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Several projects investigating genetic function and evolution through sequencing and comparison of multiple
genomes are now underway. These projects consume many resources, and appropriate planning should be devoted to
choosing which species to sequence, potentially involving cooperation among different sequencing centres. A widely
discussed criterion for species choice is the maximisation of evolutionary divergence. Our mathematical formalization
of this problem surprisingly shows that the best long-term cooperative strategy coincides with the seemingly short-
term ‘‘greedy’’ strategy of always choosing the next best single species. Other criteria influencing species choice, such
as medical relevance or sequencing costs, can also be accommodated in our approach, suggesting our results’ broad
relevance in scientific policy decisions.
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Introduction

Comparing biological sequences has enormous potential
for increasing our knowledge about their function, structure,
and evolution, an idea that has been applied virtually
everywhere in computational biology. Comparative studies
are now performed on a genomic scale, requiring the
sequencing of entire genomes [1,2] or significant parts of
them [3]. Choosing the right species for sequencing is
therefore crucial. This involves two distinct decisions: first a
range of species over which comparisons will be made is
identified, and then a number of them are selected for actual
sequencing. The first decision specifies what is known as the
phylogenetic scope [4] or lineal scope [5] and is made largely
on the basis of the biology the species are required to share.
Different research communities are focusing on different
scopes—for example, yeasts [6], nematodes [7], fruit flies [8],
mammals [9], and primates [10]—corresponding to the
investigation of functional elements of different biological
importance.

In this article, we deal with the second decision: selecting
the genomes to sequence from the chosen scope. Although
this decision is determined by a variety of factors [11], chief
among them is the objective of maximising the evolutionary
divergence among the chosen species: the more diverse the
genomes being compared, the more we can observe the
different paths taken by evolution and learn about the
features common to all species in the phylogenetic scope.
Maximising evolutionary divergence has, for example, been
advocated as a way to attain maximum sensitivity in the
detection of conserved genomic regions [3,12]—regions that
accumulate substitutions at a rate significantly lower than the
genome-wide average. These regions are likely to be func-
tional, as the simplest explanation for this phenomenon is the
action of purifying selection (for example, see [1,3,10]), and
the characterisation of non-coding conserved regions is of
particular interest because their function remains unclear
[9,13]. Although a maximally divergent set of species does not
necessarily guarantee maximum statistical power for detect-
ing evolutionary conservation [5], it is probably advantageous
for all practical phylogenetic scopes: counterexamples are

likely to arise only for (evolutionarily) very wide phylogenetic
scopes, which are unrealistic in practice due to the resulting
difficulty of alignment [12] and the pooling of species with
different biologies.
Formalizing the problem of selecting species to maximise

divergence is straightforward. Consider a phylogenetic tree
connecting all the species in the chosen scope, with branch
lengths representing the amount of molecular evolution
between nodes in the tree. The divergence of a set of species
is defined as the total branch length of the subtree connecting
them (Figure 1A). The problem then becomes: given that we
have already sequenced some species, and now have resources
to sequence k additional species, which should we choose in
order to maximise the divergence of the resulting set?
In what follows, we give a simple algorithm which we prove

solves this problem. We also consider, and answer, the novel
question of whether different sequencing actors (groups,
institutes, consortia) need to cooperate when choosing
genomes: does lack of coordination and planning lead to
‘‘suboptimal’’ choices of genomes? While this paper assumes
that optimality coincides with maximum divergence, as
defined above, our results also hold for many more general
species choice criteria (see Materials and Methods for details).

Results/Discussion

Imagine adopting the following ‘‘greedy’’ algorithm for the
divergence maximisation problem: repeatedly select one
species that adds the most divergence to the previously
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chosen ones, until k species have been added. A greedy
strategy might be suspected of ‘‘short-sightedness,’’ i.e.,
leading to suboptimal solutions. We can imagine realising
that a better solution could have been devised if we had
considered the problem of choosing all k species at once.
Perhaps surprisingly, this cannot happen. Whatever alter-
native strategy we devise, no better solution than that
provided by the greedy algorithm is obtained. This proposi-
tion is exemplified in Figure 1A and formally proven in
Materials and Methods. Note that even when the set of species
previously sequenced was not optimal, the greedy algorithm
guarantees the best possible subsequent extension.

Greedy algorithms are well known in computer science and
often fail to guarantee optimal solutions [14]. Our result is
not only of algorithmic interest, but has consequences for
real-life strategies for genome sequencing. Figure 1B shows
an imaginary scenario (perhaps not too far from reality) in
which the genomes of a number of placental mammals have
already been sequenced, and others are candidates for future
sequencing. Imagine that a number of groups each have the
resources to sequence one more mammal. How should they
behave in order to ensure that a maximally divergent set of
species is obtained? Is some sort of cooperation necessary?

Clearly, openness regarding each group’s decision is
necessary, since if one decides to sequence, say, the cat, the
others must avoid sequencing this or any other closely related
feline. Similarly, within the framework of maximising
divergence, the real-life choice to sequence the rat [2] just
after the mouse [1] was far from optimal. But apart from
communicating their intentions, is real cooperation among
the groups necessary? Applying the result described above, it
is apparent that the answer is no. If every group selfishly
(‘‘greedily’’) decides to sequence the genome that at the
moment of choice is the most ‘‘appealing’’—i.e., adds the
most divergence to the set of species already sequenced or
previously chosen by the other groups—then the best possible
outcome is guaranteed. Another practical consequence of the
optimality of the greedy algorithm is that no planning is
needed, either. Specifically, no consideration of next (or any
future) year’s resources is necessary when determining
priorities for this year’s expenditure.

The greedy algorithm also guarantees an optimal solution
even when other criteria for evaluating species’ impor-
tance—not only divergence—are taken into account: for
example, proximity to a particularly interesting species

Figure 1. Phylogenetic Scopes and Divergence of Sets of Species

(A) Phylogenetic scope comprising hypothetical species A, B, C, D, and E.
Numbers are branch lengths indicating evolutionary distances (not
necessarily reflecting temporal distances). The subtree connecting
species B, C, and E is shown in red and has divergence 1 þ 3 þ 1 þ 5
þ 2þ 4¼ 16. Applying the greedy algorithm always produces maximally
divergent extensions of the original set. For example, the subsets
constructed starting with B—BE (divergence 11), BCE (16), BCDE (19)—
have maximum divergence among those obtainable by adding one, two,
and three additional species, respectively. The series AE (12), ACE (17),
ACDE (20) is optimal among all possible subsets of two, three, and four
species.
(B) Phylogenetic scope comprising placental mammals that have been or
are being sequenced (in red) and candidates for future sequencing
(derived from [17]). If five groups choose the next five targets for
sequencing using the greedy strategy described in the text, the
following species (in blue) will be selected (in order): (1) tenrec, (2)
hedgehog, (3) rock hyrax, (4) tree shrew, (5) dog-faced fruit bat (a
megabat). Within the phylogenetic scope shown, this is guaranteed to
be the choice of five species that maximises the total resulting
divergence. These species have recently been announced amongst
targets for future sequencing [9].
DOI: 10.1371/journal.pgen.0010071.g001
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Synopsis

What would happen if sequencing centres around the world were to
choose genomes without consulting each other and without
devising long-term strategies? When several parties are involved
in decisions with interacting consequences, experience teaches that
cooperation and planning are usually necessary to guarantee the
best result. Similarly, in computer science, ‘‘greedy’’ algorithms—
which construct solutions by iteratively taking the best immediate
choice—are rarely the best option to solve a problem. The authors
show, however, that in the context of choosing species for
comparative genomics, cooperation and planning can be kept to
a minimum without affecting the quality of the global result: a
greedy algorithm applied to the problem of maximising the
evolutionary divergence among species chosen from a known
phylogeny is proven to guarantee optimal solutions.



(such as human), genome size, knowledge of the species’
biology, or amenability to laboratory research [11] (see
Materials and Methods for further discussion). Because of
this flexibility, the optimality of the greedy strategy also
applies in choosing species for purposes outside compara-
tive genomics: clearly, for genome sequencing tout-court
(even when comparison is not the first use of the genome
sequence) and, interestingly, for biodiversity conservation
[15,16], where divergence maximisation is also considered an
important objective.

If genome (or conservation) scientists follow a seemingly
short-term strategy—involving neither planning nor cooper-
ation in the choice of future genomes for sequencing (or
species for conservation)—then, provided they are open about
their choices, they are guaranteed the best long-term strategy.

Materials and Methods

Correctness of the greedy algorithm. A result related to ours has
been independently obtained by Steel [16], whose study concentrated
on its relevance in biodiversity conservation. Steel proves that the
application of the greedy algorithm on a maximally divergent set of
species always results in other, larger, maximally divergent sets of
species. Here, we additionally prove that applying the greedy
algorithm to an initial set that is not maximally divergent results in
optimal extensions of the initial set.

The idea of the proof is the following. We first prove (Theorem 1;
see below) that applying a greedy choice to further extend an already
optimally extended set of species always results in another optimally
extended set of species. Since the first step of the greedy algorithm
necessarily results in an optimally extended set, subsequent steps will
construct only other optimally extended sets (Corollary 1; see below).
The greedy algorithm can therefore be used to construct optimal
extensions of any desired size.

Notation. TS is a tree connecting the species in set S (coinciding
with its leaves). Branches in TS are assumed to have non-negative
lengths. Letters I, X, and Y will always denote subsets of S; k is a non-
negative integer.

Definitions. The tree spanning X, denoted by TX, is the smallest
subtree of TS connecting all the species in X. A path is a sequence of
adjacent branches in TS. The terminal path of TX leading to x (in X), is
the path from TX�fxg to x. The divergence of X, denoted by d(X), is the
sum of all the branch lengths in TX. Y is a k-extension of X if Y can be
obtained by adding to X k species not in X. X is a maximally divergent
k-extension (k-MDE) of I if (a) X is a k-extension of I, and (b) for every
k-extension Y of I, d(Y) � d(X). We call a 1-MDE of X a greedy
extension of X and denote it by Xþ. Note that Xþ need not be unique,
but any Xþ will satisfy the theorem below. We will also say that Xþ is
obtained from X through a greedy step.

We now prove that the application of a greedy step to a maximally
divergent extension (X) of an initial set (I) necessarily results in
another maximally divergent extension (Xþ). Informally, we show that

however any extension (Y) with the same size as Xþ is constructed, a set
that is at least as divergent as Y can be obtained from X by adding one
species in Y to X. Therefore the greedy step, which can add any species
to X—not only those in Y—will necessarily lead to a total divergence
in Xþ that is at least as great as that in Y. Xþ therefore has maximum
divergence among all its equally sized extensions of the initial set.

Theorem 1. Consider sets I and X, where X is a k-MDE of I, and
2 � jXj , jSj. Then Xþ is a (k þ 1)-MDE of I.

Proof. Let Y be any (k þ 1)-extension of I. By the lemma below,
there exists at least one terminal path of TY, leading to a leaf x not in
X (and therefore not in I), which is completely contained in the path
from TX to x (see Figure 2). Then

dðY� fxgÞ � dðXÞ; ð1Þ

as X is a k-MDE of I, and

length of the path from TY�fxg to x � length of the path from TX to x,

as the second path contains the first. Thus,

dðYÞ � dðX [ fxgÞ ð2Þ

by summing the terms above. But

dðX [ fxgÞ � dðXþÞ ð3Þ

by the definition of Xþ. Therefore,

dðYÞ � dðX þÞ: ð4Þ

Since the last inequality holds for any (kþ 1)-extension Y of I, Xþ is
a (k þ 1)-MDE of I.

Observation. Theorem 1 claims that the greedy extension of any k-
MDE is a (k þ 1)-MDE, assuming that the k-MDE has at least two
species. This assumption ensures that either I is nonempty or k 6¼ 1. In
fact, if we have both I empty and k¼1, the theorem is not true: in this
case, any 1-extension X of the empty set has d(X)¼ 0 and is maximal.
However, not every Xþ will be maximal.

Corollary 1. Let I be non-empty. The iterated application of any
number k of greedy steps to I (i.e., the greedy algorithm) results in a k-
MDE of I.

Proof. By induction: one greedy step results in the 1-MDE of I; if h
� 1 greedy steps construct an h-MDE of I, then by Theorem 1 one
more step will construct an (h þ 1)-MDE of I.

Corollary 2. Let X be a maximally divergent set of h species (with h
� 2). Applying the greedy algorithm to X for k steps results in a
maximally divergent set of hþ k species.

Proof. Apply Theorem 1 with I empty, and observe that k-MDEs of
the empty set are maximally divergent sets of k species. It should be
noted that Corollary 2 has been proven directly by Steel [16].

Lemma. Suppose 2 � jXj , jYj. Then there exists a leaf x in Y�X
such that the path from TX to x completely contains the terminal path
of TY leading to x.

Proof. Suppose the contrary. Then, for all x in Y�X, either (A) TX
is contained in a subtree of TS that departs from the terminal path of
TY leading to x, or (B) TX overlaps with the terminal path of TY
leading to x (see Figure 3).

Both (A) and (B) imply the presence of one or more leaves of X in
one of the subtrees of TS that depart from the terminal path of TY
leading to x. Clearly, none of these leaves can be in Y. There is at least
one of these leaves (an element of X�Y) for each terminal path of TY
leading to a species x not in X. Since jYj . 2, all of these terminal
paths are distinct; therefore, there are exactly jY�Xj of them and at
least one leaf in X�Y for each of them, i.e., we have jX�Yj � jY�Xj.
But this is equivalent to jXj � jYj, which contradicts the lemma’s
assumptions.

Example. For the particular case jXj ¼ 2 and jYj ¼3, it is easy to see
that the lemma holds by looking at all six possible topologically
distinct cases, depicted in Figure 4.

Divergence maximisation can formalise other criteria for species
selection. Evolutionary divergence is not the only criterion guiding
the selection of species for sequencing [11]. The perfect example of
this comes from the decision to sequence both the mouse [1] and the
rat [2], which are evolutionarily relatively close. These species were
chosen because they are very well known model organisms, well suited
for experimental studies, and medically relevant. It is important to
note that preference towards the selection of particular species—for
whatever reason—can also be formalised using a divergence max-
imisation approach. If we extend the terminal branch leading to each
species by an amount reflecting that species’ estimated importance,
then application of our greedy algorithm to this modified tree leads
to an optimal compromise between maximising ‘‘real’’ evolutionary
divergence and including ‘‘preferred’’ species.

Figure 2. Representative Example for the Scenario Described in the Proof

of Theorem 1.

TX is depicted in blue and TY-fxg in green. Species (leaves) in Y are
represented by filled circles.
DOI: 10.1371/journal.pgen.0010071.g002
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What kind of criteria may one take into account? The mouse-rat
example already suggests some of these: deep knowledge of an
organism’s biology should be an advantage, as should its suitability for
experimental (genetic) studies. Furthermore, we might have an
intrinsic interest in one particular organism in the phylogenetic
scope, and therefore we will tend to select species that are closely
related to it, as these will probably share many of the genetic features
we are interested in. The typical example of this is the human, but in
almost every phylogenetic scope a ‘‘pivotal’’ species can be identified,
usually a traditional model organism. The pivotal species need not be
extant: one could be interested in an extinct organism, for example in
reconstructing ancestral sequences or genome structure [18].
Scientific reasons are not the only ones playing a role; as in every
human activity, economic interests have a crucial impact, and we
expect many plant and animal genomes to be selected for sequencing
on the basis of potential applications in biotechnology. Finally, one
should not underestimate the importance of sequencing costs, which
clearly favour species with small genome sizes.

Once these criteria are somehow quantified—which is easy at least
for sequencing costs or evolutionary proximity to a pivotal species—
and some idea of their relative importance defined, then we can
calculate for each species a ‘‘preference score’’ proportional to the
weighted average of that species’ scores under the various criteria. We
can then extend each species’ terminal branch by its preference
score. In practice, it may not be possible to quantify these criteria or
relative weights in a generally accepted manner. Nevertheless, we can
imagine that some tree modified in this way could account for the
evaluation of what is ‘‘appealing’’ in reality being influenced by more
than simply evolutionary divergence. Then greedy behaviour of

sequencing groups—always choosing the currently most ‘‘appealing’’
species—coincides with the greedy algorithm applied to this tree, and
our result provides reassurance that such behaviour will lead to an
optimal solution with respect to real-life evaluations.

Note that here we assumed that it is possible to formalise the
sequencing ‘‘value’’ of a set of species in the way described above, i.e.,
as the divergence of a suitably constructed tree. This is not true for all
conceivable criteria for evaluating species sets, but is true at least for
those that can be represented as per-lineage additive measures of
value. We believe that most real-life criteria for choice [11] fall into
this category.

Acknowledgments
We thank Mike Steel for helpful discussion at the Mathematics of
Evolution and Phylogeny Conference (2005) in Paris and for pointing
out the possibility of applying the greedy algorithm to more general
criteria of species importance. FP is a member of St. Catharine’s
College, University of Cambridge. This work was supported by the
European Molecular Biology Laboratory and by a Wellcome Trust
fellowship to NG.

Competing interests. The authors have declared that no competing
interests exist.

Author contributions. FP and NG conceived the study and wrote
the paper. FP derived the proof of correctness of the greedy
algorithm. &

References
1. International Mouse Genome Sequencing Consortium (2002) Initial

sequencing and comparative analysis of the mouse genome. Nature 420:
520–561.

2. Rat Genome Sequencing Consortium (2004) Genome sequence of the
brown Norway rat yields insights into mammalian evolution. Nature 428:
493–521.

3. Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-
Sternberg SM, et al. (2003) Comparative analyses of multi-species sequences
from targeted genomic regions. Nature 424: 788–793.

4. Cooper GM, Brudno M, Green ED, Batzoglou S, Sidow A (2003)
Quantitative estimates of sequence divergence for comparative analyses
of mammalian genomes. Genome Res 13: 813–820.

5. McAuliffe JD, Jordan MI, Pachter L (2005) Subtree power analysis and
species selection for comparative genomics. Proc Natl Acad Sci U S A 102:
7900–7905.

6. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing
and comparison of yeast species to identify genes and regulatory elements.
Nature 423: 241–254.

7. Stein LD, Bao ZR, Blasiar D, Blumenthal T, Brent MR, et al. (2003) The
genome sequence of Caenorhabditis briggsae: A platform for comparative
genomics. PLoS Biol 1: e5.

8. Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, et al. (2005)
Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal,
gene, and cis-element evolution. Genome Res 15: 1–18.

9. Margulies EH, Vinson JP, Miller W, Jaffe DB, Lindblad-Toh K, et al. (2005)

An initial strategy for the systematic identification of functional elements
in the human genome by low-redundancy comparative sequencing. Proc
Natl Acad Sci U S A 102: 4795–4800.

10. Boffelli D, McAuliffe J, Ovcharenko D, Lewis KD, Ovcharenko I, et al. (2003)
Phylogenetic shadowing of primate sequences to find functional regions of
the human genome. Science 299: 1391–1394.

11. O’Brien SJ, Eizirik E, Murphy WJ (2001) Genomics—On choosing
mammalian genomes for sequencing. Science 292: 2264–2266.

12. Eddy SR (2005) A model of the statistical power of comparative genome
sequence analysis. PLoS Biol 3: e10.

13. Bejerano G, Siepel A, Kent WJ, Haussler D (2005) Computational screening
of conserved genomic DNA in search of functional noncoding elements.
Nature Methods 2: 535–545.

14. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to
algorithms. Chapter 16. 2nd Edition. Cambridge (Massachusetts): MIT
Press. pp. 370–404.

15. Nee S, May RM (1997) Extinction and the loss of evolutionary history.
Science 278: 692–694.

16. Steel M (2005) Phylogenetic diversity and the greedy algorithm. Syst Biol
54: 527–529.

17. Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW, et al. (2001) Parallel
adaptive radiations in two major clades of placental mammals. Nature 409:
610–614.

18. Blanchette M, Green ED, Miller W, Haussler D (2004) Reconstructing large
regions of an ancestral mammalian genome in silico. Genome Res 14: 2412–
2423.

Figure 4. Topologically Distinct Phylogenetic Trees for Two Sets of

Species, X and Y, such that jXj ¼ 2 and jYj ¼ 3.

X and TX are depicted in dark blue, leaves in Y are denoted with circles,
and a possible choice for x (satisfying the requirements in the lemma),
with the path from TX to x, in light blue.
DOI: 10.1371/journal.pgen.0010071.g004

Figure 3. Representative Examples for Two Scenarios in the Proof of the

Lemma

In both examples, TX is in blue and TY-fxg in green, and species (leaves) in
Y are represented by filled circles. The two scenarios in the proof of the
lemma, A and B, are illustrated correspondingly in (A) and (B),
respectively.
DOI: 10.1371/journal.pgen.0010071.g003
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