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ABSTRACT

Quercus suber L. is a sclerophyllous tree species native to the western Mediterranean,
a region that is considered highly vulnerable to increased temperatures and severe dry
conditions due to environmental changes. Understanding the population structure
and demographics of Q. suber is essential in order to anticipate whether populations at
greater risk and the species as a whole have the genetic background and reproductive
dynamics to enable rapid adaptation. The genetic diversity of Q. suber has been subject
to different studies using both chloroplast and nuclear data, but population structure
patterns remain unclear. Here, we perform genetic analyses on Q. suber using 13
nuclear microsatellite markers, and analysed 17 distinct locations across the entire
range of the species. Structure analyses revealed that Q. suber may contain three major
genetic clusters that likely result from isolation in refugia combined with posterior
admixture and putative introgression from other Quercus species. Our results show a
more complex structure scenario than previously inferred for Q. suber using nuclear
markers and suggest that different southern populations contain high levels of genetic
variation that may contribute to the resilience of Q. suber in a context of environmental
change and adaptive pressure.
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INTRODUCTION

The geographical distribution, demography and genetic diversity of European tree species
have been shaped by environmental oscillations along the Quaternary period, with
alternating expansions and contractions for both warm and cold adapted species (Stewart et
al., 20105 de Dato et al., 2020). Understanding the mechanisms behind tree species survival
through past environmental changes and the current genetic profiles of tree populations is
essential in order to predict how species will respond to future climatic oscillations (Petit,
Hu & Dick, 2008; Rellstab et al., 2016; Miiller ¢» Gailing, 2019). This is especially important
as the current pace of environmental changes, together with anthropogenic disturbance
and fragmentation of forest ecosystems, may have a severe negative impact on the adaptive
capacity of tree species in the near future, thus threatening their long-term survival. A
cause of particular concern is the highly biodiverse Mediterranean region, which has
been classified as strongly susceptible to climate change due to the expectation of higher
temperatures and increased drought frequency (IPCC, 2014). In the Mediterranean region,
the adaptive capacity of forest ecosystems is considered more limited than in temperate
and boreal regions, in part due to disparities in forest management at local scales (Lindner
et al., 2010).

Trees are particularly susceptible to climate oscillations, compared to other plant species,
since their long life-span and lower evolutionary rates reduce their capacity to rapidly adapt
to environmental changes (Smith ¢ Donoghue, 2008; Lindner et al., 2010; Dauphin et al.,
2021). Nevertheless, long-distance gene flow via pollen is thought to enhance migration and
adaptation to climatic changes in tree species and compensate for their long generation-
time, particularly in species with continuous geographical distribution (Kremer, 2010;
Kremer et al., 2012). Highly diverse gene pools are also expected to facilitate adaptation via
natural selection (Kremer, 2010). However, limited seed dispersal and fewer possibilities for
establishment in filled landscapes can hinder evolutionary responses to rapid environmental
shifts, even in species with extensive genetic variation and population-specific traits that
reflect latitudinal and altitudinal adaptation (Savolainen, Pyhdjirvi ¢ Kniirr, 2007).

Quercus suber (L.) is an evergreen sclerophyllous oak species of major ecological and
economic importance in the western Mediterranean region, from the Iberian peninsula to
southern Italy, and from Morocco to Tunisia. Where it is dominant, it forms a habitat that
harbours important numbers of animal species (Aronson, Pereira ¢ Pausas, 2009). Cork,
the unique bark of Q. suber, has several industrial applications and its production is a
major source of income in the regions where the species is native (Vessella et al., 2017). It is
assumed that, as with other European and North American oaks (Cannon et al., 2018), the
distribution of Q. suber contracted into refugia during the last glacial maximum (Vessella,
Simeone & Schirone, 2015; Costa et al., 2011), but the effects of this putative contraction
on current population genetic signature are not yet fully understood and were likely
partially erased by extensive gene flow (Kremer, 2010). The genetic structure observed in
Q. suber haplotypes has in fact been hypothesized to be a result of genetic drift driven by
Oligocene-Miocene continental margin dynamics, rather than by Quaternary oscillations
(Magri et al., 2007).
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In the Mediterranean basin, long-term and acute drought stress have been identified as
major contemporary drivers of oak decline (Gentilesca et al., 2017). The negative impact of
drought stress is particularly concerning in the case of Quercus suber because it is considered
the most selective of the Mediterranean evergreen oaks regarding temperature, rainfall and
soil (Aronson, Pereira ¢~ Pausas, 2009; Vessella et al., 2017), and future warmer and drier
conditions are expected across its natural range (Vessella et al., 2017). Characterising
the genetic diversity and structure of Q. suber across its entire range, and identifying
drought-tolerant populations as well as genetic profiles and phenotypic traits associated
with drought response (Ramirez-Valiente et al., 2010a) will allow for the assessment of
the adaptive capacity of different populations. In cases where genetically eroded local
populations are at greater risk of non-adaption, assisted seed or seedling transfer may
provide additional adaptive buffer capacity (Kremer, 2010). Several recent studies have
analysed genetic diversity at population level in Q. suber, using nuclear loci (Modesto
et al., 2014), genotype-by-sequencing (Pina-Martins et al., 2019; Vanhove et al., 2021),
chloroplast microsatellites (Magri et al., 2007) and chloroplast sequence data (Ldpez
de Heredia et al., 2007a; Costa et al., 2011). Studies using nuclear markers have shown
that Q. suber is essentially unstructured (Pina-Martins et al., 2019) or weakly structured
(Vanhove et al., 2021), whereas chloroplast markers have suggested a division of Q. suber
into two (Costa et al., 2011) or five lineages (Magri et al., 2007).

Analyses of nuclear microsatellites provide a valuable additional line of evidence
to characterize the genetic diversity and structure in Quercus suber (Lopez-Aljorna et
al., 2007; Soto, Lorenzo ¢~ Gil, 2007; Lorenzo et al., 2009; Ramirez-Valiente et al., 2009).
Microsatellites, or short sequence repeat (SSR) markers, have been widely employed in
population studies because of their high level of intraspecific multistate polymorphism, high
mutation rates and co-dominant inheritance (Zhang ¢ Hewitt, 2003; DeFaveri et al., 2013).
Microsatellites are often used for studies of genetic diversity and population structure,
for example in plants (Zhang et al., 2019; Islam et al., 2020; de Dato et al., 2020), although
generating large amounts of single nucleotide polymorphism (SNP) data has become a
standard option in many population genetics studies (e.g., Pina-Martins et al., 2019; Feng
et al., 20205 Cai et al., 2020; Vanhove et al., 2021). Microsatellites are particularly useful for
detecting weak contemporary differences and shallow structuring among populations, and
thus for inferring information on gene flow among populations on a fine spatial scale,
despite having a higher genotyping error rate and low density across genomes, compared
to SNPs (DeFaveri et al., 2013).

Here, we investigate genetic diversity and structure in Quercus suber using 13 nuclear
SSR loci and extensive sampling within each of 17 populations. We scored diversity metrics
at locus and population levels and perform structure analyses using different methods.
By comparing our results with earlier population studies in Q. suber we interpreted
the past demographic history of the species and briefly elaborate on future directions for
conservation and management of cork oak given the current knowledge on the distribution
of its genetic diversity.
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MATERIALS & METHODS

Sampling and DNA extraction

Seventeen sampling sites were selected to broadly represent the entire distribution of
Quercus suber around the Mediterranean. Leaf material from six sampling sites was
collected in situ from natural stands (Portugal: Gerés, Serra da Estrela, Serra da Arrébida,
Serra de Monchique, Serra do Bugaco, Serra de Sintra). For the remaining sites (Spain:
Catalonia, Haza del Lino; Italy: Apulia, Lazio, Sardinia, Sicily; France: Corsica; Algeria:
Forét de Guerbes; Tunisia: Mekna ; Morocco: Taza, Kenitra), material was obtained from
a cork oak provenance trial (FAIR I CT 95 0202) established in 1998 at Herdade Monte da
Fava (Santiago do Cacém, Portugal; 8°7'W, 38°00'N) as part of the European Forest Genetic
Resources Programme (EUFORGEN; Varela, 2003). Leaf material was obtained from 22
to 30 individuals from each location, to a total of 488 trees sampled, and kept at —80 °C.
Leaves were ground manually using liquid nitrogen and genomic DNA was extracted with
the DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA), according to the manufacturer’s
protocol. To determine DNA concentration, quality and integrity, extracted DNA was
analysed by gel electrophoresis and with an ND-1000 Nanodrop spectrophotometer. A
map showing the 17 sampling sites analysed together with the distribution of Q. suber is
presented in Fig. 1.

Microsatellite genotyping

A set of 13 simple sequence repeat (SSR) loci was used for analyses. Of these, ten are
anonymous nuclear microsatellites (nuSSR): MSQ13, MSQ4 (Dow, Ashley & Howe,
1995); QpZAGY, QpZAG15, QpZAG36, QpZAG46, QpZAG110 (Steinkellner et al., 1997);
QrZAG11, QrZAG7, QrZAG20 (Kampfer et al., 1998) and three are expressed sequence
tag microsatellites (EST-SSR): QmOST1, QmD12, QmAJ1 (Ueno & Tsumura, 2008).
Polymerase chain reaction (PCR) amplifications were performed in a volume of 15 pL
reaction mixture containing 0.5 L of DNA (50-100 ng), 1x PCR buffer (Promega,
Madison, WI, USA), 1U Taq polymerase (Promega, Madison, WI, USA), 1.5(2.0) mM
MgCl, , 0.12 mM dNTPs and 0.3(0.4) uM of each primer. Amplifications were performed
under the following general conditions: an initial denaturation step at 94 °C for 5 min
followed by 30 cycles consisting of denaturation at 94 °C for 30(60) s, annealing at 50(57) °C
for 30 s, extension at 72 °C for 30(60)s and a final extension step at 72 °C for 10 min. PCR
products were analysed by capillary electrophoresis using the ABI PRISM 310 automated
sequencer. Genotypes were scored and visually controlled using GENEMAPPER v3.7
(Applied Biosystems, Inc., Waltham, MA, USA) The software MICRO-CHECKER v2.2.3
(Van Oosterhout et al., 2004) was used to identify and correct possible genotyping errors.

Genetic diversity analysis

Estimates of inter- and intra-population genetic diversity were calculated. The observed

(H,) and expected (H,) heterozygosity, the W&C (Weir ¢ Cockerham, 1984) inbreeding

coefficient (Fjs ), fixation index (Fsr) and the number of observed alleles (Na) per locus

were calculated using the GENEPOP package v 1.1.7 (Rousset, 2008) as implemented in R
v 3.6.3 (R Core Team, 2013) using the Rstudio environment (R Studio Team, 2016).
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Figure 1 Map of sampling sites. Map showing the distribution of Quercus suber around the western
Mediterranean and the location of the 17 sampling sites.
Full-size G DOI: 10.7717/peer;j.13565/fig-1

Fs per locus was estimated considering both the 17 sampling sites separately and the three
clusters corresponding to K = 3 (see Results) where one cluster contained Lazio, Sardinia,
Sicily, a second cluster contained Corsica, Mekna, Guerbes, Apulia and the third cluster
contained all other sites. The frequency of null allele (fna) per locus was calculated using
PopGenReport (Adamack & Gruber, 2014). Estimates of null allele frequency were obtained
with both the method of Chakraborty et al. (1994), and the method of Brookfield (1996).
Per-locus diversity statistics were calculated considering all 17 sampling sites as separate
populations. Additionally, Fjs for each population was calculated using GENEPOP and
the number of private alleles (Np) and allelic richness (Ar) per population were calculated
with PopGenReport v 3.0.4. Pairwise Fgr across all populations was calculated for the 13
loci and the neutral loci data sets (see “Tests of non-neutrality’”) with HIERESTAT (Goudet,
2005), using the Nei 87 (Nei, 1987) genetic distance, and significance was tested with 1,000
bootstraps and a 95% confidence level. A dendrogram of parirwise Fgy for the neutral loci
was constructed from 1,000 bootstrap replicates.

Tests of Hardy—Weinberg equilibirum and linkage disequilibrium
Deviations from Hardy—Weinberg Equilibrium (HWE) were estimated for the 13 loci
and 17 sampling sites using GENEPOP, with the Monte Carlo based exact test for a null
hypothesis of random union of gametes, and p-values obtained from a global test across
samples using Fisher’s method (dememorization = 10,000, batches = 20, iterations =
10,000). Linkage disequilibrium (LD) across all pairs of loci and all 17 sampling sites was
tested using GENEPOP with the default Monte Carlo based G-test for the null hypothesis
of independence among genotypes at different loci, and the log likelihood ratio as test
statistic (dememorization = 10,000, batches = 100, iterations = 5,000).
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Population structure analysis

Structure patterns among sampled populations of Quercus suber were inferred using the
clustering method implemented in STRUCTURE v 2.3.4 (Pritchard, Stephens ¢» Donnelly,
2000). The program STRUCTURE was wrapped under Structure_threader v 1.2.2 (Pina-
Martins et al., 2017). An analysis comprising 17 sampling sites and all 13 loci was run
with values of K between one and 17, using the admixture model with priors for location
information and correlated allele frequencies, a burnin period of 100.000 steps and a
post-burning sampling of 500.000 steps, with 20 replicates. The 10 nuSSR loci and the
three EST-SSR loci were also analysed separately, using the same parameters as for the
analysis of the entire dataset. For each analysis, the best-fitting number of clusters (K) was
estimated using the AK statistic (Evanno, Regnaut & Goudet, 2005). Finally, an analysis
using the 11 “neutral” loci was also performed (see “Tests of non-neutrality’), with the
same parameters as the first analysis.

Population structure and inference of K was further tested using the program MavericK
v 1.0.4 (Verity ¢ Nichols, 2016). The MavericK model differs from the model used in
STRUCTURE as it does not include location information nor correlated allele frequencies.
Analyses searched for values of K between 1 and 16 using an admixture model with a free
alpha parameter of “1”, and comprised five runs of 10.000 iterations with 10% burnin, with
thermodynamic integration set to 20 runs of 10.000 iterations and 20% burnin. MavericK
was wrapped under Structure_threader v 1.2.2 (Pina-Martins et al., 2017). Analyses were
run on all 13 loci, on the 10 nusSR and three EST-SSR separately, and on the 11 neutral
loci data set.

Principal components analysis (PCA) and correspondence analysis (CA) were
performed, respectively, using the methods implemented in the R packages pcaMethods
v 1.84 (Stacklies et al., 2007) and ADEGENET v 2.1.3 (Jombart, 2008), on both the 13 loci
and 11 neutral loci data sets.

Data files and scripts generated for analyses can be found at https:/github.com/CoBiG2/
Qsuber_mssats.

Tests of non-neutrality

Tests of non-neutrality were performed on the 13 SSR loci dataset using the program
BAYESCAN v 2.1 (Foll & Gaggiotti, 2008) which assumes that a multinomial Dirichlet
distribution can be used to model gene frequencies in neutrally structured populations
(Excoffier, Hofer ¢ Foll, 2009; Lotterhos ¢ Whitlock, 2014). To avoid possible violations of
the assumptions in the BAYESCAN model causing an excess of false positive outlier loci,
and in order to maximise migration within rather than between clusters (Excoffier, Hofer ¢
Foll, 2009), input data was rearranged to comprise two clusters, following the results from
STRUCTURE analyses (see Results), rather than 17 groups corresponding to all sampling
sites (e.g., Moore et al., 2014). Analyses were run with prior odds for the neutral model of
10, 100 and 1,000, and 20 pilot runs of 5,000 iterations followed by 10,000 iterations and
a burnin length of 50,000, with a thinning interval of 10. To confirm the identification of
candidate outlier loci, an additional analysis was run considering the results from MavericK
analyses that estimated K = 3 (see Results), with one cluster comprising the sites Sardinia,
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Lazio, Sicily, a second cluster comprising the sites Corsica, Apulia, Guerbés, Mekna, and a
third comprising the remainder of the sites.

RESULTS

Genetic diversity analysis

The 13 SSR loci comprised a total of 145 alleles (Table 1). The number of alleles per
locus ranged between 5 (QpD12) and 24 (QpZagl10), with an average of 11.2. H, ranged
between 0.187 (QpZag9) and 0.86 (QpZagl10), while H, ranged between 0.142 (QpZag9)
and 0.777 (QpZagl10). The average frequency of null alleles over all 13 loci, inferred with
the method of Chakraborty et al. (1994), was 13%, whereas the value inferred with the
method of Brookfield (1996), which takes into account the presence of null homozygotes,
was 9%. Fsr per locus ranged between 0.013 (QpZag9) and 0.512 (MSQ13). The mean
Fis was always positive and ranged between 0.019 (MSQ13) and 0.263 (QmA]J1) when
considering the populations separately and between 0.07 (QrZag7) and 0.27 (QmAJ1)
when considering K =3 (Table 1).

Population diversity analysis

Ar ranged between 4.4 and 5.5 among the 17 sites, with the lowest values detected in
populations Sicily, Gerés, Sardinia and Corsica, and the largest values found in populations
Monchique, Sintra and Guerbes (Table 2). The average observed heterozigosity across
13 loci was lower than expected in all 17 populations. The number of private alleles was
zero in five populations (Gerés, Haza del Lino, Kenitra, Apulia, Estrela) and was largest in
populations Guerbes and Sintra (six and eight private alleles, respectively) (Table 2). Fyg
varied between 0,046 (Kenitra) and 0,183 (Lazio) (Table 2). Pairwise Fsr estimates among
populations using the Nei 87 method on the neutral data set indicate that sites Lazio, Sicily
and Sardinia show low differentiation (Fs7 < 0.05) but differ from the remainder (Fgr
= 0.1-0.24). Corsica also showed differentiation (Fsy = 0.1-0.21) from all other sites
(Table S1).

Tests of Hardy—Weinberg equilibirum and linkage disequilibrium
Exact tests of Hardy—Weinberg Equilibrium (HWE) showed an overall departure in

all populations (p < 0.05) and in all loci except QrZag7 (Table S2). Tests of linkage
disequilibrium (LD) for all pairs of loci showed LD (p < 0.05) at eight out of 78 pairwise
comparisons, when considering 17 sample sites (Table S3).

Tests of non-neutrality

Tests of non-neutrality using BAYESCAN and considering two clusters (K = 2) identified
two candidate outlier loci, MSQ13 and QpZagl110, for all prior odds (10, 100, 1,000) and
with a false discovery rate of 5% (FDR = 0.05). The alpha parameter was positive for
MSQ13 (alpha = 1.3091 for prior odds = 10) whereas for QpZag110 alpha was negative
(alpha = —1.8945 for prior odds = 10). The additional analysis considering three clusters
(K = 3) confirmed the identification of the two candidate outlier loci for prior odds of 10
and 100, and FDR =0.05. Plots for the tests of non-neutrality for K =2 and K = 3 with
prior odds of 10 and FDR = 0.05 are shown in Fig. S1.
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Table 1 Genetic diversity across 13 SSR loci.

Locus Marker bp (range) Na He Ho Fst fna Fis
MSQ4 nuSSR 192-218 10 0.677 0.444 0.246 0.207/0.161 0.14/0.19
MSQ13 nuSSR 198-230 12 0.586 0.289 0.512 0.338/0.229 0.02/0.19
QrOst1 EST-SSR 132-152 11 0.622 0.555 0.062 0.057/0.043 0.05/0.09
QpD12 EST-SSR 239-252 5 0.485 0.4 0.108 0.096/0.061 0.08/0.17
QpZagl5 nuSSR 101-135 14 0.649 0.460 0.241 0.170/0.129 0.08/0.16
QpZag9 nuSSR 223-249 11 0.187 0.142 0.013 0.135/0.039 0.23/0.24
QpZag46 nuSSR 178-198 9 0.674 0.533 0.082 0.116/0.092 0.14/0.18
QpZagl10 nuSSR 208-258 24 0.860 0.777 0.034 0.050/0.046 0.07/0.09
QpZag36 nuSSR 181-225 13 0.847 0.685 0.075 0.105/0.096 0.13/0.17
QrZag20 nuSSR 145-175 7 0.540 0.430 0.046 0.113/0.077 0.17/0.20
QrZagll nuSSR 255-281 11 0.663 0.594 0.031 0.054/0.043 0.08/0.09
QrZag7 nuSSR 115-133 10 0.789 0.701 0.073 0.058/0.051 0.05/0.07
QmAJ1 EST-SSR 360-385 8 0.645 0.422 0.118 0.208/0.156 0.26/0.27

Notes.

The name, type of marker and fragment size range in base-pairs (bp) are indicated for each locus.
Na, number of observed alleles; He, expected heterozygosity; Ho, observed heterozygosity; Fst, fixation index; fna, fre-
quency of null allele estimated with the methods of Chakraborty et al. (1994) (left) and Brookfield (1996) (right); Fis, the mean
inbreeding coefficient estimated from population estimates with the formula of Weir & Cockerham (1984) for the 17 popula-
tions (left) and for K = 3 (right).

Table 2 Genetic diversity across 17 sampling sites. For each of the 17 sampling sites, the corresponding country, coordinates, label and number
of samples (N) are shown. The mean allelic richness (Ar), number of private alleles (Np), inbreeding coefficient (F;), Weir ¢~ Cockerham, 1984), ex-
pected heterozygosity (H.) and observed heterozygosity (H,) for each site and 13 SSR loci are presented.

Sampling site Label Country Latitude Longitude N Ar Np Fis He Ho

Estrela EST Portugal 40°32'N 7°51'W 30 4.78 0 0.15 19.40 16.55
Catalonia CAT Spain 41°51'N 2°32'E 30 4.51 1 0.05 20.24 19.27
Haza del Lino HDL Spain 36°50'N 3°18'W 27 4.53 0 0.11 17.09 15.18
Kenitra KEN Morocco 34°05'N 6°35W 30 4.74 0 0.05 18.85 18.00
Taza TAZ Morocco 34°12'N 4°15'W 30 4.76 1 0.1 19.89 17.91
Arrédbida ARR Portugal 38°50'N 9°03'W 29 4.63 3 0.15 18.37 15.73
Sintra SIN Portugal 38°45'N 9°25'W 30 5.35 8 0.09 18.69 17.09
Monchique MON Portugal 37°19'N 8°34'W 29 5.3 3 0.14 18.53 15.91
Guerbes ARG Algeria 36°54'N 7°15'E 30 5.52 6 0.11 21.11 18.91
Gerés GER Portugal 41°40'N 8°10W 29 4.49 0 0.13 18.17 15.91
Bugaco BUC Portugal 40°22'N 8°21'W 30 4.61 1 0.09 18.56 16.91
Mekna TUN Tunisia 36°57'N 8°51'E 28 4.77 3 0.1 19.73 17.82
Apulia PUG Italy 40°34'N 17°40'E 22 4.76 0 0.15 16.13 13.73
Lazio LAZ Ttaly 42°25'N 11°57'E 27 4.82 1 0.18 16.62 13.64
Sicily SIC Ttaly 37°07'N 14°30'E 29 4.43 2 0.08 19.34 17.73
Sardinia SAR Ttaly 39°05'N 8°51'E 28 4.49 3 0.17 17.55 14.64
Corsica COR France 41°37'N 8°58'E 30 4.51 2 0.05 18.40 17.55
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neutral loci for K =2 (A), K =3 (B) and K =4 (C); Q-value plots from the MavericK analysis of 11 neutral loci for K =3 (D).
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Structure analysis

In all analyses using STRUCTURE (13 loci, 10 nuSSR loci, three EST-SSR loci, 11 neutral
loci), the AK statistic indicated an optimal number of clusters of K =2 (Fig. 2, Fig. S2). In
the 11 neutral loci analysis (K =2, AK = 123.52), Lazio, Sardinia and Sicily form a separate
cluster, whereas populations Apulia, Mekna Guerbés and Corsica show admixture in all
individuals. The admixture in Corsica is balanced, with the smallest parental contribution
observed in a single individual corresponding to 39.5% (Fig. 2A).

The optimal number of clusters inferred from the 13 loci, the nuSSR and the EST-SSR
datasets, using the thermodynamic integration method implemented on MavericK, was
K =2 (Fig. 52). In the 11 neutral loci analysis, the estimated optimal number of clusters
was K = 3. The Q-matrix plot for K =3 (Fig. 2D) shows that Lazio, Sardinia and Sicily
form a distinct cluster without pronounced admixture (except for a few individuals from
Lazio and Sicily), and that Corsica forms another cluster with no pronounced admixture.
Apulia, Mekna and Guerbes have pronounced admixture and a major genetic contribution
from the cluster that includes Corsica. The remainder of the populations form the largest
cluster and show admixture that is particularly pronounced in populations Arrabida and
Kenitra (Fig. 2D). This same pattern is also seen in the STRUCTURE Q-matrix plot for
K =3 (Fig. 2B), whereas the STRUCTURE Q-matrix plot for K = 4 assigns Apulia, Mekna
and Guerbes to the fourth cluster, while keeping Corsica isolated (Fig. 2C). The pairwise
Fsr dendrogram (Fig. 3) confirms the clustering of Lazio, Sicily and Sardinia and the
separation of Corsica.

Overall, the PCA using 13 loci does not show a clear separation of clusters, but suggest
that Lazio, Sardinia and Sicily form a distinct group, and that Corsica appears separated
from the remainder (Fig. S3A), although PC1 and PC2 explain only 6.34% of the variance.
The CA of the 13 loci data set separates Lazio, Sardinia and Sicily into one cluster, and
isolates Corsica (Fig. S3B). PCA scatterplots of the 11 neutral loci analysis again show a
cluster formed by Lazio, Sardinia and Sicily (Fig. 4A), but PC1 and PC2 explain only 6.85%
of the variance. The CA scatterplots separate Lazio, Sardinia and Sicily from the remainder
of the sites (Fig. 4B), and isolate Corsica and Guerbes.
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DISCUSSION

Quercus suber nuclear SSR data show heterozygosity deficit and
presence of null alleles

The utility of several nuclear SSR markers included in our analyses has been demonstrated
in studies of Quercus suber diversity (Lopez-Aljorna et al., 2007; Soto, Lorenzo ¢ Gil, 2007;
Ramirez-Valiente et al., 2010b), fine-scale structure (Soto, Lorenzo ¢ Gil, 2007; Lorenzo

et al., 2009), phenotypic prediction (Ramirez-Valiente et al., 2009) and introgression
(Burgarella et al., 2009; Lépez de Heredia, Sanchez ¢ Soto, 2018). Here, we sampled a set of
13 nuclear SSR across 17 locations to infer genetic diversity and structure patterns across
the entire natural range of the species. Our analyses of the 13 SSR loci and 17 population
data set showed that the observed level of heterozygosity was lower than expected, for all
loci, and Fjg was positive for all loci and samples. The observed presence of null alleles,
whether true or apparent, is likely to have strongly contributed to the heterozygosity deficit
and positive Fjg (Waples, 2015). Nevertheless, the frequency of null alleles inferred with the
methods of Brookfield and Chakraborty (0.09 and 0.13, respectively) is in line with values
commonly reported in the literature and is unlikely to cause a major bias in downstream
population structure analyses (Dakin ¢ Avise, 2004). Another possible explanation for low
heterozygosity and positive Fyg is positive assortative mating, of which self-fertilization is
an extreme case (Waples, 2015). Selfing is expected to occur to some extent in monoecious
species, although Q. suber is known to have dichogamous flower development, which
promotes outcrossing (Sobral et al., 2020).

Tests of deviation from HWE showed an overall departure that is not specific to particular
loci or populations, and linkage disequilibrium (LD) was observed in a small number of
different gene pairs. These observed deviations from HWE are not surprising given the
presence of null alleles. Furthermore, the species does not conform to the expectations of
the Hardy—Weinberg principle, that assumes discrete generations. Like most oaks, Quercus
suber individuals have great longevity and both natural and managed stands are likely to
contain individuals of very different ages. Wind pollination is also likely to promote mating
among individuals from distant stands with different ages. In the presence of significant age
structure, reproductive cycles do not correspond to random mating among adults of the
same generation, but of different generations, each with different allele frequencies, meaning
that offspring from different reproductive cycles will differ in their allele frequencies as
well. Thus, samples containing mixed-age individuals or their progeny are composed, in
practice, of different subpopulations, and both a deficiency of heterozygotes and mixture
LD at pairs of loci are expected (Waples, 2015). Error caused by over-sampling of plants
with particular phenotypes, for example if early- or late-developing plants are inadvertently
preferred, may also cause deviations from HWE, even if the populations themselves are at
Hardy—Weinberg equilibrium (Waples, 2015). However, an effect of sampling bias alone
is unlikely to explain the HWE departure pattern seen here, which was observed across
populations. As the deviations from HWE and sporadic LD in SSR loci are likely a result
of reproductive traits of cork oak stands, as well as a consequence of the presence of null
alleles, the retention of all 13 loci for downstream analyses was considered justified.
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Tests of non-neutrality revealed two outlier loci that are possibly under selection. Locus
MSQ13, which had the highest Fsr, had a positive value for the alpha parameter on the
BAYESCAN analysis, which could indicate diversifying selection. Locus QpZag110, which
had the highest observed heterozygosity and highest number of alleles, had a negative
value of alpha, which suggests purifying selection. Outlier detection may result in a high
false positive rate when the assumptions of the tests are not met (Garcia-Verdugo et al.,
2015). This could be the case of the Dirichlet distribution model in BAYESCAN, which
assumes neutrally structured populations (Beaurmont, 2005) and is not adequate for species
that have undergone range expansion or that display hierarchical population structure
(Lotterhos & Whitlock, 2014). Indeed, an exploratory analysis considering all 17 sampling
sites as distinct populations resulted in the detection of a very high number of non-neutral
loci, which contradicted the expectation that most SSR loci are neutral. Detection of the
two outlier loci was attained when the original 17 populations were grouped under two or
three clusters. As the detection of the same two outlier loci was consistent across different
neutrality prior odds and in the analyses of two and three clusters, the two loci were
considered non-neutral, and their exclusion from analyses was deemed justified.

Quercus suber is structured into three population clusters along a
longitudinal gradient

The nuclear SSR markers chosen in this study proved to be an effective means for detecting
population structure in Quercus suber, despite being in much lower number than SNPs .
The relative low cost per sample allowed for the inclusion of more samples per location (22
to 30) compared to earlier studies using SNPs, that typically sampled around six individuals
per site (Pina-Martins et al., 2019; Vanhove et al., 2021), thus decreasing the probability of
biases due to limited sample size.

Analyses of the complete data set, with STRUCTURE and Maverick, and of the neutral
data set, with STRUCTURE, show a separation of Quercus suber populations into two
clusters (K = 2) that roughly correspond to an East-West separation. This structural
pattern is different to those of Pina-Martins et al. (2019) and Vanhove et al. (2021), based
on SNP data. In both those studies, the East-West divide involved a different set of sampling
sites and the eastern cluster comprised other sites besides Lazio, Sicily and Sardinia. In
contrast, our analysis of the neutral data set using Maverick (K = 3) shows a very distinct
and homogeneous eastern cluster comprising the central italian population of Lazio and
the island populations of Sicily and Sardinia, and a third cluster including Corsica and
other sites with pronounced admixture (Apulia, Guerbés and Mekna). The placement of
Corsica in a distinct third cluster was also evident in Vanhove et al. (2021).

The hypothesis of Quercus suber being structured in three, rather than two clusters,
agrees with the pairwise Fgr calculations, which indicate that populations Lazio, Sicily
and Sardinia have significant differentiation from all other populations but not among
them, and that population Corsica is distinct from the remainder. Results from PCA and
CA analyses also distinguish the group formed by Lazio, Sicily and Sardinia, and separate
Corsica from the remainder, often showing a degree of affinity between the latter and
populations Apulia, Guerbeés and Mekna, which may be a reflection of the admixture
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pattern for these populations suggested by the Q-plot for K = 3. The identification of
population Corsica as belonging to a separate cluster, distinct from the eastern and western
clusters of Q. suber populations, was also hypothesized in the work of Vanhove et al. (2021),
with a SNPs dataset. In their work, although the inferred number of K, using bayesian
approaches, was also K = 2, a shared coancestry matrix assigned individuals from Corsica to
a third cluster that is possibly a sub-cluster of the western group. This sub-cluster included
populations from southern France (Landes), which are missing from our analyses.

Given the mixed results obtained here with the different methods for estimation of K, it
is necessary to consider all evidence in order to ascertain which hypothesis is more likely.
Recent studies have shown that the AK parameter of Evarnno, Regnaut ¢ Goudet (2005) has
a tendency to estimate K = 2, and strongly recommend against using AK alone (Janes et
al., 2017). Furthermore, the TT method, which makes use of several closely related MCMC
chains to infer K, has been suggested to have a superior performance in this task compared
to other methods, and in fact has been shown to outperform AK when estimating K
from large data sets (Verity ¢ Nichols, 2016). Considering the evidence from pairwise Fst
estimates and from PCA and CA analyses, which point to a more complex scenario than a
simple separation of Quercus suber populations into two groups, and the fact that estimates
of K =2 with the AK method should be regarded with caution, we posit that a structural
pattern of Q. suber containing more than two clusters, as estimated by the TI integration
method from the neutral loci dataset, is a valid hypothesis.

The possible existence of more than two genetic clusters in Quercus suber suggests
differentiation caused by isolation in refugia, with posterior expansion and secondary
contact between isolated populations. Earlier studies using chloroplast and AFLP markers
had already suggested the existence of several glacial refugia and a division of Q. suber
into three genetic clusters, albeit with different compositions (Lumaret et al., 2005; Lopez
de Heredia et al., 2007a; Lépez de Heredia et al., 2007b). The detection of high levels of
private alleles may indicate putative refugia, while low genetic diversity indicates newly
colonized areas (de Dato et al., 2020). The highest number of private alleles encountered in
our data set belong to populations Guerbes and Sintra, while populations Sardinia, Mekna,
Monchique and Arrébida also presented an above average number of private alleles. This
result is compatible with a scenario of contraction of Q. suber into multiple southern refugia
during the last glacial maximum, not only in central southern Mediterranean, but also in
southwestern Iberian regions (Lumaret ef al., 2005; Lopez de Heredia et al., 2007b; Vessella,
Simeone ¢ Schirone, 2015). Thus, the hypothesis that genetic differentiation occurred prior
to a recent northwards expansion of Q. suber seems conceivable.

The observation of an incomplete East-West structure in Quercus suber has been
interpreted as either the result of a balance between gene flow and local adaptation or
the consequence of differential hybridisation, while recent expansion from refugia would
only be detected in chloroplast lineages (Pina-Martins et al., 2019). Considering the type of
marker used here, essentially neutrally behaving genomic regions which at most segregate
passively along with regions under selection, it can be argued that local adaptation is
unlikely to account for the observed structure pattern. On the contrary, the more complex
scenario involving three genetic clusters was only revealed when loci under selection

Sousa et al. (2022), PeerJ, DOI 10.7717/peerj.13565 13/22


https://peerj.com
http://dx.doi.org/10.7717/peerj.13565

Peer

were excluded from the analysis. This veiling of structure due to selection seems to result
from two combined forces. The first is the overall homogenizing effect of balancing
selection, where the same alleles are kept in similar frequencies in different populations.
The second is directional selection, which promotes identical allele frequencies under
similar ecological/climatic circumstances, but differentiates populations in contrasting
ecological circumstances, consequently favouring the two cluster scenario. Hybridisation
between Q. suber and both Q. ilex and Q. cerris is indeed known to occur in the western and
eastern ranges of the species’ distribution, respectively (Lumaret et al., 2005; Magri et al.,
2007; Lumaret & Jabbour-Zahab, 2009; Lopez de Heredia, Sanchez & Soto, 2018; Lépez de
Heredia et al., 2020). Introgression from related Quercus species may have contributed
to the survival of Q. suber through glaciation periods (Lépez de Heredia, Vizquez ¢ Soto,
2017) and may also have influenced the number of private alleles of certain populations.
However, it is unclear how post-glacial and contemporary introgression from these two
species alone could explain the persistence of three hypothetical Q. suber genetic clusters.
Furthermore, the two species known to hybridise with Q. suber are also likely to have been
affected by recent contraction-expansion cycles (Guzmdn et al., 2015; Bagnoli et al., 2016)
and it is in fact possible that hybridisation between species occurred already within shared
refugia (Bagnoli et al., 2016). Thus, differentiation of Q. suber populations in multiple
glacial refugia prior to a northwards expansion of the species is perhaps the main cause
of the tripartite structure observed with nuclear SSR loci, even if introgression from other
species during and after range contraction occurred. While its role in differentiation is
not completely clear, local adaptation should nevertheless be expected to occur in Q.
suber populations, given the latitudinal and altitudinal variation across the distribution
of the species. It is also plausible that human activity and migration after the last glacial
cycle and to present time may have influenced diversification in Q. suber by facilitating
dispersal and gene flow. SSR markers do not always reflect genome-wide genetic diversity in
natural populations (Viili et al., 2008), but the identification of distinct genetic clusters and
genetically diverse populations based on these 13 nuclear SSR markers should nevertheless
provide additional evidence on where new allelic variants and possibly adaptive variation
may be encountered.

CONCLUSIONS

Our analyses reveal a clear structural pattern in Quercus suber populations, suggesting
that differentiation along a longitudinal gradient across the distribution of the species
existed before its recent northwards recolonisation. Interestingly, high numbers of private
alleles confirm the presence of putative glacial refugia for Q. suber in southwestern Iberian
peninsula. Hypothetical refuge areas are likely to harbour high genetic diversity, and
thus have the potential to contribute with genetic variation necessary to ensure that Q.
suber populations can cope with environmental changes through extensive gene flow
and local adaptation. Thus, it is recommendable that populations in these areas are
further investigated and that an adequate conservation strategy ensures their long-term
survival.Further studies on the demographics and genetic characterisation of Q. suber
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should also be pursued, namely the study of contemporary selection in areas most affected
by drought stress, in order to assess the impact of current climatic conditions on Q. suber
forests.
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