty cluster towards the left.

(TIF)

S9 Fig. Phylogenetic informativeness profiles of individual genes. Profiles are arbitrarily

subdivided into those peaking before (left, 61%) and after 150 Ma (right, 39%). Note however

that the majority of the genes on the right still have informativeness peaks before the estimated

time-frame in which the main lizard clades diverged. Only 3 profiles peak during or after the

squamate radiation, of which only 1 supports a monophyletic Toxicofera.

(TIF)

S10 Fig. Collapse of the backbone topology after eliminating a relatively small fraction of

fast-evolving sites. Topologies correspond to the optimal trees found using RAxML after

eliminating the fastest-evolving 2,500 sites according to OV (left) or 4,000 sites according to

TIGER (right). In both cases part of the lizard backbone topology collapsed, leaving Angui-

morpha, Iguania, Lacertoidea and Serpentes in an unresolved polytomy. Further matrix prun-

ing led to the collapse of all backbone branches. No other type of topological change was

found.

(TIF)

S11 Fig. Properties of the positions eliminated by trimAl. Targeted characters were either

highly noisy, as measured using Shannon entropy, or had very high proportion of gaps. Den-

sity of eliminated characters increases from blue to red. The elimination of these characters

had no impact on topology or support values.

(TIF)

S12 Fig. Accuracy of tree-independent methods (OV and TIGER) to estimate rate of evolu-

tion. All variable characters in the molecular dataset (after eliminating poorly-aligned posi-

tions with trimAl) were ordered according to increasing rates of evolution, as estimated using

maximum likelihood in the time-calibrated topology. The frequency with which characters

were selected in a sliding window of size 1000 by both OV (orange) and TIGER (green) was fit-

ted using a kernel regression smoother. The first 2,500 and 4,000 characters selected by each of

these methodologies (whose exclusion led to the collapse of parts of the backbone topology,

see S10 Fig) are among the ones with the fastest ML rates of evolution. OV, although simpler

than TIGER, seems to be more accurate, showing a steeper rise in frequency towards the fastest

extreme. This difference in accuracy might be the reason why the 4,000 fastest characters

according to TIGER had to be deleted in order to obtain the same result as with only the 2,500

fastest ones according to OV. Perfect identification of the fastest characters is shown in dashed

lines. Ten replicates of random character selection are also shown, the expected value of which

is simply the proportion of eliminated characters out of the total.

(TIF)
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S1 Table. Timescale of the squamate radiation, as estimated by multiple time-calibration

studies. Total time is the time spanned between the age of crown Squamata and that of the

most recent common ancestor of Anguimorpha with either Iguania or Serpentes, depending

on the resolution of Toxicofera obtained by each study. Average internode is the total time

divided by five, giving the average length of the internodes connecting major squamate clades.

PL = Penalized likelihood; GEA = Gauthier et al. [29]; CON = Conrad [38];

MkA = asymmetric Mk model.

(DOCX)

S2 Table. Number of genes trees (GS = gene support) showing the same resolution as

found in the concatenated molecular and combined topologies, for nodes in which these

two differ. Low values are a consequence of both A) missing data, and more frequently B)

other topologies being also commonly recovered.

(DOCX)

S3 Table. Probabilities of incorrect (QIHP), polytomous (QIPP) and correct (QIRP) reso-

lution of the four internodes connecting the main lizard clades across all genes. QIPP are

relatively low overall, a consequence of the high rates of molecular evolution. Across all four

branches and 46 genes, QIHP values surpass QIRP, evidencing higher probabilities of incor-

rect resolutions. Clade names follow the terminology of Vidal & Hedges (2009).

(DOCX)

S1 File. Morphological dataset.

(NEX)

S2 File. Molecular dataset.

(NEX)

S3 File. Morphological synapomorphies relevant to crown squamate backbone.

(DOCX)

S4 File. Maximum likelihood gene trees.

(NEX)
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27. Apesteguı́a S, Gómez RO, Rougier GW. The youngest South American rhynchocephalian, a survivor

of the K/Pg extinction. Proc R Soc B Biol Sci; 2014: 281: 20140811.

28. Apesteguı́a S, Novas FE. Large Cretaceous sphenodontian from Patagonia provides insight into lepi-

dosaur evolution in Gondwana. Nature. 2003; 425(6958): 609–612. https://doi.org/10.1038/

nature01995 PMID: 14534584

29. Gauthier JA, Kearney M, Maisano JA, Rieppel O, Behlke AD. Assembling the squamate tree of life:

perspectives from the phenotype and the fossil record. B Peabody Mus Nat Hist. 2012; 53(1): 3–308.

30. Mulcahy DG, Noonan BP, Moss T, Townsend TM, Reeder TW, Sites JW, et al. Estimating divergence

dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate rep-

tiles. Mol Phylogenet Evol. 2012; 65(3): 974–991. https://doi.org/10.1016/j.ympev.2012.08.018 PMID:

22982760

31. Pyron RA. Novel approaches for phylogenetic inference from morphological data and total-evidence

dating in squamate reptiles (Lizards, Snakes, and Amphisbaenians). Syst Biol. 2017; 66(1): 38–56.

https://doi.org/10.1093/sysbio/syw068 PMID: 28173602

32. Zheng Y, Wiens JJ. Combining phylogenomic and supermatrix approaches, and a time-calibrated phy-

logeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol Phylo-

genet Evol. 2016; 94: 537–547. https://doi.org/10.1016/j.ympev.2015.10.009 PMID: 26475614

33. Soh W, Wright I, Bacon K, Lenz T, Steinthorsdottir M, Parnell A, et al. Palaeo leaf economics reveal a

shift in ecosystem function associated with the end-Triassic mass extinction event. Nature Plants.

2017; 3(8): 17104.

34. Tanner LH. Climates of the Late Triassic: perspectives, proxies and problems. In: Tanner L, editor.

The Late Triassic World. Berlin: Springer; 2018. pp. 59–90.

35. Pyron RA, Burbrink FT. Early origin of viviparity and multiple reversions to oviparity in squamate rep-

tiles. Ecol Lett. 2014; 17(1): 13–21. https://doi.org/10.1111/ele.12168 PMID: 23953272

36. Estes R, De Queiroz K, Gauthier J. Phylogenetic relationships within Squamata. In: Estes R, Pregill G,

editors. Phylogenetic Relationships of the Lizard Families. Stamford: Stanford University Press;

1988. pp. 119–281.

37. Gauthier JA. Fossil xenosaurid and anguid lizards from the early Eocene Wasatch Formation, south-

east Wyoming, and a revision of the Anguioidea. Rocky Mountain Geology. 1982; 21(1): 7–54.

38. Conrad JL. Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bull Am Mus

Nat Hist. 2009; 310: 1–182.

39. Lee MS. Squamate phylogeny, taxon sampling, and data congruence. Org Divers Evol. 2005; 5(1):

25–45.

40. Caldwell MW. Squamate phylogeny and the relationships of snakes and mosasauroids. Zool J Lin-

nean Soc. 1999; 125(1): 115–147.

41. Longrich NR, Bhullar B-AS, Gauthier JA. A transitional snake from the Late Cretaceous period of

North America. Nature. 2012; 488(7410): 205–208. https://doi.org/10.1038/nature11227 PMID:

22832579

42. Schwenk K. Comparative morphology of the lepidosaur tongue and its relevance to squamate phylog-

eny. Phylogenetic relationships of the lizard families. 1988; 569:598.

Phylogenetic position of Iguania and the behavior of molecular data

PLOS ONE | https://doi.org/10.1371/journal.pone.0202729 August 22, 2018 22 / 29

https://doi.org/10.1371/journal.pone.0137523
https://doi.org/10.1371/journal.pone.0137523
http://www.ncbi.nlm.nih.gov/pubmed/26355294
https://doi.org/10.1038/s41586-018-0093-3
https://doi.org/10.1038/s41586-018-0093-3
http://www.ncbi.nlm.nih.gov/pubmed/29849156
https://doi.org/10.1371/journal.pone.0089165
http://www.ncbi.nlm.nih.gov/pubmed/24586565
https://doi.org/10.1038/nature01995
https://doi.org/10.1038/nature01995
http://www.ncbi.nlm.nih.gov/pubmed/14534584
https://doi.org/10.1016/j.ympev.2012.08.018
http://www.ncbi.nlm.nih.gov/pubmed/22982760
https://doi.org/10.1093/sysbio/syw068
http://www.ncbi.nlm.nih.gov/pubmed/28173602
https://doi.org/10.1016/j.ympev.2015.10.009
http://www.ncbi.nlm.nih.gov/pubmed/26475614
https://doi.org/10.1111/ele.12168
http://www.ncbi.nlm.nih.gov/pubmed/23953272
https://doi.org/10.1038/nature11227
http://www.ncbi.nlm.nih.gov/pubmed/22832579
https://doi.org/10.1371/journal.pone.0202729


43. Gauthier J, Estes R, De Queiroz K. A phylogenetic analysis of Lepidosauromorpha. In: Estes R, Pregill

G, editors. Phylogenetic Relationships of the Lizard Families. Stamford: Stanford University Press;

1988. pp. 15–18.

44. Vitt LJ, Pianka ER, Cooper J, William E, Schwenk K. History and the global ecology of squamate rep-

tiles. Am Nat. 2003; 162(1): 44–60. https://doi.org/10.1086/375172 PMID: 12856236

45. Sweet SS. Chasing Flamingos: Toxicofera and the Misinterpretation of Venom in Varanid Lizards.

Bangkok: Institute for Research and Development, Suan Sunandha Rajabhat University; 2016.

46. Losos JB, Hillis DM, Greene HW. Who speaks with a forked tongue? Science. 2012; 338(6113):

1428–1429. https://doi.org/10.1126/science.1232455 PMID: 23239723

47. Rieppel O, Gauthier J, Maisano J. Comparative morphology of the dermal palate in squamate reptiles,

with comments on phylogenetic implications. Zool J Linnean Soc. 2008; 152(1):131–52.

48. Schwenk K. The evolution of chemoreception in squamate reptiles: a phylogenetic approach. Brain

Behav Evol. 1993; 41(3–5): 124–137. https://doi.org/10.1159/000113830 PMID: 8477337
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