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Abstract

The RegulonDB (http://regulondb.ccg.unam.mx) team generates manually elaborated

summaries about transcription factors (TFs) of Escherichia coli K-12. These texts involve

considerable effort, since they summarize a diverse collection of structural, mechanistic

and physiological properties of TFs and, due to constant new research, ideally they re-

quire frequent updating. In natural language processing, several techniques for auto-

matic summarization have been developed. Therefore, our proposal is to extract, by

using those techniques, relevant information about TFs for assisting the curation and

elaboration of the manual summaries. Here, we present the results of the automatic clas-

sification of sentences about the biological processes regulated by a TF and the informa-

tion about the structural domains constituting the TF. We tested two classical classifiers,

Naı̈ve Bayes and Support Vector Machines (SVMs), with the sentences of the manual

summaries as training data. The best classifier was an SVM employing lexical, grammat-

ical, and terminological features (F-score, 0.8689). The sentences of articles analyzed by

this classifier were frequently true, but many sentences were set aside (high precision

with low recall); consequently, some improvement is required. Nevertheless, automatic

summaries of complete articles about five TFs, generated with this classifier, included

much of the relevant information of the summaries written by curators (high ROUGE-1

recall). In fact, a manual comparison confirmed that the best summary encompassed

100% of the relevant information. Hence, our empirical results suggest that our proposal
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is promising for covering more properties of TFs to generate suggested sentences with

relevant information to help the curation work without losing quality.

Database URL: RegulonDB, http://regulondb.ccg.unam.mx

Introduction

RegulonDB (http://regulondb.ccg.unam.mx) is a database

dedicated to the transcriptional regulation of Escherichia

coli K-12. One of the final products of curated knowledge

delivered by this database is a set of summaries about sev-

eral properties of transcription factors (TFs). These sum-

maries are also found within EcoCyc (1) as part of our

collaboration. Currently, we have 177 summaries. To ac-

cess a summary in RegulonDB, it is necessary to search for

a TF, for example, CytR. Next, we select the regulon de-

scription associated with the TF, and the summary is dis-

played on the top of the web page (Figure 1).

The curation team of RegulonDB developed several

guidelines to create these manual summaries. These guide-

lines contain all the TF properties to be included, their

order of appearance, some advice to describe quickly out-

dated information, and the requirement of incorporating

references. These properties cover many relevant aspects

about TFs, and they are as follows.

i. The meaning of the TF acronym, indicating if it is a

repressor, activator or dual transcriptional regulator.

ii. The function of the TF in terms of its physiological

role.

iii. The biological processes in which the regulated genes

are involved.

iv. The growth conditions under which the TF is

expressed.

v. The active and inactive conformations of the TF.

vi. The number, name, and size of the structural domains

constituting the TF.

vii. Information about the TF binding site (TFBS) features

(such as size and the symmetry of the consensus

sequence).

viii. Information about the regulation mechanism that

enriches the knowledge already recorded into the

structured slots of the database.

ix. Information about evolutionary features of the TF.

x. Remarks on whether the TF has other nonregulatory

functions.

xi. Information about the organization of the transcrip-

tion unit (TU) that contains the gene encoding the

TF.

The effort to create these summaries is important. The

curators of RegulonDB have already employed curated

data as well as information that is not recorded in the data-

base. In addition, they had to curate several articles, whose

references were cited within each summary (Figure 1).

Each manual summary includes 13 references on average,

with a median of 9 (Figure 2). In relation to their size, a

summary has 13 sentences and 256 words, on average.

The curation team of RegulonDB must maintain and

update these manual summaries and create new summaries

from new textual datasets for TFs that do not yet have

one. This is because new scientific articles constantly

change some aspects of the present knowledge about a bio-

logical entity, and the scientific community is eager to ac-

cess new curated knowledge of new and existing

organisms. The problem is that updating and writing these

manual summaries is a demanding task because of the

enormous growth and accelerated pace of biomedical

Figure 1. Summary of CytR from RegulonDB (http://regulondb.ccg.unam.mx/regulon?term¼ECK120012407&organism¼ECK12&format¼
jsp&type¼regulon).
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literature and the number of features involved. Hence,

clever and semiautomatic techniques to perform this task

must be considered.

For some time now, natural language processing (NLP)

and text mining have offered techniques to recover relevant

information from document collections. One is Automatic

text summarization, a well-established task of NLP which

consists of generating a compressed version of a text collec-

tion, preserving the relevant content (2). There are, in gen-

eral, two kinds of automatic summaries: extractives and

abstractives. An extractive summary is made by collecting

a set of relevant fragments from the text collection,

whereas an abstractive summary is made by rewriting the

set of extracted fragments in a shorter summary.

An automatic sumarization system for information

about TFs of E. coli would be of great utility in accelerat-

ing the curation process. However, given the difficulty of

the task, we do not currently attempt automatic generation

of such summaries. Our goal is to show the initial results

of partial extraction of the list of properties that could, in

any case, generate suggested sentences in an assisted cur-

ation strategy (3) to accelerate the curation work without

losing quality. Based on our results, we could in the future

contribute to expanding our curation in scope and breadth,

eventually including other organisms.

Thus, we present in this study the results of the auto-

matic generation of summaries about only two of the fea-

tures of TFs:

1. The biological processes in which the regulated genes

are involved.

2. The number, name and size of the structural domains

constituting the TF.

We chose these properties because they have different

degrees of complexity for recovery from articles. For

example, while we can find repeatedly the same controlled

vocabulary to describe the structural domains of different

TFs (molecular function, structural motif, domain pos-

ition), the names of biological processes differ greatly

among TFs. Thus, we expect that the information related

to structural domains will be more easily detected than the

information about regulated processes.

Thus, we proposed an initial automatic summarization

strategy based on the automatic classification of sentences

of articles. We trained the Support Vector Machine (SVM)

and Naı̈ve Bayes (NB) classifiers with several combinations

of features extracted from sentences (words, lemmas, part-

of-speech (POS) tags, term tags and frequent-word tags).

For selection of the best model, we employed the sentences

of the manual summaries, and for the model assessment

we utilized a sample of sentences from articles manually

classified by a curator. The best classifier was an SVM

using unigrams and bigrams of lemmas and tags (F-score,

0.8689). It classified, with high precision and low recall,

the sample of sentences of articles (F-scores, 0.45 for regu-

lated processes, 0.47 for structural domains, 0.94 for other

information).

With the selected best model, we classified the sentences

of a set of complete articles on five TFs (ArgR, CytR, FhlA,

GntR and MarA). Once the sentences were classified, we

concatenated them to generate an initial automatic sum-

mary. We utilized the ROUGE method to evaluate the

automatic summaries and determine how much relevant

information they incorporated. The evaluation revealed

promising results, because summaries comprised up to

76% of the relevant information of the manual summaries

and up to 36% without stop words (ROUGE-1 recall).

Finally, we compared manual and automatic summaries to

confirm that they included much of the relevant informa-

tion. For example, the worst summary according to

ROUGE encompassed five out of eight relevant data elem-

ents of the manual summary, while the best one incorpo-

rated all of the relevant data. Hence, empirical results

suggest that our proposal is valid to incorporate more

properties of TFs and eventually generate summaries

which will help the curation work and the elaboration of

manual summaries for TFs which do not yet have one.

Materials and methods

Multidocument summarization is the process used to cre-

ate a single summary from a document collection (4). In

this scenario, some general steps are distinguished: the re-

trieval of relevant documents to summarize, sentence ex-

traction, elimination of redundancy and transformation of

the summary to ensure coherence. We put the retrieval of

relevant documents aside, because we exploited the set of

Figure 2. References per manual summary.
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articles used to make the manual summary by the curators

instead of retrieving articles from an open collection.

Nevertheless, in a broader situation, this step would need

to be taken into consideration.

Regarding sentence extraction, several methods have

been proposed (5, 6). The selection of one particular

method depends on the purpose of the summary, among

other aspects. For example, instead of producing generic

summaries, we want to generate user-oriented summaries,

which are made to solve a specific information need (6).

For our analysis, we needed to be able to select, from a set

of sentences, those sentences which contained information

about the structural domain of a TF and about the biolo-

gical processes in which the regulated genes are involved.

This problem is a multiclass classification problem with

three classes: structural domain information, regulated

processes information, and other kinds of information.

The task can be tackled by automatic classification tech-

niques (supervised learning) combined with NLP. We re-

stricted our classification problem to assign only one class

per sentence (i.e. one-of problem), instead of assigning sev-

eral classes (i.e. any-of problem). With this decision, al-

though one sentence could include information about a

structural domain as well as information about regulated

processes, we would assign only one class.

Classification techniques have been previously em-

ployed for automatic text summarization in the biomedical

domain, especially for medical question-answering systems

(7–9), evidence-based medical practice (10–12) and sum-

maries about genes (13, 14). As Sarkar et al. (15) pointed

out, one of the main challenges in this kind of approach is

that the number of positive sentences (sentences with the

relevant information) is very small compared with the total

number of sentences in an article.

In this study, we concentrated only on sentence classifi-

cation, because the elimination of redundancy and the

transformation of the summary to ensure coherence are

challenging tasks by themselves. As the source of the sum-

marization is a document collection, it is expected that

some sentences will express similar information, and then

a reduction of repetitive information is required. In future

work, we will explore clustering techniques to avoid re-

dundancy. Also, we plan to couple a system of sentence

compression to deliver a compact summary.

Automatic classification

Machine learning has become a useful approach to solve

difficult problems in several areas (16). The idea is to have

systems that can learn to make decisions about the way to

solve a task. One task of machine learning is to classify ob-

jects into classes, that is, automatic classification. In this

problem, a learning algorithm is fed already-classified ex-

amples of the different classes (training set) to learn deci-

sion criteria to be applied to new examples. As the input is

a set of examples classified by a person, this is a case of

supervised learning. Thus, the algorithm (classifier) trains

a model that fits the classified examples to make predic-

tions about novel examples. To address an automatic clas-

sification problem, we need at least the following: a

classifier, classes, positive and negative examples, and fea-

tures to characterize examples.

As we stated earlier, the information classes of our

problem are structural domain information, regulated

processes information and other kind of information. We

gave one label to each class: DOM, RP and OTHER, re-

spectively. For the DOM class, the positive examples were

the sentences related to the structural domain, while the

negative examples were the sentences about the RP and

OTHER classes. For the RP class, the positive examples

were the sentences related to regulated biological proc-

esses, whereas the negative examples were the sentences

about the DOM and OTHER classes. The following sub-

sections describe the methodology we followed, the em-

ployed classifiers, the selected features and the way we

prepared the data. We have included a nomenclature guide

in the Supplementary material to help the reader

(Supplementary Table S11).

Methodology

Typically, for a supervised learning problem, two tasks are

performed: model selection and model assessment (17). In

the former, the performance of different trained models is

estimated to choose the best one by using a validation

strategy, while in the latter, the level of generalization of

the best model is measured on new data. To achieve these

tasks, it is a common practice, in rich-data condition, to

employ a random division of the available data into three

data sets: training, validation and test. While the training

dataset is used to fit the models, the validation dataset

allows selection of the best model by estimating its per-

formance of prediction on unseen data (data not used in

training). In a different way, the test dataset is used only to

assess the performance of the best model on new data, sim-

ulating a real world scenario.

Nevertheless, many real-world problems of supervised

learning suffer from data scarcity, and gathering extra ex-

amples is demanding. The manual extraction of sentences

about specific information is an example of this kind of

problem, because curators must read several scientific art-

icles to find a few sentences with specific information.

Then, in a situation with scarce data, we can put the valid-

ation dataset aside and apply the K-fold cross-validation
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method. This method is used to estimate the performance

of prediction on unseen data by using only the training

dataset. The K-fold cross-validation method splits training

data into K parts; it uses K� 1 parts to train and the re-

maining part for validation. It trains K times, always vali-

dating with a different part of the data. As the algorithm

validates in every iteration with unseen data, this method

gives a useful score reflecting the ability to predict (17).

In this study, we employed the two strategies explained

above. In the first strategy, we fit the models of the two classi-

fiers (NB and SVM) by 10-fold-stratified cross validation on

the training dataset, and then we selected the best model with

an evaluation on the validation dataset (Figure 3A). We will

name this approach strategy with validation dataset. In the se-

cond strategy, we joined the training and validation datasets

to use them for model fitting and selection with 10-fold-strati-

fied cross validation (see Figure 3B). We name this approach

strategy with only cross-validation. After performing the two

strategies, we compared the performance of the classifiers.

The assessment of the best model (Figure 3C) had an

important role in our research, because we needed to know

how many sentences about structural domains and regu-

lated processes we could obtain from articles. The assess-

ment gave us an idea of the generalization of the model

and its viability to apply in future the same strategy to new

properties of TFs.

Several scores are utilized to evaluate the performance of

a classifier (16–18), and three of the most frequently em-

ployed are precision, recall (sensitivity), and the F-score (F-

measure). These scores are between 0 and 1, where 1 is pre-

ferred. They are based on correct and incorrect predictions

of classes. Thus, there are four possible cases in a

classification problem of two classes; these are represented

in a confusion matrix (see Supplementary Table S12).

The precision score gives the ratio of how many ex-

amples predicted as positive are true, whereas the recall

score gives the ratio of how many positive examples are

predicted from all positive examples in the dataset

(Equation 1). On one hand, the prediction of a classifier

with high precision and low recall is frequently correct, but

it sets many positive examples aside (see Classifier 1 in

Supplementary Table S13). On the other hand, the decision

made using a classifier with low precision and high recall is

frequently incorrect, but it can classify almost all positive

examples correctly, for example, assigning all the examples

in the dataset (positives and negatives) to the positive class

(see Classifier 2 in Supplementary Table S13).

Precision ¼ TP

TPþ FP

Recall ¼ TP

TPþ FN

F � score ¼ 2PrecisionRecall

Precisionþ Recall

(1)

Depending on the problem, it might be viable to prefer a

classifier with higher precision than recall, or vice versa.

Concerning our problem of classifying sentences containing

specific information to be included in a summary, a classi-

fier with high recall and low precision would result in too

many false positives, which means that countless sentences

with (probably) unrelated information would be curated. A

classifier with high precision and low recall would get too

many false negatives, that is, many lost sentences with im-

portant information. Thus, we decided to search for a classi-

fier with a balance of precision and recall. Then, we used

the F-score for fitting and evaluation; the F-score is the har-

monic mean of precision and recall (Equation 1).

Classifiers

We drew on two classical classifiers which have been dem-

onstrated to work well in general text problems (19) and in

the biomedical domain (7–9): the NB classifier (20) and

SVMs (21, 22). We performed experiments with three ver-

sions of the NB classifier: Bernoulli, multinomial and

Gaussian. A multinomial NB for text classification is based

on the conditional probability that a document is a member

of class c (19). Then, considering sentence s as a document,

we can compute this probability as shown in Equation (2):

P cjsð Þ / P cð Þ
Y

1� k� ns

P fkjcð Þ; (2)

Figure 3. Model selection and model assessment.
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where P(c) is the prior probability of a sentence occurring in

class c, P(fkjc) is the conditional probability of the feature fk
occurring in a sentence of class c, and ns stands for the num-

ber of features in s. In general, in text classification the

words of the sentences (also named terms) are the features.

The best class for a sentence is the maximum a posteriori

(MAP) class, cmap, which is implemented to avoid floating

point underflow by adding logarithms of probabilities. The

probabilities are estimated from the already-classified ex-

amples (the training set). On one hand, P(c) is the relative

frequency of class c in the training set (Equation 3):

P cð Þ ¼ Nc

N
; (3)

where Nc is the number of sentences in class c and N is the

total number of sentences. On the other hand, P(fjc) is the

relative frequency of the feature f in sentences of class c

(Equation 4):

P f jcð Þ ¼
FcfP

f 0 2V Fcf 0
; (4)

where Fcf is the number of features f in sentences of class c,

including repetitions, and the denominator is the total

number of features in sentences in class c and V is the set

of features. Because this probability could be 0, we add 1

to the denominator and the numerator of Equation (4);

this is called Laplace smoothing.

In contrast with the multinomial classifier approach, the

Bernoulli NB approach employs the presence or absence

(indicated by a 1 or 0) of a feature in a sentence. This classi-

fier estimates P(fjc) as the fraction of sentences of class c

that contain the feature f. Regarding the Gaussian NB, the

probability of the features is assumed to be Gaussian.

The second classifier is an SVM (19). This classifier type

attempts to find a decision surface between two classes (in-

ternally named þ1 and �1) from a vector space model rep-

resenting a training dataset (Supplementary Figure S10).

The distance from the decision surface to the nearest vector

is called the margin (q). A maximum margin is preferred to

improve certainty. For an SVM, the decision function to

define the position of the class separator only depends on

some points, referred as support vectors.

Given a hyperplane wTx¼�b, where w is a normal vec-

tor, wT is its transpose, and b is an intercept term related

to the vertical axis, we can define an SVM linear classifier

as a function which returns �1 for one class and þ1 for

the other class (Equation 5):

f ðxÞ ¼ signðwTxþ bÞ (5)

As stated above, for an SVM classifier it is desirable to

maximize the margin. Then, let xi be a vector representing

a sentence and yi be a class corresponding to it; we formu-

lated this as a minimization problem to find w and b such

that:

i. 1/2 wTw is minimized, and

ii. For all {(xi, yi)}, yi(w
Txi þ b) �1

Thus, we face a quadratic optimization problem, that

is, we need to optimize a quadratic function subject to lin-

ear constraints. The solution is then determined according

to Equation (6):

w ¼
P

aiyixi

b ¼ yk–wTxk for any xk such that ak 6¼ 0
(6)

In this solution, each non-zero Lagrange multiplier ai in-

dicates a support vector. Finally, the classification function

of an SVM is determined according to Equation (7):

f ðxÞ ¼ sign
X

i

aiyix
T
i xþ b

 !
(7)

Features and sentence representations

Classifiers make use of features, which describe positive

and negative examples, to learn classification criteria to

categorize new examples into classes. Thus, the decision of

which features to use is an important step. For example, if

sentences of a class are represented by features which do

not help to distinguish them from sentences of the other

class, then the classifier is hardly going to find a classifica-

tion criterion. In NLP and text mining, features are related

to textual and linguistic aspects, such as lexical items,

grammatical characteristics, syntactic categories and se-

mantic representations. The selection of features involves

some hypotheses of the way the objects to classify can be

differentiated. Thus, we can pose the question: How can

we distinguish among sentences with information about

structural domains, regulated biological processes and

other kinds of information?

One of the main characteristic of sentences about struc-

tural domains is the appearance of words from some con-

trolled vocabularies, such as domain positions (N-terminal)

and structural motifs (helix-turn-helix) (see Supplementary

Table S14 for five randomly selected examples of sentences

of each class). This is not the case for sentences about regu-

lated processes, where the list of biological processes is quite

broad. Moreover, no matter to which TF the sentences are

related, many sentences share the same terms about struc-

tural domains; however, we cannot expect the same regu-

lated biological processes for numerous TFs. This situation
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led us to think that categories of terms, such as domain pos-

ition, structural motif, and biological process, could be use-

ful as features to characterize sentences. These categories

were represented by labels, commonly termed tags, for ex-

ample, DPOS for domain positions and PRO for biological

processes.

We also observed that some words (not terms) frequently

appeared in sentences of one class, such as domain and

motif for structural domains, and response for regulated

processes. Similarly, these frequent words were tagged, and

these tags were used as features. We used the tag FWDOM

for frequent words in sentences about structural domains,

and the tag FWRP for frequent words in sentences about

regulated biological processes. Furthermore, some combin-

ations of words and terms are also recurrent, like C-terminal

domain, N-terminal domain and genes involved. Then, we

posited that the combination of features could help to differ-

entiate sentences. We employed unigrams, bigrams and tri-

grams of features (words and tags). A unigram is an

individual feature, a bigram is a pair of consecutive features,

and a trigram is formed by three contiguous features. For

example, the bigrams of words obtained from the sentence

‘SutR is a small transcription factor’ are (‘SutR is’, ‘is a’, ‘a

small’, ‘small transcription’, ‘transcription factor’).

Thus, we decided to employ five different kinds of fea-

tures to represent sentences: words, lemmas, POS tags,

term tags and frequent-word tags. In NLP, a lemma is a

normalized (or a canonical) representation of a set of mor-

phologically related words. For instance, the lemma of the

singular and the plural form of a noun is the singular form,

e.g. for motif and motifs the lemma is motif. In the case of

verbs, the lemma is the infinitive form, that is, for acti-

vates, activated, and activating, the lemma is activate.

Lemmas are commonly employed as features for automatic

text classification because they help to match words with

the same meaning but different forms. The NLP process

which assigns a lemma to each word of a document is

called lemmatization. Given the sentence ‘YdeO activates

genes involved in the cellular response,’ the corresponding

lemmatized sentence is ‘YdeO activate gene involve in the

cellular response’.

To give the classification algorithms additional features

for learning, we also considered POS tags, frequent-word

tags, and term tags. A tag can be seen as a generalization

of a set of specific values. For example, the tag NOUN can

generalize specific nouns, such as any noun, and the tag

DPOS could generalize a set of structural domain positions

(N-terminal, C-terminal carboxy-terminal). Thus, a classi-

fication algorithm could learn predictive patterns based on

these tags in addition to learning patterns from lexical in-

formation (words or lemmas). Moreover, the frequency of

a tag is higher than the frequency of the specific value,

which could help classifiers. We hypothesized that these

tags would be useful to find a decision criterion to classify

sentences of articles.

A POS tag refers to the lexical classes (verb, noun, prep-

osition) and grammatical categories (number, tense, mood)

of words. For example, the POS of the verb likes is Verb,

3rd person singular present. A program named the POS

tagger assigns a tag representing a part of speech to each

word of a sentence. This program selects the correct tag

from a set of possible tags (tag set). For example, the POS

tagging for the sentence ‘Rob is a transcriptional dual regu-

lator’ is Rob_NN is_VBZ a_DT transcriptional_JJ dual_JJ

regulator_NN. The POS tags are from the Penn Treebank

tag set (23): NN¼ noun, VBZ¼ verb 3rd person singular

present, DT¼determiner and JJ¼ adjective. These tags en-

code linguistic information that can be used by the classi-

fier to learn patterns.

We assigned frequent-word tags only if a word be-

longed to one of the two sets of the 100 most frequent

words in training sentences (see Supplementary Table S15,

as it includes the first 15 most frequent words). To obtain

these frequent words, we eliminated prepositions, conjunc-

tions, pronouns and articles. On the one hand, if a word of

a sentence appeared in the 100 most frequent words about

structural domains, we assigned the tag FWDOM. On the

other hand, if a word of a sentence appeared in the 100

most frequent words in sentences about regulated biolo-

gical processes, we assigned the tag FWRP.

We also assigned tags to biological terms. We call these

tags ‘term tags.’ A term tag was assigned if the word ap-

peared in one of the term lists that we gathered: TFs, biolo-

gical processes, molecular functions, domain positions,

domain families and domain structural motifs (see the tag

set in Supplementary Table S16). To obtain the list of bio-

logical processes, we generated a file in OBO format that

contained the intersection of Gene Ontology’s (GO) pro-

karyotic subset and biological process subontology by

using filters in OBO-edit (http://oboedit.org/docs/index.

html). Then, we extracted only names and synonyms by

using a Python script. We conserved obsolete terms, since

they represent another linguistic variant to refer to a given

process.

For structural domain information, we compiled some

lists of terms extracted from different bioinformatics re-

sources. We also added to these lists some terms mentioned

by curators within the summaries. To obtain a list of do-

main families, we downloaded the datasets corresponding

to TF domain assignments of Escherichia coli K-12 from

the DNA-binding domain (DBD) Transcription Factor

Prediction Database (24) (http://www.transcriptionfactor.

org/index.cgi?Download) and extracted domain family

names. In addition, we obtained all of the TF evolutionary

Database, Vol. 2017, Article ID bax070 Page 7 of 20

https://academic.oup.com/database/article-lookup/doi/10.1093/database/bax070#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/bax070#supplementary-data
http://oboedit.org/docs/index.html
http://oboedit.org/docs/index.html
http://www.transcriptionfactor.org/index.cgi?Download
http://www.transcriptionfactor.org/index.cgi?Download


families from RegulonDB (25) (http://regulondb.ccg.unam.

mx/) and all of the bacterial families of proteins from

Interpro (26) (https://www.ebi.ac.uk/interpro/). To obtain

a list of molecular functions, we extracted GO IDs for mo-

lecular function annotations of TFs from the E. coli associ-

ation file and got the terms corresponding to these IDs

from GO’s OBO file. The domain position list was built

basically from the manual summaries and was merely ex-

tended with synonyms obtained from Wikipedia. Finally,

the structural motif list was extended with entries from

Interpro that included the word ‘motif’ in their names.

We analyzed the lengths of terms, based on the number

of words, and we found that we had terms with >5 words.

This happened especially with biological processes, where

we had terms with as many as 20 words. We expected that

long terms were less probable to be found in articles, and

then we decided to employ lists with one- to five-word

terms for biological process and domain families. In the

case of biological processes, terms of these lengths (one to

five words) cover 80% of the list, and for domain families

they cover 95%. Then, instead of incorporating the re-

maining terms (beyond the five words), we included their

most associated collocations of three and four words. In

linguistics, a collocation is a set of words which commonly

appear together, such as winding road or make progress.

We obtained these collocations by using the frequency of

co-occurrence of words and filtering out the stop words.

The stop words are words highly frequent in documents

and, in general, without appreciable semantic content,

such as prepositions, conjunctions, determiners and

pronouns. An example of these collocations for biological

processes is acid metabolic process obtained from terms

like downregulation of fatty acid metabolic process, upre-

gulation of fatty acid metabolic process, cellular modified

amino acid metabolic process and very long-chain fatty

acid metabolic process. We found that these collocations

stop being terms, but they can be useful key words.

Thus, we made sentence representations by using

words, lemmas, POS tags, term tags and frequent-word

tags (see Table 1, rows 1–4). Also, we made some represen-

tations by combining words and lemmas with tags to give

the algorithms more features to use (see Table 1, rows 5–

8). We fed classifiers with these representations to deter-

mine the best one. Afterwards, we transformed the sen-

tences of articles to this representation for applying the

best classifier. However, despite this representation, we

utilized the original representation of the sentences to

make the automatic summaries.

These sentence representations were also used to obtain

combinations of features in terms of n-grams. As we

described above, a unigram is an individual feature (word,

lemma, or tag), a bigram is a pair of consecutive features,

and a trigram is formed by three contiguous features. For

example, if we change the sentence representation based

on words (Table 1, row 1) to bigrams of words, then we

obtain the set (‘ArgP which’, ‘which belongs’, ‘belongs to’,

‘to the’, ‘the LysR-family’, ‘LysR-family has’, ‘has a’, ‘a

helix-turn-helix’, ‘helix-turn-helix motif’, ‘motif located’,

‘located close’, ‘close to’, ‘to the’, ‘the N-terminus’). The

idea behind using n-grams is to exploit contextual

Table 1. Features and sentence representations

Feature Sentence representation

1 Words ArgP, which belongs to the LysR-family, has a helix-turn-helix motif located close to

the N-terminus

2 Lemmas ArgP, which belong to the LysR-family, have a helix-turn-helix motif located close to

the N-terminus

3 POS tags þ Term tags TF, r-crq VBZ p-acp dt DFAM, vdz dt DMOT NN JJ av-j p-acp dt DPOS

4 POS tags þ Term tags þ Frequent-word tags TF, r-crq FWDOM p-acp dt DFAM, vdz dt DMOT FWDOM FWDOM av-j p-acp dt

DPOS

5 Words þ POS tags þ Term tags ArgP, which belongs to the LysR-family, has a helix-turn-helix motif located close to

the N-terminus. TF, r-crq VBZ p-acp dt DFAM, vdz dt DMOT NN JJ av-j p-acp dt

DPOS

6 Lemmas þ POS tags þ Term tags ArgP, which belong to the LysR-family, have a helix-turn-helix motif located close to

the N-terminus. TF, r-crq VBZ p-acp dt DFAM, vdz dt DMOT NN JJ av-j p-acp dt

DPOS

7 Words þ POS tags þ Term tags þ
Frequent-word tags

ArgP, which belongs to the LysR-family, has a helix-turn-helix motif located close to

the N-terminus. TF, r-crq FWDOM p-acp dt DFAM, vdz dt DMOT FWDOM

FWDOM av-j p-acp dt DPOS

8 Lemmas þ POS tags þ Term tags þ
Frequent-word tags

ArgP, which belong to the LysR-family, have a helix-turn-helix motif located close to

the N-terminus . TF, r-crq FWDOM p-acp dt DFAM, vdz dt DMOT FWDOM

FWDOM av-j p-acp dt DPOS
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information, multiword expressions and collocations. To

feed the classifiers, we employed unigrams, bigrams, tri-

grams and combinations of them: unigramsþ bigrams,

unigramsþ bigramsþ trigrams and bigramsþ trigrams.

It is also common in this kind of approach based on lin-

guistic features to wonder if highly frequent words are use-

ful to differentiate examples. Commonly, these words are

function words, such as prepositions, conjunctions, pro-

nouns and determiners. When these kinds of words are

removed, only words with semantic content remain in the

sentences, for example, if we eliminate these words from

the sentence ‘It is also involved in the bacterial stringent re-

sponse,’ we obtain the sentence ‘is also involved bacterial

stringent response.’ A positive effect of this representation

is that the sentence conserves much of the sense of the ori-

ginal without highly frequent elements which can appear

in many other sentences. However, one negative effect is

that we lose useful collocations, such as involved in, which

could be useful in some situations. The words to be

removed are named stop words. We performed experi-

ments with and without stop words.

Both tested classifiers received data as a Vector Space

Model (19, 27). In this model, sentences are represented as

vectors whose components correspond to features, for ex-

ample, words. First, the set of features from all sentences is

obtained (usually called vocabulary), and then the frequency

of the word in the sentence is used as the value of the com-

ponent (see Supplementary Figure S11). The process to con-

vert text data into vectors is called vectorization.

We ran experiments with vectors of frequencies, binary

values (presence/absence of features), and tf-idf weights.

The tf-idf weight has been proposed in information re-

trieval (28) to give more importance to words that best de-

scribe a document, and it is widely used in NLP problems

(18, 19). The weight is very low for terms (‘terms’ stands

for words) that occur in most of the examples of a dataset,

and it is higher for terms occurring in only some of them.

Let tf(j) be the term frequency of the term j and idf(j) be

the inverse document frequency of j, then the tf-idf weight

of j is calculated as follows (Equation 8):

tf � idf jð Þ ¼ tf jð Þ � idf jð Þ;

idf jð Þ ¼ log
N

df ðjÞ

� �
;

(8)

where N stands for the number of examples in the dataset

and df(j) stands for the number of examples that contain

the term j.

It is well known that vector space models from text

data are highly dimensional and sparse (18). For example,

the vector space model of unigrams of lemmas and tags

from our training dataset generated vectors of 3789

dimensions. For unigrams and bigrams together, the num-

ber of dimensions increased to 20 839, and when we added

trigrams, the vectors reached 51 753 dimensions.

Despite the high dimensionality, we expect that a classi-

fier can select the best features to use. However, it is feas-

ible to find a condensed set of components from a

transformation of the original vector space. This task is

named dimensionality reduction. Benefits of this reduction

are in memory, computation, complexity, reduced variance

and elimination of noise and outliers (16). One of the main

methods for dimensionality reduction employed in NLP is

singular value decomposition (SVD) (19). This method is a

kind of matrix decomposition that, when it is applied to

text data, is usually called Latent Semantic Analysis (29).

Let r be the rank of an M � N matrix C, then there is a

SVD of C of the form (Equation 9):

C ¼ URVT; (9)

where U is an M �M matrix with orthogonal eigenvectors

of CCT as columns, V is the N � N matrix with orthogonal

eigenvectors of CTC as columns, denoting CT as the trans-

pose of C and R is represented as an r � r matrix with sin-

gular values on the diagonals and all outside-diagonal

entries are zeros. Thus, this singular-value decomposition

is used to get a low-rank approximation Ck of C, where k

is a positive integer smaller than r. This low-rank approxi-

mation is obtained by deriving Rk from R, replacing r� k

smallest singular values with zero. Then, Ck is computed as

Ck¼URkVT. This approximation follows the idea that the

effect of small eigenvalues on matrix products is small. In

practical terms, establishing a value of k is guided by the

experimentation and is generally in the range of the low

hundreds (19). Therefore, we tested dimensionality reduc-

tion to 100, 200 and 300 components.

Datasets

At the start of our research, we were not able to obtain a

dataset of sentences from articles related to structural do-

mains of TFs and the biological processes in which the

regulated genes are involved. In this situation, it is a com-

mon strategy in NLP to make a dataset with the help of a

group of experts. In our case, this would have involved

asking a group of curators to read a set of articles and ex-

tract sentences related to the required information. We

decided not to perform this task because (i) it is demand-

ing, and (ii) when we would need to cover all remaining

properties of TFs, we would have to repeat this task for

each property. Instead, we hypothesized that the classifiers

could learn predictive patterns from manual summaries to

classify sentences of articles. Hence, we used the sentences
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from existing manual summaries in RegulonDB as training

examples. This decision brought a reflection. As the sum-

maries were made by curators, they represented a limited

sample of writing styles of articles. However, at the same

time, they were the ideal example of sentences that we

wanted to obtain, because they condensed many relevant

pieces of information (they are summaries).

Therefore, 177 manual summaries were extracted from

the database by the RegulonDB team and delivered to us in

a single XML file. Then, we coded a Python 3.4 script to

extract the text of the summaries from the XML file.

Afterwards, manual summaries were tagged by a curator

of RegulonDB who had participated in their elaboration,

using XML-like tags to indicate text fragments related to

regulated biological processes and structural domains. We

employed the <RP> tag for regulated biological processes

and the <DOM> tag for structural domains. The curator

had full freedom to tag fragments, sentences or complete

paragraphs. The result was that the curator often tagged

fragments for regulated processes and the whole paragraph

for structural domains (Table 2).

At the end of the tagging step, we realized that the

tagged fragments for regulated biological processes were

very short (Table 2). We wondered if those scarce contexts

would be sufficient to learn some predictive patterns.

Thus, we collected all tagged fragments to set up a dataset

to train the classifiers. We also created a dataset with the

complete sentences where the tagged fragments appeared.

If the tagged fragments coincided with complete sentences,

we used those fragments as both fragments and sentences

(see the last row in Table 3). Elements of the first dataset

were referred to as training fragments, and those from the

second set were training sentences.

We attained 2237 examples for each dataset. Then, we

randomly split them into training (70%) and validation

(30%) datasets. We observed that the examples for regu-

lated biological processes were fewer than examples for

structural domains and that sentences about other kind

of information were abundant (Table 4). This information

confirms that we faced a problem of imbalanced datasets.

To know if the decision criterion learned by the best

classifier could be generalized to sentences of articles, we

created a test dataset using a set of articles of five TFs:

ArgR, CytR, FhlA, GntR and MarA, whose PubMed IDs

appear within manual summaries. We extracted a sample

of 1019 sentences, which contained the name of the TF

(Table 5). To obtain these sentences, we decided to match

exactly the TF name, considering that different combin-

ations of lower and upper cases can refer to different kinds

of entities. The same curator manually classified these sen-

tences into the DOM, RP and OTHER classes. In this

Table 3. Examples of training fragments and training sentences

Training fragment Training sentence

Transport and utilization of ribonucleosides and

deoxyribonucleosides

CytR, Cytidine Regulator, is a TF required for transport and utiliza-

tion of ribonucleosides and deoxyribonucleosides

Biosynthesis and transport of arginine, transport of histidine, and its

own synthesis and activates genes for arginine catabolism

ArgR complexed with L-arginine represses the transcription of several

genes involved in biosynthesis and transport of arginine, transport

of histidine, and its own synthesis and activates genes for arginine

catabolism

ArgR is also essential for a site-specific recombination reaction that

resolves plasmid ColE1 multimers to monomers and is necessary

for plasmid stability

ArgR is also essential for a site-specific recombination reaction that re-

solves plasmid ColE1 multimers to monomers and is necessary for

plasmid stability

Table 2. Two examples of tagged manual summaries

CytR, Cytidine Regulator, is a TF required for <RP>transport and utilization of ribonucleosides and deoxyribonucleosides</RP> [7715459,

8596434, 8022285, 1715855, 9466254, 9767576, 14499937]

<DOM>ArgR has two domains: the N-terminal domain, which contains a winged helix-turn-helix DNA-binding motif [9334747] and the

C-terminal domain, which contains a motif that binds L-arginine and a motif for oligomerization [8594204]. Based on cross-linking analysis

of wild-type and mutant ArgR proteins, it has been shown that the C-terminus is more important in cer/Xer site-specific recombination than

in DNA binding [20659168]</DOM>

Table 4. Description of training and validation datasets

Dataset Classes

DOM RP OTHER Total

Training 223 190 1,153 1,566

Validation 105 70 496 671

Total 328 260 1,649 2,237
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dataset, the number of sentences about regulated biological

processes (2%) and structural domains (8%) was much

lower than the total sentences about other kinds of infor-

mation (90%). In fact, except for sentences about struc-

tural domains of ArgR and MarA, there were only a few

examples of each class. Moreover, in the samples, there

were no sentences about regulated biological processes for

FhlA.

NLP preprocessing

We built an NLP pipeline to preprocess the tagged manual

summaries and the set of articles of the five TFs to obtain

the sentence representations (Table 1). This pipeline

included several Python 3.4 scripts and some third-party

programs (https://github.com/bionlp-cgp/automatic-sum

marization-TFs). First, we filtered out several sections of

articles, such as Acknowledgments and References, and

some useless information, like author names, journal

name, affiliations and the like; we named this step

Cleaning document (Figure 4). This step did not apply to

manual summaries. Next, we detected multiword terms by

using the term lists. In this step, named Term detection, we

searched for all terms within sentences. If the term

matched, we joined words with hyphens. This strategy

allowed us to treat multiword terms as units instead of iso-

lated words. For example, the words amino terminal were

detected as a term and hyphenated as amino-terminal.

Next, we performed Sentence split and POS tagging by

using the Stanford POS Tagger 3.6 program (30). This is a

widely-used POS tagger which utilizes tags from the Penn

Treebank tag set (23). After that, we used the

BioLemmatizer 1.2 program (31) for lemmatization, which

is a lemmatizer fit to the biological domain. The

BioLemmatizer requires previously assigned POS tags to

determine the lemmas; this was the reason we performed

POS tagging before lemmatization. This lemmatizer also

performs POS tagging by using the NUPOS tag set (32),

which contains some more specific tags. For example, the

Stanford Parser program tags the next prepositions and

pronouns, such as of_IN, about_IN, it_PRP and

them_PRP, whereas the BioLemmatizer tags them as

of_pp-f, about_IN, it_pn31 and them_pno32. We decided

to utilize the tags of the BioLemmatizer for the sentence

representations.

Afterwards, we accomplished Term and frequent word

tagging. In this step, we looked for terms and frequent words

within sentences; if they coincided, we replaced the POS tag

with the term tag or frequent-word tag. For example, the

POS-tagged sentence (a) changes to sentence (b) with term

tags and to sentence (c) with frequent-word tags:

a. ArgP_NN has_vdz a_dt helix-turn-helix_JJ motif_NN

b. ArgP_TF has_vdz a_dt helix-turn-helix_DMOT motif_NN

c. ArgP_TF has_vdz a_dt helix-turn-helix_DMOT motif_

FWDOM.

Table 5. Description of the test dataset

TF No. of articles PMIDs No. of sentences

Total DOM RP

ArgR 6 11305941, 1640456, 1640457, 17074904, 17850814, 8594204 216 25 9

CytR 6 10766824, 1715855, 8022285, 8596434, 8764393, 9086266 431 4 2

FhlA 5 2118503, 2280686, 8034727, 8034728, 8412675 29 4 0

GntR 7 12618441, 9045817, 9135111, 9358057, 9537375, 9658018, 9871335 194 8 3

MarA 6 10802742, 11844771, 8955629, 9097440, 9324261, 9724717 149 38 3

Total 1019 79 17

Figure 4. NLP preprocessing pipeline.
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We put together words, lemmas, and tags to have an in-

ternal representation of each sentence; we named this step

Transformation to internal representation. These elements

were separated by a vertical bar, so an example with POS

and term tags is demonstrated below in sentence (a), while

an example with POS, term, and frequent-word tags is

shown below in sentence (b):

a. ArgPjArgPjTF, j,j, whichjwhichjr-crq belongsjbelongj
VBZ tojtojp-acp thejthejdt LysR-familyjLysR-familyj
DFAM, j,j, hasjhavejvdz ajajdt helix-turn-helixjhelix-

turn-helixjDMOT motifjmotifjNN locatedjlocatedjJJ
closejclosejav-j tojtojp-acp thejthejdt N-terminusjN-termi-

nusjDPOS .j.j.
b. ArgPjArgPjTF, j,j, whichjwhichjr-crq belongsj

belongjFWDOM tojtojp-acp thejthejdt LysR-familyj
LysR-familyjDFAM, j,j, hasjhavejvdz ajajdt helix-turn-

helixjhelix-turn-helixjDMOT motifjmotifjFWDOM

locatedjlocatedjFWDOM closejclosejav-j tojtojp-acp

thejthejdt N-terminusjN-terminusjDPOS .j.j.

Two internal representations were required, because we

fit models with and without frequent-word tags to observe

if these tags improved the performance of classifiers. As for

the tagged manual summaries, before final step of feature

extraction we obtained the training fragments and training

sentences (Extraction of training fragments and sentences).

Subsequently, we randomly split these training sets to ob-

tain the validation datasets (Random split). In the case of

the sentences of the set of articles on the five TFs, all sen-

tences directly became the test dataset.

At this point, we had the datasets formed by sentences in

the internal representation; then, we performed a Feature

extraction step to build all the sentence representations men-

tioned above, which corresponded to different combinations

of features (Table 1). Finally, we obtained eight different

training and validation datasets, one for each combination

of features. These datasets were subjected to classification

algorithms for the learning task. Once the best combination

of features was selected, we used that combination to obtain

the test dataset to perform model assessment.

Experimental setup

Following the methodology described above, we developed

some experiments to elucidate whether classification with

training fragments performed better than classification

with training sentences. Also, we wanted to find the best

classifier and the best combination of features among the

eight different ones. The experimental grid with the differ-

ent aspects that we tested is depicted in Table 6.

We coded a Python 3.4 script to perform the model se-

lection and model assessment. We used the Python Library

for Machine Learning scikit-learn version 0.18.1 (http://sci

kit-learn.org/stable/), which includes implementations of

the SVM and NB classifiers. We accomplished the vector-

ization of the datasets by means of two scikit-learn objects:

CountVectorizer and TfidfVectorizer. The former obtains

vectors of frequencies or binary values, whereas the latter

produces vectors with tf-idf weights. We performed dimen-

sionality reduction of these vectors to 100, 200 and 300

components by using the TruncatedSVD object of scikit-

learn.

We fit both classifiers by using a RandomizedSearchCV

object. This object has a fit method to optimize the hyper-

parameters of each classifier by randomly searching over

fixed values or values sampled from a given distribution.

We gave the hyperparameter settings to the Randomized-

SearchCV by using a Python dictionary to indicate an ex-

ponential distribution in the case of continuous values.

As for the SVM, we optimized Kernel and its param-

eters (see Supplementary Table S17) (http://scikit-learn.

org/stable/modules/svm.html#kernel-functions), the C pen-

alty factor (16), and the hyperparameter class_weight,

which automatically balances the weights of each class in-

versely proportional to class frequencies. This hyperpara-

meter was used to deal with the imbalanced distribution of

classes. For example, of the 1153 total sentences in the

training dataset, 223 sentences were of the structural do-

main class and only 190 were of the regulated processes

class. In the test set, from 149 sentences which mentioned

MarA, only 38 were about structural domains and 3 were

about regulated processes. On the other hand, we opti-

mized the hyperparameter alpha for Laplace smoothing of

the Bernoulli and multinomial NB classifiers (see

Supplementary Table S17).

As stated above, the optimization (model fitting) was

driven by the 10-fold-stratified cross-validation of the

training data with the F-score as the evaluation metric.

Also, we established the number of iterations for the

RandomizedSearchCV at 50. This is the number of param-

eter combinations that were iteratively sampled. With

Table 6. Experimental grid

Aspect Values

Classifiers SVM, Multinomial NB, Bernoulli NB,

Gaussian NB

Features Words, Lemmas, POS tags, Term tags,

Frequent-word tags

Eliminate stop words Yes, No

N-grams (n ¼) 1, 2, 3, 1 þ 2, 1 þ 2 þ 3, 2 þ 3

Dimensionality

reduction (SVD)

100, 200, 300 components

Vector values Frequency, binary, TF-IDF
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more iterations, the performance of the classifiers may im-

prove, but the run time of the script increases significantly.

Regarding the strategy for the validation dataset, we

used the models fitted by the RandomizedSearchCV to

classify the validation dataset and obtain performance

scores. This was done by using the predict method of the

RandomizedSearchCV and several objects of scikit-learn to

calculate precision, recall, and F-scores. In relation to the

strategy with only cross-validation, once the

RandomizedSearchCV optimized the hyperparameters of

all classifiers, we obtained the best scores to be compared

with the scores of the other strategy.

Automatic summarization

In this study, we produced initial summaries by concate-

nating the sentences classified by the best classification

model. We developed an automatic summarization pipe-

line to obtain these summaries (Figure 5). This was also

coded within Python 3.4 (https://github.com/bionlp-cgp/

automatic-summarization-TFs). The input of this pipeline

was the set of complete articles in text format of the same

five TFs (ArgR, CytR, FhlA, GntR and MarA).

First, the articles were preprocessed with the NLP pre-

processing pipeline described above (see Figure 4). This

pipeline returned a set of sentences represented with the

best features chosen in the model selection task.

Subsequently, only those sentences which included the

name of the TF were retrieved. This criterion is important,

on one hand, for the curation process because the curators

must know the TF that the sentence describes, and on the

other hand, because it ensures that sentences of the auto-

matic summary refer to the same TF. After that, the best

model was applied to automatically classify the sentences

in three classes: structural domains (DOM), regulated bio-

logical processes (RP), and other kinds of information

(OTHER). Only sentences of classes DOM and RP were

concatenated for the final summary.

Once the automatic summary was created, we wanted

to know if it resembled summaries made by the curators of

Figure 5. Automatic summarization pipeline.
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RegulonDB. If this were true, we could eventually extend

our methodology to the remaining features of the TFs and

then generate summaries for TFs that did not have one. In

the research about automatic summarization, various

evaluation methods have been proposed (6, 33, 34).

Evaluating an automatic summary is a difficult task be-

cause many factors are involved: the goal of the summary,

the level of rewording, the level of generalization to sum-

marize and so on. However, the widely used method is still

ROUGE (we employed ROUGE 1.5.5), due to its high cor-

relation with scores assigned by humans about the quality

of automatic summaries (33).

This method, which evaluates an automatic summary

compared with a manual summary, is based on the n-

grams of words of the automatic summary co-occurring in

the manual summary. If we divide the number of co-

occurrences over the total n-grams of the manual sum-

mary, we obtain a score of recall, whereas if we divide the

number of co-occurrences over the total n-grams of the

automatic summary, we obtain a score of precision. The

two scores can be combined to obtain an F-score for the

automatic summary. Broadly, the recall depicts how much

relevant information we obtained from the manual sum-

mary, and the precision gives a picture of how much rele-

vant information we have in the automatic summary.

ROUGE scores are between 0 and 1, where 1 is better.

From the variety of ROUGE methods, we make use of

ROUGE-1, ROUGE-2 and ROUGE-SU4. To have a better

idea of how ROUGE calculates the scores, we present the

equations and some situations with fabricated examples.

Let AS be an automatic summary, be MS a manual sum-

mary, and be 2-GRAM (AS, MS) the number of bigrams (2-

grams) co-occurring in both summaries. Then, we can calcu-

late the scores for ROUGE-2 as follows (Equation 10):

Recall ¼ 2�GRAMðMS; ASÞ
m

;

Precision ¼ 2�GRAMðMS; ASÞ
n

;

F � score ¼ 2RecallPrecision

Recallþ Precision
;

(10)

where m stands for the number of n-grams in MS and n

stands for the number of n-grams in AS. Now, imagine a

manual summary (MS) and an automatic summary (AS)

that we want to evaluate:

MS: ArgR has N-terminal and C-terminal domains

AS: ArgR has N-terminal domain

We can see that the automatic summary not only in-

cludes part of the relevant information of the manual sum-

mary but also words and a word order that is very similar.

Then, given the following bigrams in each summary, there

are two overlaps: ‘ArgR has’ and ‘has N-terminal’. The

ROUGE-2 scores for AS are then recall¼ 2/5¼ 0.4, preci-

sion¼2/3¼ 0.6, and F-score¼ 0.5.

MS: (‘ArgR has’, ‘has N-terminal’, ‘N-terminal and’,

‘and C-terminal’, ‘C-terminal domains’); m¼5

AS: (‘ArgR has’, ‘has N-terminal’, ‘N-terminal do-

main’); n¼ 3

On the one hand, the recall of 0.4 shows us that the

automatic summary carries less than the half the relevant

information from the manual summary. On the other

hand, the precision of 0.6 shows that more than the half of

the automatic summary is relevant information. Now,

what happens if we evaluate a summary with the same in-

formation but that is presented in a different word order?

Imagine the next automatic summary, AS’, which includes

almost all the words of AS but in the opposite order. In

this case, there are no overlapping bigrams, and ROUGE-2

assigns a zero score to this automatic summary, despite it

containing all the relevant information.

AS’: domain N-terminal of ArgR

AS’ bigrams: (‘domain N-terminal’, ‘N-terminal of’, ‘of

ArgR’)

Taking into consideration the previous situation, we

also used ROUGE-SU4 to evaluate the automatic summa-

ries. ROUGE-SU4 measures the cooccurrence of unigrams

together with skip-bigrams of distance 4, that is, all pairs

of words separated at most by four words (following the

sentence order). Let SKIP4(MS, AS) be the overlapped

unigrams and skip-bigrams; then we can calculate

ROUGE-SU4 scores as shown in Equation (11):

Recall ¼ SKIP4ðMS; ASÞ
m

;

Precision ¼ SKIP4ðMS; ASÞ
n

:

(11)

Then, based on the following unigrams and skip-

bigrams of the manual summary, MS, and the automatic

summary, AS’, we obtained ROUGE-SU4 recall¼ 2/20¼
0.1, precision¼ 2/10¼ 0.2, and F-score¼ 0.1, because

there are only two coinciding unigrams. This score is low,

but it takes into consideration isolated words, and the ef-

fect of word order is reduced.

MS: (‘ArgR‘, ‘has’, ‘N-terminal‘, ‘and’, ‘C-terminal ‘,

‘domains’)þ (‘ArgR has’, ‘ArgR N-terminal’, ‘ArgR and’,

‘ArgR C-terminal’, ‘has N-terminal’, ‘has and’, ‘has C-ter-

minal’, ‘has domains’, ‘N-terminal and’, ‘N-terminal C-ter-

minal’, ‘N-terminal domains’, ‘and C-terminal’, ‘and

domains’, ‘C-terminal domains’); m¼ 20.

AS’: (‘domain’, ‘N-terminal’, ‘of’, ‘ArgR’,)þ (‘domain

N-terminal’, ‘domain of’, ‘domain ArgR’, ‘N-terminal of’,

‘N-terminal ArgR’, ‘of ArgR’); n¼ 10.
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In addition, ROUGE can be calculated by eliminating

stop words (highly frequent words, prepositions, conjunc-

tions and determiners). Therefore, for overlapped unig-

rams, we would have a better idea of how much relevant

information we retrieved, since the comparison would put

aside function words. However, overlapped bigrams be-

come more difficult to find, because stop words commonly

appear in the middle of words.

As we already mentioned, we created our automatic

summaries by the concatenation of the automatically classi-

fied sentences. This simple approach brings some problems

of redundancy and an excess of irrelevant information; in-

deed, it is anticipated that our summaries would be very

long compared with the manual summaries. Nevertheless,

we will tackle this problem in future work, because it is not

trivial to either merge similar sentences or to filter out irrele-

vant parts of sentences. It is another complete NLP task to

transform an extractive summary into a more compact ver-

sion. In addition, the idea of irrelevant information in the

automatic summary is relative, because some of that infor-

mation could be valuable for the curation work. In addition,

the length of the automatic summary is also relative, be-

cause with this method we are summarizing a collection of

complete scientific articles.

With these automatic summaries, we can expect that

ROUGE F-scores would not reveal how much relevant in-

formation they have. The cause is the low precision be-

cause, as we explained before, the number of overlapped

n-grams is divided by the total n-grams of the automatic

summary, which will be a high number. Looking at the re-

call would be a better way to realize how much relevant

data about TFs we are summarizing. This is because the

overlapped n-grams are divided by the expected n-grams of

the manual summary. In other words, precision measures

how much information in the automatic summary is rele-

vant, but, in the first steps of our research, we are more

interested in measuring how much relevant information

from the manual summaries is also in the automatic

summaries.

To prove this, we ran ROUGE 1.5.5 to evaluate a fabri-

cated automatic summary, AS’’, against the manual sum-

mary MS (see Supplementary Table S18). The first

sentence in the AS’’ has the same information and word

order as the MS. The second sentence has the same infor-

mation but it appears in an inverted order. Last, the third

sentence contains additional information. Then, the auto-

matic summary is very long compared with the manual

one. For all ROUGE scores, the recall was very high while

the precision was very low. As a consequence, the F-score

of the automatic summary was also low. This confirms

that the recall better shows that most of the important in-

formation of the manual summary is in the automatic one,

especially with ROUGE-1.

Results

Automatic classification

Comparing the F-score of the two strategies for model se-

lection, the strategy with the validation dataset surpassed

the strategy with only cross-validation (Table 7). In both

cases, the best model was an SVM using lemmas, term

tags, and frequent-word tags as features to describe sen-

tences. The training with sentences instead of fragments

was better. The hyperparameters of these models are

shown in Supplementary Table S19.

To decide on the best model for automatic summariza-

tion, we assessed the performance of the two models with

the test dataset. Whereas the averaged performance for the

five TFs decreased for the model selected with the valid-

ation dataset (F-score, 0.8470), it remained for the model

selected with only cross-validation (F-score, 0.8689). It

seems that the second model generalized better than the

first one. Hence, we decided to utilize this model. We will

describe its performance in following paragraphs.

Because the class OTHER was overrepresented in the

datasets, it was not surprising that this class was the best

classified for all TFs (Table 8). Concerning the classes

DOM and RP, although the F-scores for these two classes

were similar, the model performed better for sentences

about structural domains than for sentences about regu-

lated biological processes. For example, this model could

not classify any sentence of class RP for ArgR and GntR.

We also observed that this model attained higher preci-

sion than recall for the classes DOM and RP. This means

that the sentences classified as DOM and RP were

Table 7. Descriptions of the two selected classifiers

Strategy Classifier Features n-grams Remove

stop words?

SVD Compa Values F-score

Validation dataset SVM Lemmas, term tags, and frequent-word tags 1 þ 2 No Yes 200 TF-IDF 0.888

Only cross-validation SVM Lemmas, term tags, and frequent-word tags 1 þ 2 No No Binary 0.867

aComponentes.
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frequently true, but many sentences of these classes were

left aside. For example, from the three sentences classified

as DOM for ArgR, the three were true but the model could

not classify correctly the remaining 22 (see the confusion

matrices of all TFs in Supplementary Table S20). In con-

trast, the recall for the class OTHER was better than the

precision, that is, almost all the sentences about other

kinds of information in the dataset were classified cor-

rectly, but a few were confused with another class. For ex-

ample, three sentences of class OTHER were classified as

DOM for MarA. The lowest score of class DOM was for

ArgR, and the best score was for CytR. In fact, CytR had a

perfect classification for all classes. For class RP, the lowest

scores were for ArgR and GntR.

Automatic summarization

As we expected, the ROUGE recall score was higher than

the precision score (Table 9). The best recall was for CytR

and MarA, but ArgR had a better balance of precision and

recall. Only the shortest summaries (ArgR and GntR) ob-

tained better precision scores. Generally, we can say that

automatic summaries had between 40 and the 80% of the

words of the manual summary (see recall in Table 9). In

addition, to have an idea of whether these words were

relevant data instead of general words, ROUGE-1 without

stop words was used for an approximation. In this case,

automatic summaries covered between 30 and 70% of the

data of the manual summary.

ROUGE-SU4 entails a more severe evaluation method.

It takes into consideration skip-bigrams of distance 4 and

unigrams. Again, summaries of CytR and MarA had the

best recall, and ArgR had the best F-score (Table 10). All

ROUGE scores are shown in Supplementary Table S21.

Concerning unigrams and skip-bigrams, our initial

Table 9. Evaluation of automatic summaries with ROUGE-1 with and without stop words

TF ROUGE-1

With stop words Without stop words Summary (words)

Recall Precision F-score Recall Precision F-score

ArgR 0.553 0.442 0.491 0.463 0.348 0.397 154

CytR 0.86 0.087 0.158 0.759 0.066 0.121 1,124

FhlA 0.753 0.109 0.19 0.63 0.091 0.159 676

GntR 0.418 0.241 0.306 0.326 0.182 0.233 137

MarA 0.821 0.063 0.117 0.761 0.05 0.094 1,103

Average 0.681 0.188 0.252 0.587 0.147 0.201

The best scores are shown in boldface.

Table 8. Performance of the best classifier for TF and class

TF DOM OTHER RP

Precision Recall F-score Precision Recall F-score Precision Recall F-score

ArgR 1 0.12 0.21 0.86 1 0.92 0 0 0

CytR 1 1 1 1 1 1 1 1 1

FhlA 1 0.25 0.4 0.89 1 0.94 — — —

GntR 0.67 0.25 0.36 0.95 0.98 0.97 0 0 0

MarA 0.77 0.26 0.39 0.78 0.97 0.87 1 0.67 0.8

Averagea 0.89 0.38 0.47 0.9 0.99 0.94 0.5 0.42 0.45

aThe highest score between averaged precision and recall is shown in boldface.

Table 10. Evaluation of automatic summaries with ROUGE-

SU4 with and without stop words

TF ROUGE-SU4

With stop words Without stop words

Recall F-score Recall F-score

ArgR 0.277 0.245 0.223 0.19

CytR 0.428 0.077 0.361 0.056

FhlA 0.392 0.097 0.269 0.066

GntR 0.146 0.106 0.095 0.067

MarA 0.445 0.062 0.362 0.042

Best scores in bold face.
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automatic summaries had up to 40 and 30% of the infor-

mation of the manual summaries, with and without stop

words, respectively.

Discussion

We can confirm that the strategy of using sentences from

manual summaries to classify sentences of articles was

challenging. The results of the model assessment revealed

that the model could classify correctly only a few of sen-

tences from the articles (low recall), but the classification

was regularly correct (high precision). A disadvantage of

this model is that it puts aside several sentences which

could be valuable for curators. Nevertheless, the sentences

from articles correctly classified, although they were few in

number, can give curators a significant part of the relevant

information they need, because they were obtained by a

model trained with the sentences of manual summaries,

which condense a great deal of relevant information.

Moreover, the perfect classification of the sentences of

both classes for CytR revealed that our strategy could ob-

tain good results.

The low scores in classification and its variation among

different TFs were due to the diversity of ways to write sen-

tences about the information we needed. The greater the

variety of ways, the lower the performance of the classifier,

because it was trained with restricted examples. For ex-

ample, the model only classified correctly 3 of the 25 sen-

tences of the class DOM of ArgR. If we were to graph the

sentence vectors about this TF in three dimensions (3D),

we would see that the predicted sentences were relatively

close and two of them were very similar (red circles in

Figure 6), while the unpredicted sentences of this class

were sparser (black circles in Figure 6). On the other hand,

the classification of the same class (DOM) for CytR was

perfect, because the four sentences were relatively close

and less sparse (red circles in Figure 7). To graph these re-

sults in 3D, we used multidimensional scaling (MDS),

which is a widely used technique to visualize in low dimen-

sionality the structure of data (35). The color degradation

gives the appearance of depth.

In addition, the model could not classify any of the nine

sentences of the class RP for ArgR. In this case, these sen-

tences were also sparser (black circles in Figure 8) than the

two sentences of the same class for CytR, which were pre-

dicted correctly (red circles in Figure 9). Clearly, this is a

limitation of our proposal, and it comes from the selected

training strategy, which we can improve by incorporating

new classified sentences of articles into the training dataset

to improve the classifier.

On the other hand, our empirical results revealed a

combination of aspects to be considered for future work. Figure 8. MDS of sentence of the class RP for ArgR.

Figure 6. MDS of sentences of the class DOM for ArgR.

Figure 7. MDS of sentences of the class DOM for CytR.
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First, use of training sentences was a better strategy than

use of training fragments. This is because the sentences had

more context. Also, adding term tags and frequent-word

tags to lexical items (lemmas) helped us obtain the required

sentences. This result makes sense, because some words

chosen by the curators to write the summaries should be

different from words employed by the authors; therefore,

the tags can give more general and standardized informa-

tion to the classifier. Moreover, the combination of unig-

rams and bigrams was a good option. Last, we observed

that a K-fold-stratified cross-validation strategy was suit-

able for our problem with scarce positive examples. All

these findings will be taken into consideration to eventu-

ally generate summaries with more properties about TFs.

We will consider some strategies to tackle the problem

of low classification performance. First, we will explore se-

mantic representations of sentences. This could give classi-

fiers information about the semantic similarities of

sentences instead of word similarity. We expect that the

classifiers recognize similar sentences despite the way they

are written. Another strategy will be to test two-class clas-

sification instead of multiclass, which was the strategy em-

ployed in this study. Likely, a classifier could discriminate

better between two classes than three. Also, cases where a

sentence belongs to more than one class could be con-

sidered with this strategy. An additional approach would

be to employ more sophisticated strategies to deal with

imbalanced datasets, such as those that might results from

over- or undersampling. Finally, the potential benefits of

testing more classifiers will be taken into account.

Despite the results in our sentence classifications, our

automatic summaries comprised part of the relevant infor-

mation recorded by the curators in the manual summaries.

This was confirmed by recall, which is a more suitable

score to indicate how much relevant information our

automatic summaries had, given the simple approach to

summarize by concatenating sentences. According to this

score, the summaries of CytR and MarA covered up to

70% of the relevant data from the manual summary. The

low precision was because the automatic summaries were

too long compared with the manual summaries. In the

long run, we will tackle this problem by testing some strat-

egies, such as clustering of sentences, sentence compres-

sion, and sentence fusion.

To have a clearer idea of how much information the

automatic summaries share with the manual ones, we made

some comparisons using the worst and the best summary,

according to recall score. The worst summary was for GntR

(0.146 of ROUGE-SU4 recall), which encompassed only

five relevant data elements related to structural domain and

regulated biological processes from the manual summary

(Supplementary Table S22). The low recall of this summary

was due to many terms that did not coincide with terms in

the manual summary; however, the automatic summary

held relevant information for curation. In classification,

GntR also obtained the lowest scores (Table 8).

The best summary was for MarA (ROUGE-SU4 recall

of 0.445 and 0.362 with and without stop words, respect-

ively). The F-score of this summary was very low due to it

having much more information (Supplementary Table

S23). Despite the low F-score, this summary shared all rele-

vant data with the manual summary. Classification of sen-

tences of this TF was not the best (Table 8), but it was the

second best.

The best automatic summary according to the ROUGE

F-score was for ArgR (Supplementary Table S24). This

summary included almost all of the relevant data of the

manual summary with a great level of coincidence of

words and briefness. It is encouraging that our strategy ob-

tained this level of useful summaries. Nevertheless, future

analysis working with an open collection will be necessary,

because we used articles already reviewed by our curators

for writing the manual summaries.

The empirical results showed that training an auto-

mated model by using manual summaries to classify sen-

tences of articles is a valid strategy, although it requires

improvements, because the classification score was low.

We can assume that there are sentences of articles which

resemble sentences of manual summaries of RegulonDB,

which are feasible to classify. By using manual summaries

as training data, we reduced the human effort to create a

dataset. Now, with this classifier, we can obtain sentences

of articles to enrich the training examples. Concerning the

automatic summaries, despite the classification perform-

ance, the results of our summary evaluation confirmed that

we can generate summaries that contain relevant informa-

tion of the manual summaries.

Figure 9. MDS of sentence of the class RP for CytR.

Page 18 of 20 Database, Vol. 2017, Article ID bax070

https://academic.oup.com/database/article-lookup/doi/10.1093/database/bax070#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/bax070#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/bax070#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/bax070#supplementary-data


An important achievement of our research is that we es-

tablished an initial strategy to cover more properties about

TFs. Our plan is to continue with properties which have a

controlled vocabulary, such as: (a) the meaning of the TF

acronym, indicating whether it is a repressor, activator, or

dual transcriptional regulator; (b) the active and inactive

conformations of the TF; (c) information about the TFBS

features (such as size, and symmetry of the consensus se-

quence); (d) information about evolutionary features of the

TF; and (e) information about the organization of the tran-

scription unit that contains the gene encoding the TF. The

first step will be to apply the same strategy, that is, extracting

training examples from manual summaries, collecting term

lists and tagging sentences. If the results of this strategy were

to be applied for other remaining properties of the TFs, these

automatic summaries could be useful for curators to write

summaries about TFs of RegulonDB that do not currently

have one. Nevertheless, increasing the number of properties

will make the classification task more challenging, and so we

must improve the classification performance first.

Conclusions

In this article, we have presented a proposal to generate ini-

tial extractive, multidocument, automatic summaries about

two properties of TFs: the structural domains constituting

the TF and the biological processes in which the regulated

genes are involved. The summarization is accomplished by

automatic classification of sentences from scientific articles

about E. coli by means of an SVM classifier. Then, these sen-

tences are concatenated to create summaries. The evaluation

of these initial automatic summaries indicated that the strat-

egy is valid. These summaries contain part of the relevant in-

formation that curators of RegulonDB have included in the

manual summaries. Yet, some improvement is required.

This strategy will be expanded to summarize more

properties of TFs. Then, we will be able to generate sug-

gested sentences with relevant information to help the cur-

ation work without any loss of quality. Eventually, we will

consider applying this strategy to new article collections

for other organisms.

Supplementary data

Supplementary data are available at Database Online.
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