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BACKGROUND: Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces tumour cell apoptosis by binding to death
receptor 4 (DR4) and DR5. DR4 and DR5 activation however can also induce inflammatory and pro-survival signalling. It is not
known how these different cellular responses are regulated and what the individual role of DR4 vs DR5 is in these processes.
METHODS: DNA microarray study was carried out to identify genes differentially expressed after DR4 and DR5 activation. RT–PCR
and western blotting was used to examine the expression of early growth response gene-1 (Egr-1) and the proteins of the TRAIL
signalling pathway. The function of Egr-1 was studied by siRNA-mediated knockdown and overexpression of a dominant-negative
version of Egr-1.
RESULTS: We show that the immediate early gene, Egr-1, regulates TRAIL sensitivity. Egr-1 is constitutively expressed in colon cancer
cells and further induced upon activation of DR4 or DR5. Our results also show that DR4 mediates a type II, mitochondrion-
dependent apoptotic pathway, whereas DR5 induces a mitochondrion-independent, type I apoptosis in HCT15 colon carcinoma
cells. Egr-1 drives c-FLIP expression and the short splice variant of c-FLIP (c-FLIPS) specifically inhibits DR5 activation.
CONCLUSION: Selective knockdown of c-FLIPS sensitises cells to DR5-induced but not DR4-induced apoptosis and Egr-1 exerts an
effect as an inhibitor of the DR5-induced apoptotic pathway, possibly by regulating the expression of c-FLIPS.
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Tumour necrosis factor-related apoptosis-inducing ligand
(TRAIL) is a member of the TNF ligand superfamily (Ashkenazi
and Dixit, 1998). It induces the extrinsic apoptotic pathway upon
binding to its death domain (DD)-containing receptors, TRAIL
receptor 1 (death receptor 4 (DR4)) and 2 (death receptor 5
(DR5)). Binding of TRAIL to DR4 and DR5 induces receptor
oligomerisation, intracellular DD clustering and recruitment of the
adaptor molecule Fas-associated death domain (FADD). The death
effector domains (DEDs) of FADD then interact with the DED of
pro-caspases 8 and 10, leading to the formation of the death-
inducing signaling complex (DISC). The DISC serves as a platform
to oligomerise and activate pro-caspases 8 and 10 (Kischkel et al,
2000; Sprick et al, 2000). Active caspases 8 and 10 are released
from the DISC and activate executioner caspases, caspases 3, 6 and
7, committing the cell to death.

Active caspases 8 and 10 can also cleave and activate Bid, a
BH3-only member of the Bcl-2 protein family. Truncated Bid then

activates Bax and Bak to induce mitochondrial outer membrane
permeabilisation and cytochrome c release (Eskes et al, 2000;
Green and Kroemer, 2004). In the cytosol, cytochrome c binds to
the WD40 domains of the adaptor protein, Apaf-1, which initiates
the assembly of the heptameric apoptosome complex. Pro-caspase-9
is recruited to the apoptosome and becomes activated (Green,
2000). Activation of the intrinsic apoptosis pathway in this manner
serves to amplify the apoptotic signal and guarantees that the
programme is irreversible.

In certain cells, which are classified as type I cells, the intrinsic
apoptosis pathway is not required to commit the cell to apoptosis
upon TRAIL receptor activation; however, in other cells, which
are classified as type II cells, this amplification loop is essential.
Overexpression of anti-apoptotic Bcl-2 proteins inhibits
TRAIL-induced apoptosis in type II cells only (Fulda et al, 2002).
Poor activation of pro-caspases 8 and 10 at the DISC is probably
one of the major factors that account for the type II pheno-
type (Scaffidi et al, 1999). By competing with pro-caspase-8
for binding to FADD and inhibiting caspase-8 at the DISC,
FLICE-inhibitory protein (c-FLIP) may be a key determinant of the
type I vs type II phenotype (Scaffidi et al, 1999; Barnhart et al,
2003).

Despite the high homology between DR4 and DR5 and the
identical core DISC components recruited to DR4 and DR5,
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the two receptors are not equally involved in transducing the
TRAIL-apoptotic signal (Ichikawa et al, 2001; Ashkenazi, 2002;
Kelley et al, 2005; van der Sloot et al, 2006). In the colon cancer
cell line, Colo205, we have shown that TRAIL induces apoptosis
predominantly through DR5 (van der Sloot et al, 2006).
Conversely, in the leukaemia cell lines, ML-1 and EM-2, DR4 is
the predominant transducer of apoptosis (van Geelen et al, 2003;
MacFarlane et al, 2005). So far, there is no clear explanation for the
differential activity of DR4 and DR5. Two reports shed some light
to possible, selective regulation of DR4 and DR5. These studies
have shown that DcR2 selectively inhibited DR5, but not DR4,
through a ligand-dependent or ligand-independent association
with DR5 (Clancy et al, 2005; Merino et al, 2006). But what
regulates DR4 function, or whether there are intracellular
regulators specific to DR4 or DR5, is completely unknown.

In addition to caspase activation, DR4 and DR5 can activate the
transcription factors nuclear factor-k B (NF-kB) and c-Jun, or
protein kinases, such as Akt, mitogen-activated protein kinases
(MAPKs) such as c-Jun NH2-terminal kinase (JNK) and extra-
cellular signal-regulated kinase (ERK) (Falschlehner et al, 2007),
which lead to the activation of multiple signal transduction
pathways. To examine the role of these pathways in the regulation
of DR4 or DR5 function, genes induced or repressed by
recombinant human TRAIL (rhTRAIL) and DR5-selective
rhTRAIL variants were determined in a colon cancer cell
model using cDNA microarray technology. In this report we show
that the immediate early gene, Egr-1, is constitutively expressed
in colon cancer cells and further induced in response to rhTRAIL
by both DR4 and DR5. Furthermore, we show that the short
isoform of c-FLIP controls the activity of the DR5 receptor, but
not of DR4. The constitutively expressed Egr-1 inhibits TRAIL-
mediated apoptosis, probably by driving constitutive c-FLIP
expression.

MATERIALS AND METHODS

Cell culture and treatments

Colo205 cells were obtained from American Tissue Culture
Collection (ATCC). HCT15 and HCA7 cells were a kind gift
from Professor L Egan (National University of Ireland, Galway).
Colo205 and HCT15 cells were maintained in RPMI-1640
medium and HCA7 in DMEM medium, both media supplemented
with 10% fetal bovine serum (FBS), 2 mM glutamine, 50 U ml – 1

penicillin and 50 mg ml – 1 streptomycin at 37 1C, 5% CO2

in a humidified incubator. Cells were seeded at 2� 105 cells ml – 1

at 1 day before treatment. To induce apoptosis, cells were
treated with rhTRAIL (non-tagged, fragment of amino acids
114–281, Triskel Therapeutics, Groningen, The Netherlands)
DR5-selective mutants D269H, D269H/E195R, agonistic DR4 or
DR5 antibodies (Novartis Pharmaceuticals, Basel, Switzerland),
recombinant human TNF (PromoCell, Heidelberg, Germany) or
agonistic anti-Fas antibody (clone CH-11, MBL International,
Woburn, MA, USA) at the concentration and times specified in the
figure legends. All reagents were from Sigma-Aldrich (St Louis,
MD, USA) unless otherwise stated.

Cell viability assay

Cell viability was monitored using 3-(4, 5-dimethylthiazolyl)-2,
5-diphenyl tetrazolium bromide (MTT) assay. After treatment,
MTT (0.5 mg ml – 1) was added to cells and incubated for 3 h at
37 1C. The reaction was stopped by addition of an MTT stop
solution of 20% SDS in 50% dimethyl formamide. The purple
formazan precipitate generated was allowed to dissolve for 1 h on
an orbital shaker. The colour intensity was measured at 550 nm on
a Wallac Victor 1420 Multilabel counter (PerkinElmer Life

Sciences, Waltham, MA, USA). Cell viability was expressed relative
to the absorbance of untreated cells, which was taken as 100%
viable.

Cell death assay

Cell death was monitored by labelling of phosphatidyl serine
externalised on the surface of apoptotic cells with Annexin-V-FITC
(IQ Corporation, Groningen, The Netherlands) or by haematoxylin
and eosin staining of cytospins. For Annexin V staining, cells were
collected by gentle trypsinisation and incubated for 10 min at 37 1C
to allow membrane recovery. Cells were pelleted by centrifugation
at 350 g and incubated with Annexin-V-FITC in calcium buffer
(10 mM HEPES/NaOH, pH 7.4, 140 mM NaCl and 2.5 mM CaCl2) for
15 min on ice in the dark. Cells were washed in calcium buffer
before acquisition on a FacsCalibur flow cytometer (Becton
Dickinson, Franklin Lakes, NJ, USA). Analysis was performed
using Cell Quest software (Becton Dickinson). Haematoxyin–eosin
staining has been carried out as described before (Szegezdi et al,
2008).

Microarray analysis

Global gene expression analysis was carried out on RNA prepared
from Colo205 cells exposed to rhTRAIL, D269H or D269H/E195R
for 1 h. Microarray hybridisation and bioinformatics analysis was
performed by ArraDx Array-Based Diagnostics using Affymetrix
human HgU133 Plus 2.0 gene chips in triplicate (Belfast, UK).
Single-channel experiments were carried out with all RNA samples
labelled with biotin. In brief, double-stranded cDNA was
synthesised from 5 mg total RNA, and purified and biotin labelled.
Labelled cRNA was fragmented, purified and quantified before its
hybridisation to the gene chips for 16 h at 45 1C. The arrays were
washed, stained with streptavidin-phycoerythrin solution for
10 min at 25 1C, and then re-washed and probed with a biotinylated
antibody solution for 10 min at 25 1C. The streptavidin-phyco-
erythrin solution was added for a further 10 min and washed
before scanning. The GeneSpring data analysis program (Silicon
Genetics/Agilent, Santa Clara, CA, USA) was used for bioinforma-
tical analysis. Fold increases or decreases induced were compiled
for the treatments. Genes with greater than a two-fold change and a
t-test P-value of o0.05 were considered differentially regulated.

RNA isolation and RT–PCR

Total RNA was isolated using GenElute RNA miniprep kit (Sigma-
Aldrich) according to the manufacturer’s protocol. Reverse
transcription (RT) was carried out with 2 mg RNA using oligo
(dT) primers (Invitrogen, Carlsbad, CA, USA) and AMV reverse
transcriptase. The cDNA product was subjected to 25–30 cycles of
PCR using primers specific for Egr-1, c-Jun, TEA domain family
member 1 (TEAD-1), naked cuticle homologue 2 (NKD2), voltage-
dependent anion channel 3 (VDAC3), NF-kB inhibitor-a/inhibitor-
k B-a (NFKBIA/IkBa) and NF-k light polypeptide gene enhancer in
B-cells inhibitor-z (NFKBIZ/IkBz). For normalisation, GAPDH

Gene

name Reverse sequence Forward sequence

Egr-1 50-AAGAACTTGGACATGGCTGTTT-30 50-GAAAGAAAGGGAAAAGGCAGAA-30

c-Jun 50-CCTGACCATAGCATCAAGTACA-30 50-ACTCCCCTAACCTGTTTTCTGC-30

TEAD1 50-AACTTTGGTGGAACAGGTGACT-30 50-CATTGCTTGAATCAGTGGACAT-30

VDAC3 50-TAGACTTCAGTGTGGGAGGAT-30 50-GGAAGCTTAATGTGGTTTGAGG-30

NFkBIA 50-TCCATCTTGAAGGCTACCAACT-30 50-GCCCTGGTAGGTAACTCTGTTG-30

NFkBIZ 50-CTGTCTTTTGTGAATGCAAAGG-30 50-GAGCTCGCTGCTGAATGGACTT-30

NKD2 50-CGGCAGGTAGTAGCTGAAGG-30 50-AGATACACATGCCGTACACCAC-30

GAPDH 50-TCCACCACCCTGTTGCTG-30 50-ACCACAGTCCATGCCATC-30
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PCR was carried out. The primers used for the PCR reactions are
listed below.

Protein lysate preparation and western blot analysis

Cells were lysed in buffer containing 100 mM Tris –HCl, pH 8.0, 1%
Triton X-100, 200 mM sodium chloride (NaCl), 5 mM EDTA, 10%
glycerol, 1 mM dithiothreitol (DTT), 1 mM phenylmethylsulphonyl
fluoride (PMSF), 5 mg ml – 1 aprotinin, 2.5 mg ml – 1 leupeptin, 1 mM

sodium orthovanadate (Na2VO3) and 1 mM sodium fluoride (NaF).
Cellular proteins (30 mg) were separated by electrophoresis on
8–10% SDS polyacrylamide gels and transferred onto nitro-
cellulose membranes. After blocking in 5% non-fat milk and 0.05%
Tween-20 in PBS, blots were incubated with rabbit antibodies to
total Egr-1 (1 : 1000 dilution, Santa Cruz Biotechnologies, Santa
Cruz, CA, USA), Mcl-1, Bax (1 : 1000, Cell Signaling Technology,
Danvers, MA, USA) or mouse monoclonal antibodies to c-FLIP
(1 : 500, Alexis Pharmaceuticals, Axxora UK Ltd., Nottingham,
UK), Bcl-XL (clone H-5, 1 : 200, Santa Cruz Biotechnologies), Bcl-2
(clone 100, 1 : 1000, Santa Cruz Biotechnologies) or X-linked
inhibitor of apoptosis protein (XIAP; 1 : 2000, Assay Designs,
Ann Arbon, MI, USA). For detection, appropriate horseradish
peroxidase-conjugated goat secondary antibodies were used
(Thermo Fisher Scientific, Rockford, IL, USA). Protein bands were
visualised with SuperSignal West Pico Chemiluminescent Sub-
strate (Pierce) on X-ray film (Agfa, Morstel, Belgium).

Transfections and plasmids

Dominant-negative Egr-1 construct (EBGN-EGR-1) expresses a
truncated version of murine Egr-1 lacking the transactivational
domain and containing only the zinc-finger DNA-binding site
(amino acids 322–533) fused to GST. The empty vector, EBGN,
contains a nuclear-expressed GST (Al-Sarraj et al, 2005); both
these vectors are a kind gift from Professor G Thiel (University of
Saarland Medical Center, Homburg, Germany). pEBS14luc, an
Egr-1 reporter construct, contains four copies of Egr-1 response
element of the Egr-1 gene promoter in the pGL3-promoter vector
(also a gift from Professor G Thiel, University of Saarland Medical
Center) (Al-Sarraj et al, 2005). To normalise for transfection
efficiency, a constitutive Renilla luciferase expressing plasmid was
used (pRL-CMV, Promega Corporation, Madison, WI, USA). For
transfection, HCT15 cells (2� 106) were pelleted and resuspended
in transfection solution V (Lonza Group Ltd., Basel, Switzerland)
containing 2.5mg of plasmid unless otherwise stated. Transfection
was performed by nucleofection using program T13 according to
the manufacturer’s protocol (Amaxa). GFP plasmid (2.5 mg) was
used to determine transfection efficiency, which was 48±7%.
Control cells were subjected to the same transfection condition
without any plasmids. At 24 h after transfection, cells were
resuspended in media and seeded for Annexin V and protein
assays. Similarly, stable transfection of Bcl-2 or empty vector (Neo)
was carried out in HCT15 cells using the same transfection
protocol (a kind gift from Dr Peter Daniel, University of Berlin,
Berlin, Germany). Pools of stable clones were selected with 1 mM of
G418. siRNA transfection was carried out by the same nucleo-
fection protocol as for plasmids using 50–75 nM siRNA. The following
c-FLIP sequences were targeted: c-FLIPS/L1: 50-GGAGCAGGGAC
AAGTTACA-30, c-FLIPS/L2: 50-GCAAGGAGAAGAGTTTCTT-30,
c-FLIPS/L3: 50-GAGGTAAGCTGTCTGTCGG-30 (Nakajima et al,
2008), c-FLIPS1: 50-CACCCTATGCCCATTGTCC-30, cFLIPS2:
50-CATGGAACTGCCTCTACTT-30 (Zhang et al, 2004; Longley
et al, 2006). The GFP target sequence was: 50-GGCUACGUCCAG
GAGCGCACC-30. To knock down Egr-1, an siRNA Smartpool
containing a mixture of four Egr-1-specific siRNAs was used
(Dharmacon, Thermo Fisher Scientific, Rockford, IL, USA).
Transfection was carried out as for c-FLIP siRNAs.

Luciferase assay

Luciferase activity was determined using the Dual Glo Luciferase
assay system (Promega). The measurement was carried out
according to the manufacturer’s instructions.

Cell surface expression of TRAIL receptors

Cells were washed twice in PBS containing 1% BSA and then
incubated with monoclonal antibodies to DR4 or DR5 (Alexis) for
40 min. After two wash steps with PBS –BSA, anti-mouse IgG-FITC
(Sigma) secondary antibody was added for 30 min. All incubations
were carried out on ice. Negative controls contained isotype
control antibody. Cells were analysed using FacsCalibur flow
cytometer.

Statistical analysis

Differences in Annexin V staining between the treatment groups
were analysed using a non-paired Student’s t-test, with a
significance level of Po0.05. Error bars shown are s.e.m. All
statistical analyses were performed using Graphpad Prism 4
(GraphPad Softward Inc, San Diego, CA, USA).

RESULTS

Colon carcinoma cells are sensitive to rhTRAIL but use
different receptors to transmit the death signal

To determine the sensitivity of colon carcinomas to TRAIL-
induced apoptosis, Colo205 and HCT15 cell lines were treated
with increasing concentrations of rhTRAIL or DR5-selective
TRAIL variant, D269H/E195R for 3 h (Figure 1A) (van der Sloot
et al, 2006). Colo205 cells were more sensitive to D269H/E195R
than rhTRAIL, whereas in HCT15 cells rhTRAIL seemed to be a
stronger inducer of death (Figure 1A and B).

To determine what TRAIL receptors transmitted the apoptotic
signal, cells were treated with agonistic DR4- and DR5-selective
antibodies (Novartis) for 3 and 5 h, for Colo205 and HCT15 cells,
respectively. In the absence of crosslinking of anti-DR4 and anti-
DR5 with a secondary antibody, the agonistic antibodies induced
similar, low level of apoptosis in Colo205 cells. To more closely
mimic the action of the trimeric TRAIL ligand on the receptors, the
agonistic antibodies were crosslinked with a secondary antibody
through their Fc regions. Crosslinking is likely to enhance
clustering and thus the activation of the death receptors in a
similar manner as it has recently been shown for Fas (Scott et al,
2009). Crosslinking significantly increased the activity of the
DR5-agonistic antibody, but not of the DR4 antibody (Figure 1C),
agreeing with previous reports showing that DR5, but not DR4,
requires crosslinking for optimal activation (Kelley et al, 2005). In
HCT15 cells, both the DR4 and DR5 antibodies induced apoptosis,
with the DR4 antibody being a stronger death inducer. Again,
enhanced apoptosis was observed after crosslinking of the DR5,
but not the DR4-agonistic antibody (Figure 1D). These results
show that in Colo205 cells, TRAIL signals apoptosis primarily
through the DR5 receptor, whereas in HCT15 cells, the TRAIL
death signal can be transmitted by both receptors.

rhTRAIL induces Egr-1 through both DR4 and DR5

To generate a profile of early response genes induced by TRAIL
receptor activation, Colo205 cells were treated with either rhTRAIL
or DR5-selective rhTRAIL variants (D269H and D269H/E195R) for
1 h. Microarray analysis was carried out on Affymetrix human
HgU133 Plus 2.0 GeneChips in triplicate. The concentration of
TRAIL and DR5 variants was chosen to be 10 ng ml – 1 as it induced
near-maximal apoptosis in Colo205 cells (Figure 1A). By examining
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the temporal induction of TRAIL-regulated genes known from the
literature, such as BTG family 3 (BTG3), ubiquitin-specific protease
24 (USP24), KIAA0770 and cyclin T1 (CCNT1) upregulated by
TRAIL and non-POU-domain containing octamer binding (NoNo),
downregulated by TRAIL) (Kumar-Sinha et al, 2002), it was
determined that gene expressional changes are detectable from 1 h
of TRAIL treatment and thus this time point was chosen for the
microarray analysis (Supplementary Figure 1).

The microarray analysis revealed 69 genes differentially
expressed in response to at least one treatment. Cluster analysis
identified four genes regulated by both TRAIL and DR5-selective
variants. These were CDC42 effector protein 1 (CDC42EP1), Egr-1,
TEAD1 and VDAC3. Functional clustering identified that the
regulated genes have a role in intracellular transport, cellular
proliferation, post-translational modification and transcription –
translation regulation (Table 1A). Of these genes, seven candidates
were selected for further analysis based on proposed biological
function and fold induction– repression by rhTRAIL (Table 1B).
The full list of genes differentially expressed can be found in
Supplementary Table 1. Except the induction of c-Jun, upregula-
tion of Egr-1, NFKBIA/IkBa and NFKBIZ/IkBz and downregulation
of Homo sapiens NKD2, VDAC3 and TEAD1 in Colo205 cells by
rhTRAIL were all confirmed validating the microarray results
(Figure 2A).

Egr-1, which is also known as NGFI-A, zif268, krox24 and Tis8,
is a transcription factor implicated in tumour progression and
apoptosis after diverse stimuli (Thiel and Cibelli, 2002). Currently,
there is no information about its role in TRAIL-induced apoptosis.

Analysis of Egr-1 protein expression in colon carcinoma cell lines
(Colo205, HCT15 and HCA7) showed high basal expression of
Egr-1 and its further induction in response to rhTRAIL, DR4- and
DR5-agonistic antibodies (Figure 2B and C). A double band of
Egr-1 was detected in HCT15 and HCA7 cells. The upper band
probably corresponds to a phosphorylated form of Egr-1, which
has been shown to increase its activity (Beckmann and Wilce, 1997).
For quantification, blots were also probed for b-actin and the
densitometric ratio of Egr-1 to b-actin was calculated (Figure 2C).

Overexpression of dominant-negative Egr-1 potentiates
apoptosis induction by DR5

To determine whether Egr-1 has any role in TRAIL-induced
apoptosis, HCT15 cells were transiently transfected with a plasmid
expressing dominant-negative Egr-1 (EBGN-Egr-1) that contains
only the DNA-binding domain of Egr-1 fused to GST (Al-Sarraj
et al, 2005). Overexpression of dominant-negative Egr-1 protein
(DN-Egr-1) was confirmed by western blot analysis using Egr-1
antibody (inlet, Figure 3A). On the blot, the lower (approximately
56 kDa) band represents the truncated, DN-Egr-1. To inhibit Egr-1
activity, 2.5 mg of DN-Egr-1 plasmid was transfected into the cells,
as this amount was found to fully block Egr-1 transcriptional
activity for at least 48 h after transfection (Supplementary Figure
2A). After 5 h treatment with 10 nM agonistic DR5 antibody or
rhTRAIL, HCT15 cells overexpressing DN-Egr-1 suffered signifi-
cantly more apoptosis than untransfected cells or cells transfected
with the empty vector (Figure 3A). Interestingly, no enhancement
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Figure 1 Colon carcinoma cells are sensitive to rhTRAIL with Colo205 cells responding to DR5 stimulation and HCT15 to both DR4 and DR5. Cell
viability of Colo205 (A) and HCT15 (B) cells treated with WT rhTRAIL and DR5-selective TRAIL variant D269H/E195R (5–30 and 10–200 ng ml – 1,
respectively) for 24 h. Cell viability was measured using MTT assay. Values are expressed as a percentage of untreated cells and presented as mean±s.e.m.
of three independent experiments. Colo205 (C) and HCT15 (D) cells were treated with 5–20 nM of agonistic DR4 (DR4) and DR5 antibodies (DR5) for
24 and 5 h, respectively. Where indicated, agonistic antibodies were crosslinked using 15–60 nM of crosslinking antibody for 30 min before cell treatment.
Cell death was measured using MTT assay in Colo205 cells and Annexin V staining in HCT15 cells. The results are presented as mean±s.e.m. of three
independent experiments.

Egr-1 regulates DR5-induced apoptosis via c-FLIPs

D Mahalingam et al

757

British Journal of Cancer (2010) 102(4), 754 – 764& 2010 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
st

ic
s



in apoptosis was observed in cells treated with agonistic DR4
antibody (Figure 3A). Knockdown of Egr-1 with siRNA
(Smartpool, Dharmacon) also increased the sensitivity of HCT15
cells to DR5 activation, but not to DR4 activation (Figure 3B).

Only DR4-induced, but not DR5-induced, apoptosis
requires mitochondrial amplification in HCT15 cells

As overexpression of DN-Egr-1 affected only the DR5-mediated
but not the DR4-mediated apoptotic pathway, we wanted to
determine whether DR5 and DR4 signal apoptosis through the
same pathway in HCT15 cells. As Egr-1 has been reported to
regulate the expression of Bcl-2 proteins (Huang et al, 1998b;
Ahmed, 2004), first the requirement for mitochondrial amplifica-
tion for DR4- and DR5-mediated apoptosis was assessed. To this
end, stable, mitochondrial-targeted Bcl-2 overexpressing HCT15
cells were generated (mass pool of stable transfectants of Bcl-2-
ActA overexpressing cells; Figure 4A) and treated with agonistic
DR4 and DR5 antibodies (10 nM) or rhTRAIL (50 ng ml – 1). Cells
were treated for 12 h to allow all cells affected to undergo
apoptosis. Bcl-2 overexpression reduced the level of apoptosis
induced by DR4, but not by DR5 or rhTRAIL (Figure 4B),
indicating that in HCT15 cells the DR4-induced apoptotic pathway
requires mitochondrial amplification, whereas the DR5-induced
pathway does not. The effect of DN-Egr-1 on the expression of key
mitochondrial proteins was nonetheless examined. Western blot
analysis showed that overexpression of DN-EGR-1 did not alter
the expression levels of Bax, Bcl-2, Bcl-XL, Mcl-1 or XIAP
(Supplementary Figure 2B).

DN-Egr-1 overexpression reduces c-FLIP expression in
HCT15 cells

As the mitochondrial pathway is not required for DR5-mediated
apoptosis in HCT15 cells, we next examined whether overexpression
of DN-Egr-1 can modulate the expression of the components of
the TRAIL-DISC: TRAIL receptors, pro-caspase-8 and c-FLIP.
DN-Egr-1 did not have any effect on the surface expression of
any of the four TRAIL receptors or the expression of pro-caspase-8
(Figure 5A and B). On the other hand, overexpression of
DN-Egr-1 decreased the expression of c-FLIP, especially of the
short c-FLIP isoform (c-FLIPS, Figure 5B and C). Knockdown
of Egr-1 also reduced the expression of c-FLIP, and the reduction
was more pronounced in the short c-FLIP splice variant
(Supplementary Figure 3A and B). When the expression of Egr-1
and c-FLIP was studied in colon and breast cancer cell lines,
we found that high Egr-1 expression often associates with high
c-FLIP expression, especially c-FLIPS (Figure 5D). As c-FLIP also
inhibits death signalling through the TNF receptor and Fas, the
effect of DN-Egr-1 on TNF and Fas sensitivity of HCT15 cells was
examined. We found that DN-Egr-1 increased apoptosis induced
by both TNF and agonistic anti-Fas antibody (Supplementary
Figure 3C).

By analysing the 50 region of the human c-FLIP gene using
the Transcription Element Search System web interface (Schug, 2008)
(TESS, http://www.cbil.upenn.edu/cgi-bin/tess/tess?RQ¼WELCOME),
we found the 9 nucleotide Egr-1 binding site (GSG motif: CGGGGGCG)
at the beginning of the first intron (Supplementary Figure 4). The
binding sequence has a nearly 100% identity to the weighted matrix
consensus sequence (Swirnoff and Milbrandt, 1995) (http://www.
cbil.upenn.edu/cgi-bin/tess/tess?request¼ IMD-DBRTRV-Accno&key¼
I00117), indicating that it is a high-affinity site for Egr-1 binding.

Selective downregulation of c-FLIPS enhances DR5, but not
DR4-induced apoptosis in HCT5 cells

siRNA oligonucletides targeting three regions of c-FLIP, common
in c-FLIPL and c-FLIPS (c-FLIPL/S1 – 3) were designed and
transfected into HCT15 cells. Downregulation of c-FLIPL and
c-FLIPS was confirmed using western blot analysis at 24 h after
transfection (Figure 6A). The c-FLIPL/S siRNA resulted in down-
regulation of both c-FLIPL and c-FLIPS.. HCT15 cells transfected
with the siRNAs were treated with 50 ng ml – 1 rhTRAIL, 10 nM

crosslinked DR4 or DR5 antibodies for 5 h and induction of
apoptosis was assessed. All treatments resulted in enhanced cell
death in c-FLIPL/S siRNA-transfected cells when compared with
non-transfected or GFP siRNA-transfected cells (Figure 6B). In
view of the greater downregulation of c-FLIPs than c-FLIPL by DN
Egr-1, we chose to specifically downregulate c-FLIPs. The only
unique region of c-FLIPS in comparison to c-FLIPL is the short
exon 7 (Golks et al, 2005), which contained only two stretches of

Table 1B TRAIL/DR5-variant regulated genes selected for validation

Fold change

Genes TRAIL D269H D269H/E195R Biological function

Egr 2.5 2.1 3.3 Transcription factor
c-Jun 1.2 1.6 2.0 Transcription factor
TEAD1 �1.6 �1.5 �1.9 Transcription factor
VDAC3 �1.5 �1.9 �2.0 Voltage gated anion channel
NFkB1A/IkBa 1.3 1.6 2.1 NF-kB inhibitor
NFkB1Z/IkBz 1.8 2.0 2.1 NF-kB inhibitor
NKD2 �1.6 �1.3 �1.6 NFkB inhibitor, negative regulator of WNT pathway

Abbreviations: DR5¼ death receptor 5; Egr¼ early growth response gene; NKD2¼ naked cuticle homologue 2; NF-kB¼ nuclear factor-kB; NFKBIA/IkBa¼NF-kB inhibitor-a/
inhibitor-k B-a; NFKBIZ/IkBz¼ NF-k light polypeptide gene enhancer in B-cells inhibitor-z; TEAD-1¼TEA domain family member 1; TRAIL¼ tumour necrosis factor-related
apoptosis-inducing ligand; VDAC3¼ voltage-dependent anion channel 3.

Table 1A Functional clustering of TRAIL/DR5-variant regulated genes

Function Number of genes

Vesicle and/or protein transport 4
Rho signalling 2

Post-translational protein modification 3

Transcription/translation 10
Transcription factors 6
Translational related 4

Cell proliferation/survival pathways 4
Ras pathway 3
PI3K pathway 1

Protein kinases/phosphatase 3
NF-kB inhibitor proteins 2
DNA/RNA helicases 2
Cancer related 8

Abbreviations: DR5¼ death receptor 5; NF-kB¼ nuclear factor-kB; TRAIL¼ tumour
necrosis factor-related apoptosis-inducing ligand.
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sequences targetable with siRNA. Of these two siRNAs, however,
only one (c-FLIPS-2) was able to significantly downregulate c-FLIPS

expression, the c-FLIPS siRNA targeting the first region (c-FLIPS-1)
seemed to be ineffective (Figure 6C). c-FLIPS siRNA-transfected
HCT15 cells were treated with WT rhTRAIL, DR4- or DR5-
agonistic antibodies and the apoptosis-potentiating effect of
c-FLIPS knockdown was measured. c-FLIPS-1 did not enhance cell
death in response to any of the treatments, as expected. However,
c-FLIPS-2 siRNA-transfected cells showed increased cell death in
response to WT rhTRAIL and DR5 antibody, but not to DR4
antibody; that is, c-FLIPS knockdown mirrored the effect of DN
Egr-1 (Figure 6D).

DISCUSSION

Death ligands induce apoptosis in tumour cells (Ashkenazi and
Dixit, 1998; Papenfuss et al, 2008) independent of p53 and thus
offer an alternative therapy to genotoxic agents (Ashkenazi, 2008).
Various formulations of DR agonists, TNF, Fas ligand and TRAIL
are in phase I and II clinical trials with promising results
(Papenfuss et al, 2008; Mahalingam et al, 2009). Of the death
ligands, TRAIL is of special interest, as in contrast to TNF and
FasL, it has minimal or no toxic side effects (Ashkenazi et al,
2008). However, the regulation of TRAIL-induced apoptosis, the
mechanism of TRAIL resistance and the differential role of DR4
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and DR5 in TRAIL signalling is not sufficiently understood (Di
Pietro and Zauli, 2004; Duiker et al, 2006).

To gain insight into the regulation of TRAIL-induced apoptosis,
we identified the early response genes regulated by TRAIL receptor
activation. Gene ontological clustering identified regulation of
gene transcription as one of the main biological functions
regulated by TRAIL. Among the TRAIL-regulated transcription
factors were TEAD1 and Egr-1. Egr-1 (also known as NGFI-A,
zif268, krox24 and Tis8) is a zinc-finger transcriptional factor that
belongs to a group of early response genes together with Egr-2,

Egr-3, Egr-4, Egr-a and the tumour suppressor, Wilms’ tumour
gene product, WT1. Egr-1 has been implicated in the control of cell
growth, survival and transformation (Thiel and Cibelli, 2002;
Ahmed, 2004). Egr-1 has also been connected to the development
of human cancers. It has been proposed to have a role in
multistage carcinogenesis in the skin (Riggs et al, 2000). High
levels of constitutive Egr-1 expression have been observed in
most human prostate cancers and found to correlate with more
advanced stages of malignancy and poor prognosis (Eid et al,
1998). Moreover, tumour progression in transgenic mouse models
of prostate cancer was reported to be significantly impaired when
Egr-1 was not expressed (Abdulkadir et al, 2001). Egr-1 basal
expression was also found to be much higher in gastric cancer
tissues than in normal gastric mucosa and high Egr-1 mRNA
expression correlated with metastasis to lymph nodes and remote
organs (Kobayashi et al, 2002).

To date, the studies analysing the functions of Egr-1 have been
contradictory, with reports of both cytoprotective and pro-
apoptotic functions in tumour cells (Huang et al, 1998a; Virolle
et al, 2001). Egr-1 induction has been implicated as a key event in
response to ionising radiation-induced growth arrest or cell death
mediated by Egr-1 target genes such as TNF-a, p53, Retinoblas-
toma and Bax (Ahmed, 2004). The role of Egr-1 in TRAIL-induced
apoptosis is limited. One study showed that Egr-1 negatively
regulates survivin expression and hence sensitises cell lines to
TRAIL-induced apoptosis (Wagner et al, 2008). Another study
linked Egr-1 to TRAIL that showed that TNF and TRAIL are
released from irradiated (IR) tumour cells and induce bystander
death of neighbouring/IR-unaffected cells. Although TNF secretion
was mediated by Egr-1, TRAIL secretion only occurred in a
tumour cells line that did not express functional Egr-1 (Shareef
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et al, 2007). This study also indicates that during irradiation or
genotoxic drug exposure, Egr-1 enhances tumour regression by
inducing a bystander effect.

Our study found that Egr-1 is not only rapidly induced by
TRAIL, but is also constitutively expressed at a relatively high level
in many colon carcinoma cell lines. Another study also found
Egr-1 upregulation at the mRNA level in early-onset colorectal
cancers (Hong et al, 2007). Inhibition of Egr-1 by overexpressing
DN-Egr-1 augmented cell death induced by TRAIL through the

DR5, but not through the DR4 receptor. The differential role of
DR4 and DR5 may relate to our finding that in HCT15 cells DR4-
mediated apoptosis requires mitochondrial amplification whereas
DR5 stimulation induces a type I, mitochondrial-independent
apoptotic pathway. Inhibition of Egr-1 however did not alter
expression of the Bcl-2 family members, Bax, Bcl-2, Bcl-XL or
Mcl-1. In addition, other studies examining the regulation of Bcl-2
proteins by Egr-1 have shown induction of the pro-apoptotic
member, Bax, and repression of Bcl-2, which would enhance the
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DR4-mediated, type II pathway, rather than the DR5-mediated
type I pathway (Huang et al, 1998b; Ahmed, 2004; Zagurovskaya
et al, 2009).

Inhibition of Egr-1 by a dominant-negative mutant, or siRNA-
mediated knockdown, significantly decreased the expression of
the caspase-8 inhibitor protein, c-FLIP, especially its short
isoform (c-FLIPS) and Egr-1 expression associated with high
c-FLIP expression in a number of cancer cell lines. The reduction
in c-FLIP expression was only partial; however, this experiment
probably underestimated the effect of Egr-1 on c-FLIP expression
because the maximum transfection efficiency of DN-Egr-1 that we
could achieve was 50% in HCT15 cells. Nonetheless, we cannot
exclude the contribution of other Egr-1 regulated genes to TRAIL
sensitivity.

The 50 region of the c-FLIP gene contains an Egr-1 binding site.
Given that the Egr-1 binding site is a rare promoter element, and
that the mouse c-FLIP promoter also contains an Egr-1 binding
site (data not shown), it may be a bona fide site and thus indicate a
direct regulation of c-FLIP by Egr-1; however, only experimental
evidence can confirm it. The c-FLIP promoter also contains a
number of AP-1 binding sites and c-Jun is known to be activated
by DR4 and DR5. However, inhibition of c-Jun with a dominant-
negative construct failed to alter TRAIL sensitivity (data not
shown), indicating that c-Jun does not have a major role in
regulating c-FLIP expression. Inhibition of Egr-1 affected c-FLIPS

expression more than of c-FLIPL probably because of a differential
degradation of c-FLIP isoforms. C-FLIPS has been shown to be
more prone to ubiquitylation and degradation than c-FLIPL.
Lysines 192 and 195 are principal ubiquitin acceptors in c-FLIPS

but not in c-FLIPL because a 19 amino acid tail, which is specific to
c-FLIPS and adjacent to the two target lysines, is required for
correct positioning and subsequent ubiquitylation of the target
lysines (Poukkula et al, 2005).

The considerable level of basal Egr-1 expression in colon
carcinoma cells can maintain high c-FLIP expression levels, in
particular c-FLIPs, and can thus reduce TRAIL sensitivity.
Furthermore, upon DR4/DR5 stimulation Egr-1 becomes induced,
which may further increase c-FLIP levels and protect the cells from
apoptosis. Knockdown of c-FLIPS confirmed that c-FLIPS regulates
DR5-mediated apoptosis more so than of DR4, explaining the
specific potentiating effect of DN-Egr-1 of DR5, but not of DR4-
induced cell death. This specific effect of c-FLIPS either relates to
its differential binding to DR4 vs DR5 or to its ability to block
type I but not type II apoptosis. It is feasible that despite the
presence of c-FLIPS on the DISC, some low level of pro-caspase-8
processing can occur. This would allow the progression of the type
II pathway, but would be insufficient to trigger the type I pathway.
Inhibition of Egr-1 activity also increased apoptosis induction
by other death receptors (TNFRI and Fas) known to be inhibited
by c-FLIP. This also indicates that the effect of Egr-1 on c-FLIP
expression has a significant biological effect.

In conclusion, this study shows that Egr-1 regulates the
expression of c-FLIP in colon carcinoma cells and probably this
mechanism contributes to Egr-1-mediated TRAIL resistance.
Constitutive Egr-1 expression has been shown to correlate with
prostate and gastric tumour aggressiveness and metastasis
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Figure 6 Knockdown of c-FLIPS potentiates DR5-induced apoptosis in
HCT5 cells. (A) Cell lysates were prepared from HCT15 cells transfected
with three different siRNA constructs targeting the common region of
c-FLIPS and c-FLIPL (c-FLIPS/L1�3) or GFP as a negative control at 24 h after
transfection and knockdown of c-FLIPL and c-FLIPS were measured using
western blot analysis. Actin expression was determined to serve as loading
control. The image is representative of three independent experiments.
(B) Simultaneous knockdown of c-FLIPS and c-FLIPL potentiates TRAIL,
DR4- and DR5-induced HCT15 apoptosis. HCT15 cells transfected as
in (A) were treated at 24 h after transfection with 50 ng ml – 1 rhTRAIL or
10 nM crosslinked agonistic DR4 (DR4) and DR5 (DR5) antibodies for
5 h and apoptosis was assessed using Annexin V staining. Results are
presented as means±s.e.m. of three independent experiments; *Po0.05.
(C) Selective knockdown of c-FLIPS. Cell lysates were prepared from
HCT15 cells transfected with two different siRNA constructs targeting the
exon 7 in c-FLIPS (c-FLIPS1, 2) or GFP as a negative control at 24 h after
transfection and knockdown of c-FLIPL and c-FLIPS were measured using
western blot analysis. Actin expression was determined to serve as loading
control. The image is representative of three independent experiments.
(D) Selective knockdown of c-FLIPS potentiates DR5-, but not DR4-
induced HCT15 apoptosis. HCT15 cells transfected as in (C) were treated
as in (B) and apoptosis was assessed using Annexin V staining. Results are
presented as means±s.e.m. of three independent experiments; *Po0.05.
Asterisks (*) label samples with significant difference from the TRAIL-
treated (*), DR4-treated (**) or DR5-treated (***) GFP-transfected
sample (Po0.05).
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(Thigpen et al, 1996; Kobayashi et al, 2002). Recent results at the
same time indicate that loss of TRAIL sensitivity of tumour cells is a
key step enabling metastasis (Grosse-Wilde et al, 2008). The results of
our study may shed light on the connection between Egr-1 expression
and tumour aggressiveness. Our findings also indicate that the
function of DR4 and DR5 is regulated separately intracellularly and
the Egr-1 status of a tumour may indicate the sensitivity of the
tumour towards death receptor agonist therapeutics.
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