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consequences of uncontrolled mineral metabolism in chronic kidney
disease: the role of COSMOS
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Abstract
The development of secondary hyperparathyroidism
(SHPT) is a common complication of chronic kidney
disease. SHPT develops as a consequence of mineral
metabolism disturbances and is characterized by elevated
serum parathyroid hormone (PTH) and parathyroid hyper-
plasia. Evidence suggests that SHPT contributes to the
development of vascular calcification and cardiovascular
disease, as well as to the development of renal osteodys-
trophy. The elevated serum calcium, phosphorus, calcium–
phosphorus product and PTH that accompany SHPT have
been independently associated with an increased relative
risk of mortality. Despite the danger that these risks
represent, achieving control of mineral metabolism in
SHPT is difficult. Recent evidence from the Current Man-
agement of Secondary Hyperparathyroidism: Multicentre
Observational Study has shown that fewer than 1 in 10
haemodialysis patients simultaneously meet their National
Kidney Foundation Kidney Disease Outcomes Quality
Initiative targets for serum calcium, phosphorus, calcium–
phosphorus product and PTH with standard treatments.
There is therefore an urgent need for new strategies and
novel pharmacologic therapies that improve control of
mineral metabolism and PTH secretion in SHPT and thus
reduce the mortality associated with this condition.
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Introduction

Phosphorus levels increase and active vitamin D (calcitriol)
synthesis decreases in direct response to declining kidney
function, triggering a cascade of sequelae including de-
creased calcium absorption and increased production of
parathyroid hormone (PTH) [1–3]. Elevations in serum
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PTH concentration are observed early in the development
of chronic kidney disease (CKD) [4]. As CKD progresses,
serum PTH continues to rise [4] and patients typically
develop secondary hyperparathyroidism (SHPT) [5].
Consequently, most of the patients receiving dialysis have
persistently elevated serum PTH [6]. Prolonged hypocal-
caemia, hyperphosphataemia and low vitamin D concen-
trations all contribute to the increased PTH synthesis and
secretion and parathyroid gland hyperplasia that are the
hallmarks of SHPT [7,8]. Prevention and treatment of SHPT
are critical because these mineral metabolism imbalances
are independently associated with increased morbidity and
mortality in CKD patients [9] and add to the development
of extraosseous calcification, particularly in the vasculature
[10,11], and bone disorders such as renal osteodystrophy
[12]. This review discusses the pathophysiology of SHPT,
the various clinical complications of uncontrolled mineral
metabolism and the need for new strategies for SHPT
treatment in CKD patients.

Pathophysiology of SHPT

Alterations in both phosphorus and calcium metabolism
play critical roles in the development of SHPT. The kidney’s
ability to remove phosphorus from circulating plasma is re-
duced in CKD, resulting in an accumulation of phosphorus
in the serum [3]. One consequence of this increase in serum
phosphorus is increased PTH synthesis and secretion, and
parathyroid cell proliferation [1,13]. The kidney plays an
equally important role in mineral metabolism through a
second mechanism. The final step in the synthesis of
1,25-dihydroxyvitamin D3 occurs in the kidney [14], and it
is this active D3 metabolite that is required for efficient ab-
sorption of calcium from the small intestine [15]. Calcium
and 1,25-dihydroxyvitamin D3 levels regulate a variety
of processes, including bone morphogenesis and turnover
in conjunction with PTH [15], calcium channel–mediated
processes [16] and gene transcription at the subcellular
level [17]. In CKD, the reduction in 1,25-dihydroxyvitamin
D3 and serum calcium triggers the release of PTH [18],
which in turn promotes intestinal calcium absorption,
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reabsorption of calcium in the kidney and the release of
calcium from bone.

The calcium-sensing receptor (CaR), located on the
surface of the chief cells of the parathyroid gland, plays a
central role in the regulation of PTH secretion and synthesis,
making it an important regulator of calcium homeostasis.
In CKD, lowered serum calcium levels result in ongoing
inactivation of the CaR, reduced signalling through the CaR
and increased PTH synthesis and secretion [3,19]. As PTH
secretion increases, calcium is released from bone tissue,
enhancing phosphate excretion in the presence of a func-
tioning kidney [20]. This response of the parathyroid gland
depends on the rapidity and duration of the hypocalcaemic
stress [21,22]. PTH release in response to calcium occurs
within seconds to minutes following signalling through the
CaR [22,23], chronic hypocalcaemic stress and hyperphos-
phataemia stimulate PTH gene expression and subsequent
PTH synthesis within hours to days [24] and proliferation
of parathyroid cells occurs over days to weeks [13].

The mechanisms governing the synthesis of PTH in the
parathyroid gland are complex and still not fully under-
stood. Although the nuclear vitamin D receptor (VDR) can
suppress PTH gene transcription [18,25], PTH is also reg-
ulated post-transcriptionally by the binding of stabilizing
RNA-binding proteins to the 3′ untranslated region of the
PTH transcript [26,27]. Interestingly, the PTH transcript
has a greater stability under conditions of low calcium and
high phosphorus [19].

As CKD progresses towards stage 5, SHPT increases in
severity, resulting in the proliferation of parathyroid cells
and the development of diffuse hyperplasia [3]. This is
accompanied by a decrease in CaR and VDR expression
[28–30]. Because vitamin D is a potent inhibitor of PTH
synthesis [18,31], a reduction in VDR expression might
also inhibit the vitamin D–mediated signals that suppress
PTH synthesis and release, although this has not yet been
demonstrated experimentally. It is the hyperplastic nodules
of the parathyroid gland that show the greatest decrease
in both CaR and VDR expression [28,30], rendering them
less responsive to circulating calcium. As parathyroid cells
are transformed into a severe nodular hyperplastic state, a
decline in VDR expression reduces the efficiency of
vitamin D receptor activators in up-regulating the tran-
scription of the CaR gene and in inhibiting parathyroid
cell proliferation.

Clinical complications of uncontrolled mineral
metabolism

Evidence suggests that the alterations in serum PTH and
mineral metabolism in SHPT have important consequences
for haemodialysis patients. Increased calcium and phospho-
rus concentrations are key contributors to SHPT-associated
all-cause and cardiovascular (CV) mortality [9,32] and bone
disease [12]. It is less recognized, but of equal importance,
that PTH levels also significantly correlate with CV
mortality risk. In a study of the correlation between the
degree of deviation from National Kidney Foundation
Kidney Disease Outcomes Quality Initiative (KDOQITM)

Fig. 1. Risk of cardiovascular death according to iPTH levels in a cohort of
North American haemodialysis patients (n = 59 567). Intact PTH level was
assessed during a 6-month baseline period and cardiovascular mortality
was determined during an 18-month follow-up period. Error bars represent
95% confidence interval. Data from Belozeroff et al. [33].

targets (intact PTH [iPTH] 150–300 pg/mL) and the risk of
CV death in patients undergoing dialysis (n = 59 567),
Belozeroff et al. [33] demonstrated that increased PTH
concentrations were significantly correlated with increased
CV mortality risk (Figure 1). In another large study (n =
19 388) of CKD patients undergoing dialysis, Naves et al.
[34] showed that the risk of CV death increased propor-
tionally with increasing PTH concentrations, with a rela-
tive risk (RR) of 1.34 for 300–600 pg/mL and 1.52 for
>600 pg/mL compared with the reference group of 150–
300 pg/mL. Block et al. [9] reported a similar relationship
between PTH levels and all-cause mortality in patients with
stage 5 CKD.

Uncontrolled mineral metabolism also increases the risk
of mortality. Naves et al. [34] documented that elevated
mean serum concentrations of phosphorus (>5.0 mg/dL),
calcium (>11 mg/dL) and calcium–phosphorus product
(Ca × P; >50 mg2/dL2) were positively and significantly
associated with increased RR of CV death. In contrast with
data from other studies evaluated by Block et al. [35], serum
calcium concentrations <8.5 mg/dL were also significantly
associated with increased RR of CV death (RR = 1.87). In
a study of a large cohort (n = 24 803) of haemodialysis
patients, failure to achieve any KDOQITM targets for serum
PTH (150–300 pg/mL), calcium (8.4–9.5 g/dL) and phos-
phorus (3.5–5.5 g/dL) was associated with an increased
RR of death (RR = 1.51) compared with patients who
achieved all three targets [36]. Achievement of either one
or two KDOQITM targets was associated with proportional
increases in the RR of death. Block et al. [37] have shown
that the highest mortality rates are found in patients who
have not achieved KDOQITM targets for Ca × P and PTH
(Figure 2) [9,37].

Consistent with their contribution to CV mortality,
increased serum phosphorus and Ca × P are associated with
the development of vascular calcification [38,39]. Both
calcium and phosphorus have been shown to directly
promote mineralization in cultured smooth muscle cells
[40,41]. Furthermore, phosphorus may contribute to
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Fig. 2. Relative risk of death associated with not achieving KDOQITM

targets for serum PTH (150–300 pg/mL) and Ca × P (<55 mg2/dL2)
concentrations. The relative risk of mortality is highest among patients
not achieving either target. Error bars represent 95% confidence interval,
n = 36 248. Adapted with permission from Block et al. [37].

calcification by promoting increased PTH synthesis and
secretion and parathyroid gland hyperplasia [42]. Arterial
calcification results in stiffness and increased atheroscle-
rotic load in the arteries [43], each of which increases the
risk of a myocardial infarction and surgical complications.
The risk of aortic calcification has been shown to be
significantly higher in both men and women undergoing
dialysis compared with age-matched patients in the general
population (RR = 7.7 for men and RR = 9.0 for women)
[44].

Another serious consequence of uncontrolled mineral
metabolism is fracture [9,45]. In a cohort of patients from
the European Vertebral Osteoporosis Study [44], the pres-
ence of vascular calcifications was positively and signifi-
cantly associated with a higher risk of vertebral fractures
(aortic calcification, RR = 1.9; femoral calcifications,
RR = 3.2; uterus-spermatic calcifications, RR = 3.9) [44].
In addition, a significant increase (more than fivefold) in
peripheral bone fractures was observed in patients under-
going dialysis compared with age-matched patients in the
general population [44]. After 8 years of follow-up, mortal-
ity was directly correlated with severe vascular calcification
in men (RR = 4.2) and bone fractures in women (RR = 2.2)
[44].

Challenges meeting recommended targets

National Kidney Foundation KDOQITM guidelines were
developed as recommendations based on a patient’s degree
of kidney function [46]. For stage 5 CKD, the KDOQITM

guidelines specify strict target concentrations of serum
iPTH (150–300 pg/mL), calcium (8.4–9.5 mg/dL),
phosphorus (3.5–5.5 mg/dL) and Ca × P (<55 mg2/dL2).
Meeting the KDOQITM targets is, however, difficult and

Fig. 3. Achievement of KDOQITM guidelines at baseline in COSMOS
study. Data are baseline values from a subset of 2759 patients. Adapted
with permission from Fernández-Martı́n et al. [49].

challenging. In fact, <10% of dialysis patients achieve com-
bined targets for PTH, calcium, phosphorus and Ca × P
[47–49]. In the international Dialysis Outcome Practice
Patterns Study (DOPPS), Young et al. [50] investigated
the associations between altered mineral metabolism and
mortality in haemodialysis patients (n = 17 236). DOPPS,
which was conducted before publication of the KDOQITM

guidelines, demonstrated that the phosphorus and PTH
levels in the majority of patients were outside the KDOQITM

recommended ranges, and Ca × P exceeded the upper limit
of the range in >40% of patients. In addition, all-cause
and CV mortality were significantly associated with serum
phosphorus, calcium and Ca × P concentrations.

To increase the knowledge of the impact of SHPT man-
agement strategies on outcomes, the Current Management
of Secondary Hyperparathyroidism: Multicentre Observa-
tional Study (COSMOS) was initiated in February 2005
[49]. In this 3-year pan-European prospective observational
cohort study, primary objectives include the association
between clinical events and the achievement of KDOQITM

and European best practice guidelines targets in patients un-
dergoing haemodialysis [49,51]. The association between
achievement of these targets and mortality, overall CV
hospitalization, type of dialysis, type of centre and time on
dialysis will be investigated. Secondary objectives include
the association of targets with parathyroidectomy, manifest
bone disease (including fractures), hospitalizations and
vascular access, as well as the value of albumin and
haemoglobin assessments in addition to bone mineral
markers as predictors of mortality and clinical events.

This pan-European prospective study is currently
enrolling with a target of 5700 haemodialysis patients from
20 countries in 285 centres into a web-based database
[52]. Preliminary baseline data from 2759 patients indicate
that <30% of patients had PTH concentrations within
KDOQITM targets; 55% attained goal serum calcium, 50%
attained goal serum phosphorus and 66% of patients were
within Ca × P target limits [49]. Only 9% of patients
simultaneously met all KDOQITM targets (Figure 3).
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Future directions in the management of SHPT

Once the COSMOS study is completed, these data will al-
low for a better understanding of the consequences of SHPT
and the potential advantages of maintaining patients within
therapeutic targets. Nevertheless, the available evidence
from both COSMOS and DOPPS demonstrates the chal-
lenge of meeting KDOQITM targets with current standard
care for SHPT in haemodialysis patients and emphasize the
need for new strategies and the development of new treat-
ments for the management of bone and mineral disorders.
Recent advances in our understanding of the pathophysi-
ology of SHPT in CKD have resulted in new therapeutic
targets, in particular the CaR. Such new treatment options
may improve the management of SHPT and outcomes in
this patient population.
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