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dielectric screening for the
simulation of excited state properties of molecules
and materials†

Sijia S. Dong, ‡ab Marco Govoni ab and Giulia Galli *ab

Accurate and efficient calculations of absorption spectra of molecules and materials are essential for the

understanding and rational design of broad classes of systems. Solving the Bethe–Salpeter equation

(BSE) for electron–hole pairs usually yields accurate predictions of absorption spectra, but it is

computationally expensive, especially if thermal averages of spectra computed for multiple

configurations are required. We present a method based on machine learning to evaluate a key quantity

entering the definition of absorption spectra: the dielectric screening. We show that our approach yields

a model for the screening that is transferable between multiple configurations sampled during first

principles molecular dynamics simulations; hence it leads to a substantial improvement in the efficiency

of calculations of finite temperature spectra. We obtained computational gains of one to two orders of

magnitude for systems with 50 to 500 atoms, including liquids, solids, nanostructures, and solid/liquid

interfaces. Importantly, the models of dielectric screening derived here may be used not only in the

solution of the BSE but also in developing functionals for time-dependent density functional theory

(TDDFT) calculations of homogeneous and heterogeneous systems. Overall, our work provides

a strategy to combine machine learning with electronic structure calculations to accelerate first

principles simulations of excited-state properties.
Introduction

Characterization of materials oen involves investigating their
interaction with light. Optical absorption spectroscopy is one of
the key experimental techniques for such characterization, and
the simulation of optical absorption spectra is essential for
interpreting experimental observations and predicting design
rules for materials with desired properties. In recent years,
absorption spectra of condensed systems have been success-
fully predicted by solving the Bethe–Salpeter equation (BSE)1–11

in the framework of many-body perturbation theory (MBPT).12–17

However, for large and complex systems, the use of MBPT is
computationally demanding.18–26 It is thus desirable to develop
methods that can improve the efficiency of optical spectra
calculations, especially if results at nite temperature (T) are
desired.
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Simulation of absorption spectra at nite T can be achieved
by performing, e.g., rst principles molecular dynamics
(FPMD)27 and by solving the BSE for uncorrelated snapshots
extracted from FPMD trajectories. A spectrum can then be ob-
tained by averaging over the results obtained for each
snapshot.28–31

Several schemes have been proposed in the literature to
reduce the computational cost of solving the BSE,32–34 including
an algorithm that avoids the explicit calculation of virtual single
particle electronic states, as well as the storage and inversion of
large dielectric matrices.35,36 Recently, a so-called nite-eld (FF)
approach31,37 has been proposed, where the calculation of
dielectric matrices is bypassed; rather the key quantities to be
evaluated are screened Coulomb integrals, which are obtained
by solving the Kohn–Sham (KS) equations38,39 for the electrons
in a nite electric eld. The ability to describe dielectric
screening through nite eld calculations also led to the
formulation of GW37,40 and BSE31 calculations beyond the
random phase approximation (RPA), and of a quantum
embedding approach41,42 scalable to large systems.

From a computational standpoint, one important aspect of
solving the Kohn–Sham equations in nite eld is that the
calculations can be straightforwardly combined with the
recursive bisection algorithm43 and thus, by harnessing orbital
localization, one may greatly reduce the number of screened
Coulomb integrals that need to be evaluated. Importantly, the
© 2021 The Author(s). Published by the Royal Society of Chemistry
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workload to compute those integrals is of O(N4), irrespective of
whether semilocal or hybrid functionals are used.31 In spite of
the improvement brought about by the FF algorithm and the
use of the bisection algorithm, the solution of the BSE remains
a demanding task. One of the quantities particularly chal-
lenging to evaluate is the dielectric matrix of the system, that
describes many-body screening effects between the interacting
electrons. Intuitively we can understand a dielectric matrix as
a complex lter that connects the bare (i.e., unscreened)
Coulomb interaction between the electrons to an effective,
screened Coulomb interaction. Such screened interaction is
used in MBPT to approximately account for electronic correla-
tion effects, when solving the Dyson equation (GW) and the
BSE. Here we turn to machine learning (ML), in order to tackle
the challenge of evaluating the dielectric matrix.

Specically, for a chosen atomic conguration of a solid or
a molecule, we use ML techniques to derive a mapping from the
unscreened to the screened Coulomb interaction, thus deriving
a model of the dielectric screening. Once such a model is
available, it can be re-used for multiple congurations sampled
in a FPMD at nite temperature, without the need to recompute
a complex dielectric matrix for each snapshot. Hence the use of
a ML-derived model may greatly improve the efficiency of the
calculation of nite T absorption spectra, provided the dielec-
tric screening is weakly dependent on atomic congurations
explored as a function of simulation time. We will show below
that this assumption is indeed veried for several disordered
systems, including liquid water and Si/water interfaces at
ambient conditions and silicon clusters. Importantly, the use of
ML-derived models leads to a reduction of 1 to 2 orders of
magnitude in the computational workload required to obtain
the dielectric screening for the simulation of optical absorption
spectra at nite temperature. Another important advantage of
the ML-derived dielectric screening is that it provides insight
into the approximate screening parameters used in the deriva-
tion of hybrid functionals for time-dependent DFT (TDDFT)
calculations, including dielectric-dependent hybrid (DDH)
functionals.44–48

We emphasize that the strategy adopted here is different in
spirit from strategies that use ML to infer structure–property
relationships49–57 or relationships between computational and
experimental data.58 We do not seek to relate structural prop-
erties of a molecule or a solid to its absorption spectrum.
Rather, either we consider a knownmicroscopic structure of the
system or we determine the structure by carrying out rst
principles MD (e.g., in the case of liquid water or a solid/liquid
interface). Then, for a given atomistic conguration we use ML
techniques to obtain the model between the unscreened and
the screened Coulomb interaction, and we use such a model in
the solution of the BSE for multiple congurations.

Hence the method proposed here is conceptually different
from the approaches previously adopted to predict the absorp-
tion spectra of molecules or materials using ML.58–63 For
example, Ghosh et al.61 predicted molecular excitation spectra
from the knowledge of molecular structures at zero T, by using
neural networks trained with a dataset of 132531 small organic
molecules. Carbone et al.62 mapped molecular structures to X-
© 2021 The Author(s). Published by the Royal Society of Chemistry
ray absorption spectra using message-passing neural
networks, and a dataset of �134000 small organic molecules.
Xue et al.63 focused on two specic molecules and used a kernel
ridge regression model trained with a minimum of several
hundred molecular geometries and their corresponding exci-
tation energies and oscillator strengths computed at the
TDDFT64 level; they then used the results to predict the excita-
tion energies and oscillator strengths of an ensemble of
geometries and absorption spectra.

All of these methods seek to relate structure to function
(absorption spectra). The method presented here uses instead
ML to replace a computationally expensive step in rst princi-
ples simulations, and as we show below, leads to physically
interpretable results. The rest of the paper is organized as
follows. In the next section, we briey summarize our compu-
tational strategy. We then discuss homogeneous systems,
including liquid water and periodic solids, followed by results
for heterogeneous and nite systems. We conclude by high-
lighting the innovation and key results of our work.
Methods

We rst briey summarize the technique used here to solve the
BSE, including the use of bisection techniques to improve the
efficiency of the method. We then describe the method based
on ML to obtain the dielectric screening entering the BSE,
including the description of the training set of integrals. These
integrals are computed for a chosen conguration of a molecule
or a solid.

Using the linearized Liouville equation31,35,36,65 and the
Tamm–Dancoff approximation,66 the absorption spectrum of
a solid or molecule can be computed from DFT38,39 single
particles eigenfunctions as:

SðuÞf
X3

i¼1

Xnocc
v¼1

�
jvjrijaviðuÞ

�þ c:c: (1)

where u is the absorption energy, ri are the Cartesian compo-
nents of the dipole operator, nocc is the total number of occu-
pied orbitals, and jjvi is the v-th occupied orbital of the
unperturbed KS Hamiltonian, Ĥ0, corresponding to the eigen-
value 3v. The functions javii are obtained from the solution of
the following equation:31,35,36

Xnocc
v
0 ¼1

�
udvv0 �Dvv

0 � K 1e

vv
0 þ K 1d

vv
0
���av0 i� ¼ P̂cr̂ijjvi (2)

where

Dvv0jav0ii ¼ P̂c(Ĥ
0 � 3v)dvv0jav0ii, (3)

K 1e
vv

0
��av0 i� ¼ 2P̂c

�ð
dr

0
Vcðr; r0 Þj*

v
0 ðr0 Þav0 iðr0 Þ

�
jvðrÞ; (4)

K 1d
vv

0
��av0 i� ¼ P̂csvv0 ðrÞav0 iðrÞ; (5)

P̂c ¼ 1� Pnocc
v¼1

jjvihjvj is the projector on the unoccupied mani-

fold, and Vc ¼ e2

jr� r0 j is the unscreened Coulomb potential.
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Following the derivation reported by Nguyen et al.,31 we dened
screened Coulomb integrals, svv0, entering eqn (5), as:

svv0 ðrÞ ¼
ð
W ðr; r0 Þjvðr

0 Þj*

v
0 ðr0 Þdr0 (6)

¼ su
vv

0 ðrÞ þ Dsvv0 ðrÞ; (7)

where the screened Coulomb interaction W is given by W ¼
3�1Vc, and 3�1 is the inverse of the dielectric matrix (dielectric
screening). Analogously, unscreened Coulomb integrals,
suvv0, are dened as:

su
vv

0 ðrÞ ¼
ð
Vcðr; r0 Þjvðr

0 Þj*

v
0 ðr0 Þdr0 : (8)

By carrying out nite eld calculations,31,37,40 one can obtain
screened Coulomb integrals without an explicit evaluation of
the dielectric matrix (eqn (6)), but rather by adding to the
unscreened Coulomb integrals the second term on the right
hand side of eqn (7), which is computed as:

Dsvv0 ðrÞ ¼
ð
Vcðr; r0 Þ

rþ
vv

0 ðr0 Þ � r�
vv

0 ðr0 Þ
2

dr
0
: (9)

The densities r�vv0 are obtained by solving the KS equations
with the perturbed Hamiltonian Ĥ � suvv0; both indexes v and v0

run over all occupied orbitals. While all potential terms of Ĥ
may be computed self-consistently,31 in this work the exchange-
correlation potential was evaluated for the initial unperturbed
electronic density and kept xed during the self-consistent
iterations. This amounts to evaluating the dielectric screening
within the RPA. The FF-BSE approach has been implemented by
coupling the WEST18 and Qbox67 codes in client-server
mode.31,37,68

The maximum number of integrals, nint ¼ nocc(nocc + 1)/2, is
determined by the total number of pairs of occupied orbitals.
The actual number of integrals to be evaluated can be greatly
reduced by using the recursive bisectionmethod,43 which allows
one to localize orbitals and consider only integrals generated by
pairs of overlapping orbitals.31 The systems studied in this work
contain tens to hundreds of atoms, with hundreds to thousands
of electrons. For example, for one of the Si/water interfaces
discussed below, we considered a slab with 420 atoms, 1176
electrons and each single particle state is doubly occupied.
Hence, nocc ¼ 588, and nint ¼ 173166. Using the recursive
bisection method the total number of vv0 pairs is reduced to nint
¼ 5574 (a reduction factor slightly larger than 30) without
compromising accuracy, when a bisection threshold of 0.05 and
ve bisection levels in each Cartesian direction are adopted.43

We note that the Liouville formalism used in this work (eqn
(1)) only involves summations over occupied states. Such
formalism was shown to yield absorption spectra equivalent to
solving the BSE with explicit and converged summations over
empty states.31,35,36 The same formalism may also be used to
describe absorption spectra within TDDFT,64 albeit employing
a different denition of the K 1e and K 1d terms.15,31,65,69–72
4972 | Chem. Sci., 2021, 12, 4970–4980
The key point of our work is the use of ML to generate
a model for the calculation of screened Coulomb integrals (eqn
(7)) that is transferable to multiple atomic congurations; the
goal is to reduce the computational cost in the solution of eqn
(1). In particular, we consider the mapping between unscreened
Coulomb integrals, suvv0, and screened Coulomb integrals, Dsvv0.
Such transformation is mapping nint pairs of a 3D array, i.e., {F:
suvv0 / Dsvv0,cv,v0 ˛ [1,.,nocc]} and is similar to 3D image pro-
cessing. Our objective is to learn the mapping functions and
hence it is natural here to use convolutional neural networks
(CNN), a widely used technique in image classication. CNNs
are articial neural networks with spatial-invariant features.
The screened and unscreened Coulomb integrals are related by
the dielectric matrix, which describes a linear response function
of the system to an external perturbation. Therefore, the
mapping we aim to obtain should follow a linear relationship
for physical reasons, and one convolutional layer without
nonlinear activation functions should be considered. Here, the
surrogate model F, used to bypass the explicit calculation of eqn
(9), is represented by a single convolutional layer K:

Dsvv0(x,y,z) ¼ (K * suvv0)(x,y,z) (10)

where K is the convolutional lter of size (nx, ny, nz) (see the ESI†
for details).

The lter, K, is determined through an optimization proce-
dure that utilizes nint pairs of suvv0 and Dsvv0 as the dataset, ob-
tained for one conguration (i.e., one set of atomic positions)
using eqn (8) and eqn (9), respectively. Therefore this lter
captures features in the dielectric screening that are transla-
tionally invariant. When the lter size is reduced to (1, 1, 1), the
training procedure is effectively a linear regression and eqn (10)
amounts to applying a global scaling factor to suvv0, which we
label fML.

In our calculations, the mapping F corresponds to evaluating
the dielectric screening arising from the short-wavelength part
(i.e., the body) of the dielectric matrix. The long-wavelength part
(i.e., the head of the dielectric matrix) corresponds to the
macroscopic dielectric constant 3N. The denitions of the head
and body of the dielectric matrix are given in eqn (S1) of the ESI.†

One of the main advantages of a ML-based model for the
screening is that it may be reused for multiple congurations
sampled during a FPMD simulation, thus avoiding the calcula-
tions of dielectric matrices for each snapshot, as illustrated in
Fig. 1. The validity of such an approach and its robustness are
discussed below for several systems. In our calculations, we
carried out FPMD with the Qbox67 code and MBPT theory calcu-
lations with the WEST18 code, coupled in client server mode with
Qbox in order to evaluate the screened integrals (eqn (7–9)), which
constitute our training dataset. We implemented an interface
between Tensorow73 and WEST, including a periodic padding of
the data for the convolution in eqn (10), in order to satisfy periodic
boundary conditions. The computational details of each system
investigated here are reported in the ESI.† Data and scripts are
available through Qresp at https://paperstack.uchicago.edu/
paperdetails/6031693f58fc9075286688?server=https%3A%2F%
2Fpaperstack.uchicago.edu.74
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 1 Illustration of the strategy to predict absorption spectra at finite
temperature based on the solution of the Bethe–Salpeter equation
(BSE) and machine learning techniques. F is the mapping obtained by
machine learning.

Edge Article Chemical Science
Results

We now turn to present our results for several systems, starting
from liquid water.
Liquids

To establish baseline results with small computational cost, we
rst considered a water supercell containing 16 water mole-
cules. We tested the accuracy of a single convolutional layer
with different lter sizes, from (1, 1, 1) to (20, 20, 20). We nd
that a convolutional model (eqn (10)) can be used to bypass the
calculation of Ds in eqn (9), yielding absorption spectra in good
agreement with the FF-BSE method. In particular, we nd that
a lter size of (1, 1, 1), i.e., a global scaling factor, is sufficient to
accurately yield the positions of the lower-energy peaks of the
absorption spectra, with an error of only �0.03 eV (see the ESI†
for a detailed quantication of the error).

We then turned to interpret the meaning of the global
scaling factor fML, and we computed the quantity 3ML

f ¼ (1 +
© 2021 The Author(s). Published by the Royal Society of Chemistry
fML)�1. For 20 independent snapshots extracted from a FPMD
trajectory of the 16-H2O system, we nd that 3ML

f ¼ 1.84� 0.02 is
the same, within statistical error bars, as that of the PBE75

macroscopic static dielectric constant computed using the
polarizability tensor (as implemented in the Qbox code67): 3PTN ¼
1.83 � 0.01. Therefore, the global scaling factor that we learned
is closely related to the long-wavelength dielectric constant of
the system. Interestingly, we obtained similar scaling factors for
a simulation using a larger cell, with 64-molecules, e.g., 3ML

f ¼
1.83 for a given, selected snapshot, for which 3PTN ¼ 1.86. To
further interpret the factor fML obtained by ML, we computed
the average of Dsvv0/s

u
vv0 over all vv0. Specically, we dene

f Avg ¼ 1
U

ð
f AvgðrÞdr; where f AvgðrÞ ¼ 1

Nvv0

X
v;v0

Dsvv0 ðrÞ=suvv0 ðrÞ; U

is the volume of the simulation cell, and Nvv0 is the total number
of vv0 in the summation. Using one snapshot of the 16-H2O
system as an example, we nd that 3Avgf ¼ (1 + fAvg)�1 ¼ 1.79,
similar to 3ML

f ¼ 1.86 for the same snapshot.
To evaluate how sensitive the peak positions in the absorp-

tion spectra of water are to the value of the global scaling factor,
we varied 3f from 1.67 to 1.92. We nd that the position of the
lowest-energy peak varies approximately in a linear fashion,
from 8.69 eV to 8.76 eV. This analysis shows that a global scaling
factor is sufficient to represent the average effect of the body
(i.e., short-wavelength part) of the dielectric matrix and that this
factor is approximately equal to the head of the matrix (related
to the long-wavelength dielectric constant). Hence, our results
show that a diagonal dielectric matrix is a sufficiently good
approximation to represent the screening of liquid water and to
obtain its optical spectrum by solving the BSE. This simple
nding is in fact an important result, leading to a substantial
reduction in the computational time necessary to obtain the
absorption spectrum of water at the BSE level of theory.

In order to understand how the screening varies over a FPMD
trajectory, we applied the global scaling factor fML obtained
from one snapshot of the 16-H2O system to 10 different snap-
shots of a 64-H2O system,76 at the same T, 400 K, and we
computed an average spectrum. As shown in Fig. 2, we can
accurately reproduce the average spectrum computed with FF-
BSE. The RMSE between the two spectra is 0.027. These
results show that the global scaling factor is transferable from
the 16 to the 64 water cell and that the dependence of the global
scaling factor on the atomic positions may be neglected, for the
thermodynamic conditions considered here. While it was
recognized that the dielectric constant of water is weakly
dependent on the cell size, it was not known that the average
effect of the body of the dielectric matrix is also weakly depen-
dent on the cell size. In addition, our results show that the
dielectric screening can be considered independent from
atomic positions for water at ambient conditions. This property
of the dielectric screening was not previously recognized; it is
not only an important recognition from a physical standpoint,
but also from an efficiency standpoint, to improve the efficiency
of BSE calculations.

The timing acceleration of ML-BSE compared to FF-BSE is
a function of the size of the system (characterized by the
Chem. Sci., 2021, 12, 4970–4980 | 4973



Fig. 2 Averaged spectra of liquid water obtained by solving the
Bethe–Salpeter equation (BSE) in finite field (FF) and using machine
learning techniques (ML). Results have been averaged over 10 snap-
shots obtained from first principles simulations at 400 K, using
supercells with 64 water molecules. The variability of the FF-BSE
spectra within the 10 snapshots is shown in the inset. See also Fig. S4 of
the ESI† for the same variability when using ML-BSE.

Fig. 3 Relationship between the scaling factor obtained by machine
learning (fML) and that obtained by computing the dielectric constant at
the same level of theory (fPT) (see text).
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number of screened integrals nint and the number of plane
waves (PWs) npw). We denote by td the total number of core
hours required to compute the net screening Ds for all pairs of
orbitals. We do not include in td the training time, which
usually takes only several minutes on one GPU for the systems
studied here. Since we perform the training procedure once, we
consider the training time to be negligible. We dene the
acceleration to compute the net effect of the screening as ad ¼
tFF-BSEd /tML-BSE

d , and we nd that ad increases as nint and npw
increase. See the ESI† for details.

For the 64-H2O system discussed above, we used a bisection
threshold equal to 0.05, and a bisection level of 2 for each of the
Cartesian direction. This reduces nint from 256(256 + 1)/2 ¼
32896 to 3303. In this case, the gain achieved with our machine
learning technique is close to two orders of magnitude: ad ¼ 87.
Fig. 4 Absorption spectrum of crystalline Si computed by solving the
Bethe–Salpeter equation (BSE) starting from PBE75 wavefunctions,
using a 2-atom cell and 12 � 12 � 12 k-point sampling (blue line). The
orange dashed line (Model-BSE) shows the same spectrum computed
using a diagonal dielectric matrix with diagonal elements equal to 3N¼
12.21 (see text). Experimental results86 are shown by the green dotted
line.
Solids

We now turn to discussing the accuracy of ML-BSE for several
solids, including LiF, MgO, Si, SiC, and C (diamond), for which
we found again remarkable efficiency gains, ranging from 13 to
43 times for supercells with 64 atoms. In all cases, we used the
experimental lattice constants.77 Similar to water, we found that
a convolutional model (eqn (10)) can reproduce the absorption
spectra of solids at the FF-BSE level, and that global scaling
factors, either from linear regression or from averaging Ds/su

yield similar accuracy (Fig. S6 snd S7 of the ESI†). As shown in
Fig. 3, where we have dened fPT¼ (3PTN )�1� 1, we found that fML

is again numerically close to fPT, for 3PTN computed using the
polarizability tensor,67 and the same level of theory and k-point
sampling. These results show that, for ordered solids, the
average effect of the body (short-wavelength part) of the
dielectric matrix, 3ML

f , is similar to that of the head (long-
wavelength limit) of the matrix and hence a diagonal
4974 | Chem. Sci., 2021, 12, 4970–4980
screening is sufficient to describe the absorption spectra,
similar to the case of water. This is an interesting result that
supports the validity of the approximation chosen to derive the
DDH functional.44–46,78–83

We note that the FF-BSE algorithm uses the G point and is
efficient and appropriate for large systems. In order to verify
that a diagonal dielectric matrix is an accurate approximation
also when using unit cells and ne grids of k-points, we
computed the absorption spectrum of Si with a 2-atom cell and
a 12 � 12 � 12 k-point grid, using the Yambo84,85 code. We then
compared the results with those obtained using a diagonal
approximation of the dielectric matrix, and elements derived
from the long-wavelength dielectric constant computed with
the same cell and k-point grid. Fig. 4 shows that we found an
© 2021 The Author(s). Published by the Royal Society of Chemistry
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excellent agreement between the two calculations, of the same
quality as that obtained for water in the previous section.

It is important to note that the method presented here to
learn the lter between unscreened and screened integrals
represents a way of obtaining a model dielectric function with
ML techniques, and without the need of using ad hoc empirical
parameters. Several model dielectric functions have been
proposed to speed-up the solution of the BSE for solids over the
years.48,87–93 Recently, Sun et al.48 proposed a simplied BSE
method that utilizes a model dielectric function (m-BSE). The
authors used the model of Cappellini et al.91 with an empirical
parameter, which they determined by averaging the values
minimizing the RMSE between a model dielectric function and
that obtained within the RPA for Si, Ge, GaAs, and ZnSe.94 This
simplied BSE method yields good agreement with the results
of the full BSE solution. For example, in the case of LiF, the shi
between the rst peak obtained with m-BSE and BSE is 0.12 eV,
to be compared to the shi of 0.04 eV found here, between ML-
BSE and FF-BSE. A model dielectric function has been proposed
also for 2D semiconductors95 and silicon nanoparticles.96,97

However, the important difference between our work and the
models just described is that the latter requires empirical
parameterization. One of the advantages of the ML approach
adopted here is that it does not require the denition of
empirical parameters and, importantly, it may also be applied
to nanostructures and heterogeneous systems, such as solid/
liquid interfaces, as discussed next.
Interfaces

We have shown that for solids and liquids, the use of ML leads
to the denition of a global scaling factor that, when utilized to
model the screened Coulomb interaction, yields results for
absorption spectra in very good agreement with those of the full
FF-BSE calculations, at a much lower computational cost. We
now discuss solid/liquid interfaces as prototypical heteroge-
neous systems.

We considered two silicon/water interfaces modeled by
periodically repeated slabs. One is the H–Si/water interface,
a hydrophobic interface with 420 atoms (72 Si atoms and 108
water molecules; Si surface capped by 24 H atoms); the other is
a COOH–Si/water interface, a hydrophilic interface with 492
atoms (72 Si atoms and 108 water molecules; Si surface capped
by 24 –COOH groups).98 Not unexpectedly, we found that
neither a global scaling factor nor a convolutional model is
sufficiently accurate to reproduce the spectra obtained with FF-
BSE, as shown in Fig. S11 of the ESI.† Therefore, we have
developed a position-dependent ML model to describe the
variation of the dielectric properties in the Si, water and inter-
facial regions. We divided the grid of svv0 into slices, each
spanning one xy plane parallel to the interface; we then trained
for a model on each slice. In this way we describe translationally
invariant features along the x and y directions, and we obtain
a z-dependent convolutional lter K(z) or z-dependent scaling
factors fML(z). We found that a position-dependent lter, K(z), or
a scaling factor for each slice, fML(z), yield a comparable
© 2021 The Author(s). Published by the Royal Society of Chemistry
accuracy, and therefore we focus on the fML(z) model, which is
simpler.

We found that the z-dependent ML model fML(z) is accurate
to represent the screening of the Si/water interfaces when
computing absorption spectra (Fig. 5). Together with Fig. S11 in
the ESI,† our nding show that a block diagonal dielectric
matrix, where all the diagonal elements in the dielectric matrix
have the same value, is not a good representation of the
screening, unlike the case of water and ordered, periodic solids;
instead taking into account the body of the dielectric matrix as
in the fML(z) model is critical in the case of an interface.

Depending on how the grid of svv0 are divided, we obtain
different fML(z) proles for Si/water interfaces. Fig. 5 shows the
spectra in the case of fML(z) dened by two parameters (a
constant value in the Si region, and a different constant value in
the water region); we name this prole fML

p2 (z). In Fig. S12(a) of
the ESI,† we present the spectra obtained using fML(z) in the
case of 108 slices evenly spaced in the z direction, which we call
fML
p108(z). The function 3ML

f (z) corresponding to fML
p108(z) presents

maxima at the interfaces, and minima at the points furthest
away from the interface, in the Si and the water regions
(Fig. S12(b) of the ESI†).

In order to interpret our ndings, we express Ds in terms of
projective dielectric eigenpotentials, (PDEP)99,100 and we
decompose fAvg(r) into contributions from each individual
PDEP,101 i.e., f Avg ¼ P

i
f Avgi ; where

f
Avg
i ðrÞ ¼ 1

Nv;v
0

X
v;v

0

fiðrÞðli=ð1� liÞÞ
Ð
f*
i ðr

00 Þsu
vv

0 ðr00 Þdr00
su
vv

0 ðrÞ (11)

and fi is the i-th eigenpotential of the static dielectric matrix
corresponding to the eigenvalue li. We nd that the largest
contribution to fAvg(r) comes from the eigenvectors corre-
sponding to the most negative PDEP eigenvalue. This PDEP
component has its maximum near the interfaces, with the
square modulus of the corresponding PDEP eigenpotential
being localized at the interfaces (Fig. S13 of the ESI†). This
shows that the maximum of 3ML

f (z) at the interfaces stem from
the contribution of the PDEP eigenpotential with the most
negative eigenvalue.

Interestingly, fML
p2 (z) and fML

p108(z) yield absorption spectra of
similar quality. This suggests that the absorption spectrum is
not sensitive to the details of the prole at the interface, at least
in the case of the H–Si/water interface (Fig. 5(a) and S12 of the
ESI†) and the COOH–Si/water interface (Fig. 5(b) and S16 of the
ESI†) studied here. However, knowing the functional form of
fML
p108(z) is useful to determine the location of the interfaces, and
it can be used to dene where the discontinuities in fML

p2 (z) are
located.

We further developed a 3D grid model, fML(r). This is
a simple extension of the z-dependent model, where instead of
slicing svv0 in only one direction, we equally divided svv0 into sub-
domains in all three Cartesian directions. We tested cubic sub-
domains of side lengths from 0.6�A to 2.6�A, and we found that
the accuracy of the resulting spectrum is similar to that ob-
tained with the z-dependent model, as shown in Fig. S14 of the
ESI.†
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Fig. 5 Comparison of absorption spectra obtained by solving the Bethe–Salpeter equation (BSE) in finite field (FF) and using machine learning
(ML) techniques for (a) a H–Si/water interface shown in the lower left panel and (b) a COOH–Si/water interface (shown in the lower right panel).
Blue, red and white spheres represent Si, oxygen and hydrogen respectively. C is represented by brown spheres. (See the ESI† for results from
using a kinetic energy cutoff of 60 Ry for wavefunctions.).
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In order to verify the transferability of the position-
dependent model derived for one snapshot extracted from
FPMD to other snapshots, we computed absorption spectra by
using the same fML(z) for different snapshots generated at
ambient conditions and we found that the screening is weakly
dependent on the atomic positions, at these conditions, similar
to the case of water discussed above (Fig. S15 of the ESI†).

In summary, by obtaining 3ML
f (z) from machine learning, we

have provided a way to dene a position-dependent dielectric
function for heterogeneous systems. For the Si/water interfaces,
the acceleration to compute the net screening effect is ad ¼ 86
for H–Si/water if bisection techniques are used (nint ¼ 5574),
and ad ¼ 224 for COOH–Si/water, again if bisection techniques
are used (nint ¼ 8919).
Nanoparticles

As our last example we consider nanoparticles, i.e., 0D systems.
We focus on silicon clusters Si35H36 and Si87H76 (ref. 18, 81 and
102) but we start from a small cluster Si10H16 rst, to test the
methodology. As shown in Fig. 6(b), we found that a global
scaling factor is not an appropriate approximation of the
screening, e.g., for the spectrum of Si10H16 computed using PW
basis set in a simulation cell with a large vacuum (cell length
over 25 �A). This nding points at an important qualitative
difference with respect to the case of solids and liquids
(condensed systems). Interestingly, we found that convolutional
models are instead robust to different sizes of vacuum, and give
absorption spectra in good agreement with FF-BSE calculations
4976 | Chem. Sci., 2021, 12, 4970–4980
(Fig. 6(a)). The inaccuracy of a global scaling factor stems from
two reasons. One is related to the fact that when the volume of
the vacuum surrounding the cluster becomes large, the data of
the training set is dominated by small matrix elements repre-
senting the vacuum region. Because the numerical noise is not
translationally invariant, the use of eqn (10) overcomes this
issue, as the noise from vacuummatrix elements is canceled out
in the convolution process. We note that the presence of
nonzero elements in the vacuum region is due to the choice of
the PW basis set, which requires periodic boundary conditions.
In the case of isolated clusters, the use of periodic boundary
conditions could be avoided by choosing localized basis set.
However, there are several systems of interest where using PW
basis set is preferable and vacuum regions are present, such as
nanoparticles deposited on surfaces. The second reason
responsible for the inaccuracy of a global scaling factor, even if
the noise arising from vacuum is eliminated, (see Fig. S18 of the
ESI†), is that the mapping between su and Ds being is simply
more complex in nanoparticles than in homogeneous systems.
Such a complexity can be accounted for when using eqn (10).

In order to investigate the dependence of the screening of
nanoparticles on temperature, we transferred the ML model
trained for one specic snapshot of the Si35H36 cluster, to
different snapshots extracted from a FPMD simulation, in order
to predict absorption spectra at nite temperature. We applied
the convolutional model with lter size (7, 7, 7) obtained from
the 0 K Si35H36 cluster to 10 snapshots of Si35H36 from an FPMD
trajectory equilibrated at 500 K. As shown in Fig. 7, the average
ML-BSE spectrum can accurately reproduce the FF-BSE
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 Comparison of absorption spectra of Si10H16 (40 �A cell) ob-
tained by solving the Bethe–Salpeter equation (BSE) in finite field (FF)
and using machine learning (ML) techniques for (a) convolutional layer
with filter size (7, 7, 7) from a cell of 30�A, and (b) a global scaling factor.
The RMSE value between the FF-BSE and ML-BSE spectra is 0.067 for
(a) and 0.141 for (b), respectively. The accuracy of using a convolutional
layer with filter size (7, 7, 7) from the 40�A cell itself is similar to that of
(a): RMSE ¼ 0.067.

Fig. 7 Average spectra of Si35H36 obtained by solving the Bethe–
Salpeter equation (BSE) in finite field (FF) and using machine learning
techniques (ML). Results have been averaged over 10 snapshots ob-
tained from first principles simulations at 500 K. The variability of the
FF-BSE spectra within the 10 snapshots is shown in the inset. See also
Fig. S21 of the ESI† for the same variability when using ML-BSE.

Fig. 8 Accuracy of the Si87H76 spectrum obtained from ML-BSE by
applying a convolutional model with filter size (7, 7, 7), trained from
Si35H36. The RMSE value between the FF-BSE and ML-BSE spectra is
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absorption spectrum at 500 K, with a small peak position shi
of 0.08 eV. TheML-BSE spectra of individual snapshots is also in
good agreement with the corresponding spectra computed with
FF-BSE, shown in Fig. S22 of the ESI.† These results show that
for nanoclusters, as for water, the screening is weakly depen-
dent on atomic positions over a 500 K FPMD trajectory; note
however that the 0 K spectrum (Fig. S20 of the ESI†) has
different spectral features than the one collected at 500 K
(Fig. 7).

We also found that the convolutional model trained for
Si35H36 can be applied to Si87H76 with an error within 0.07 eV for
peak positions (Fig. 8). The accuracy is comparable to the con-
volutional model from Si87H76 itself, as shown in Fig. S24 of the
ESI.† This shows that the convolutional model captures the
nonlocality of the dielectric screening common to Si clusters of
different sizes and is transferable from a smaller to a larger
© 2021 The Author(s). Published by the Royal Society of Chemistry
nanocluster (Si87H76) within the size range considered here. The
FF-BSE calculation of Si87H76 is about 6 times more expensive in
terms of core hours than that of Si35H36; hence, being able to
circumvent the FF-BSE calculation of Si87H76 by using themodel
K computed for Si35H36 is certainly an advantage.

Conceptually, the convolutional model yields lters that
capture the translational invariant features of the dataset, and
in our case they capture the nonlocality of the screening. In
other words, the convolutional lters represent features in the
mapping from suvv0 to Dsvv0 that are invariant across the simu-
lation cell. For Si clusters, we found that the RMSE values
betweenML-BSE and FF-BSE spectra converges as the size of the
lter increases. For example, for Si35H36, convergence is ach-
ieved at the lter size (7, 7, 7), which corresponds to a cube with
0.033.
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side length (2.24 �A), corresponding approximately to the Si–Si
bond length in the cluster (2.35�A). This result suggests that the
screening of the Si cluster has features of the length of a nearest-
neighbor bond that are translationally invariant.

The timing acceleration ad for calculations of the absorption
spectra of the Si35H36 cluster in a cubic cell of 20, 25, or 30�A in
length, is 24, 47, or 90 times, respectively, when using bisection
techniques (threshold 0.03, 4 levels in each Cartesian direction),
as shown in Fig. S25 of the ESI.† In the case of Si87H76 cluster, ad
x 160.

Conclusions

We presented a method based on machine learning (ML) to
determine a key quantity entering many body perturbation
theory calculations, the dielectric screening; this quantity
determines the strength of the electron–hole interaction
entering the BSE. In our ML model, the screening is viewed as
a convolutional (linear) lter that transforms the unscreened
into the screened Coulomb interaction. Our results show that
such amodel can be obtained for a chosen atomic conguration
and then re-used to represent the screening of multiple
congurations sampled in a FPMD at nite temperature for
several systems, including water, solid/water interfaces, and
silicon clusters.

In particular, we found that in the case of homogeneous
systems, e.g. liquid water and several insulating and semi-
conducting solids, absorption spectra can be accurately pre-
dicted by using a diagonal dielectric matrix. When using such
a diagonal form, we found excellent agreement with spectra
computed by the full solution of the BSE in nite eld. In
addition, our results showed that for liquid water the same
diagonal approximation can be used to accurately compute
spectra for different congurations from FPMD at ambient
conditions, thus easily obtaining a thermal average represent-
ing a nite temperature spectrum.

In the case of nanostructures and heterogeneous systems,
such as solid/liquid interfaces, we found that the use of diag-
onal matrices or block-diagonal dielectric matrices to describe
the two portions of the system (Si and water, in the example
chosen here) does not yield accurate spectra; through machine
learning of the screening we could dene simple models
yielding accurate absorption spectra and a simple way of
computing thermal averages. For nanostructures, it is necessary
to use a convolutional model to properly represent the non-
locality of the dielectric screening. Similar to water and the Si/
water interfaces, we found that the function describing the
screening for hydrogenated Si-clusters of about 1 nm does not
depend in any substantial way on the atomic coordinates of the
snapshots sampled during our FPMD simulations, up to the
maximum temperature tested here, 500 K.

The time savings in the calculations of the screening using
ML are remarkable, ranging from a factor of 13 to 87 for the
solids and liquids studied here, with cells varying from 64 to 192
atoms. For the clusters and the interface, we obtained time
savings ranging from 30 to 224 times, with cells varying from 26
to 492 atoms.
4978 | Chem. Sci., 2021, 12, 4970–4980
Finally, we note that the ML-based procedure presented
here, in addition to substantially speeding up the calculation of
spectra, especially at nite T, represents a general approach to
derive model dielectric functions, which are key quantities in
electronic structure calculations, utilized not only in the solu-
tion of the BSE. For example, our approach provides a strategy
to develop dielectric-dependent hybrid functionals (DDH)45,80

for TDDFT calculations, as well as an interpretation of the
parameters entering model dielectric functions.48,87–89,91,93,96,97 In
particular, for homogeneous systems, our ndings points at
TDDFT with DDH functionals as an accurate method to obtain
absorption spectra, consistent with the results of Sun et al.,48

which were however derived semi-empirically. Work is in
progress to further develop a strategy to develop parameters
entering hybrid DFT functionals using machine learning.103
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