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Abstract: Background: During the previous decade a new class of benzamide-based inhibitors of
2-trans enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis (Mt) with unusual
binding mode have emerged. Here we report in silico design and evaluation of novel benzamide
InhA-Mt inhibitors with favorable predicted pharmacokinetic profiles. Methods: By using in situ
modifications of the crystal structure of N-benzyl-4-((heteroaryl)methyl) benzamide (BHMB)-InhA
complex (PDB entry 4QXM), 3D models of InhA-BHMBx complexes were prepared for a training
set of 19 BHMBs with experimentally determined inhibitory potencies (half-maximal inhibitory
concentrations IC50exp). In the search for active conformation of the BHMB1-19, linear QSAR
model was prepared, which correlated computed gas phase enthalpies of formation (∆∆HMM)
of InhA-BHMBx complexes with the IC50exp. Further, taking into account the solvent effect and
entropy changes upon ligand, binding resulted in a superior QSAR model correlating computed
complexation Gibbs free energies (∆∆Gcom). The successive pharmacophore model (PH4) generated
from the active conformations of BHMBs served as a virtual screening tool of novel analogs included
in a virtual combinatorial library (VCL) of compounds containing benzamide scaffolds. The VCL
filtered by Lipinski’s rule-of-five was screened by the PH4 model to identify new BHMB analogs.
Results: Gas phase QSAR model: −log10(IC50

exp) = pIC50
exp = −0.2465 × ∆∆HMM + 7.95503, R2 = 0.94;

superior aqueous phase QSAR model: pIC50
exp = −0.2370 × ∆∆Gcom + 7.8783, R2 = 0.97 and PH4

pharmacophore model: pIC50
exp = 1.0013 × pIC50

exp
− 0.0085, R2 = 0.95. The VCL of more than 114
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thousand BHMBs was filtered down to 73,565 analogs Lipinski’s rule. The five-point PH4 screening
retained 90 new and potent BHMBs with predicted inhibitory potencies IC50

pre up to 65 times
lower than that of BHMB1 (IC50

exp = 20 nM). Predicted pharmacokinetic profile of the new analogs
showed enhanced cell membrane permeability and high human oral absorption compared to current
anti-tuberculotics. Conclusions: Combined use of QSAR models that considered binding of the
BHMBs to InhA, pharmacophore model, and ADME properties helped to recognize bound active
conformation of the benzamide inhibitors, permitted in silico screening of VCL of compounds sharing
benzamide scaffold and identification of new analogs with predicted high inhibitory potencies and
favorable pharmacokinetic profiles.

Keywords: Tuberculosis; N-benzyl-4-((heteroaryl)methyl)benzamides; 2-trans enoyl-acyl carrier
protein reductase; molecular modeling; QSAR models; pharmacophore; combinatorial library; in silico
screening; ADME properties prediction

1. Introduction

“United to end tuberculosis: an urgent global response to a global epidemic” is the title of the declaration
adopted by the UN General Assembly on the fight against tuberculosis (TB), which reaffirmed
the commitment to end the tuberculosis epidemic globally by 2030 [1]. The General Assembly
acknowledged that the Millennium Development Goals [2] and associated strategies helped to reverse
the trend of the tuberculosis epidemic and until 2016 reduced the tuberculosis mortality by 37%.
Nonetheless, the current WHO year report [3,4] revealed alarming statistics showing that throughout
the world about 3 TB deaths occurred and about 19 persons developed TB every minute. On the other
hand, drug development against Mycobacterium tuberculosis (Mt), despite the increased occurrence
of multiple drug resistant (MDR-TB) and extensively drug resistant (XDR-TB) strains, has reached a
noticeable progress on inhibitor design against 2-trans enoyl-acyl carrier protein reductase (InhA), the
most frequently addressed validated mycobacterial drug target. The division of the InhA substrate
binding site into three structural subsites (site I, catalytic; site II, hydrophobic; site III, hydrophilic)
and the determination of the catalytic residue Tyr158 conformation (‘in’ or ‘out’), have paved the
way for the improvement in structure-based design and development of novel InhA inhibitors [5].
Another important observation is connected with the presence of a previously unnoticed interaction
pocket formed by the side chains of Phe41 and Arg43 at the InhA active site displaying Tyr158 ‘out’
conformation [6]. Promising drug candidates, which target the isoniazid-resistant Mt, are direct InhA
inhibitors that do not require KatG (Mycobacterium tuberculosis catalase-peroxidase) activation [7].
Recent useful structural information involving key binding site residues identified by site-directed
mutations of the InhA gene revealed that these residues (except Ser94 and Tyr158) interact with the
ligand mostly through hydrophobic contacts [8]. The long list of known InhA inhibitors may be divided
into, on the one hand, class 1 scaffolds: triclosan derivatives (TCL) [9], diphenyl ether [10,11], pyrrolidine
carboxamide (PCAM) [12], and aryl amide derivatives [13] with Tyr158 ‘in’ conformation and typical
stacking interaction with the Phe97 residue. On the other hand, class 2 scaffolds include methyl-thiazole
derivatives [5], pyrazoles [14], benzamides [15] with Tyr158 ‘out’ conformation and interaction with
the Phe41 and Arg43 pocket instead of the stacking with Phe97. The 3D-QSAR pharmacophores (PH4)
for InhA inhibition are available for class 1 TCL and PCAM inhibitors only [16,17] but not for the class
2 compounds. Figure 1A,B show various numbers of hydrophobic features (HYD) for the PH4 of TCL
and PCAM. The third HYD feature of TCL PH4 suggests that a bulky group can fill large hydrophobic
pocket (LHP, site II) delimited by residues Met155, Pro193, Ile215, Leu217, Leu218, and Trp222 as
a major structural requirement for efficient InhA inhibition [18]. Indeed, the best substitutions on
candidates with the Triclosan scaffold direct a nonpolar group containing an ethyl linker capped by
phenyl (IC50

exp = 21 nM) or pentyl group (IC50
exp = 11 nM with removal of all Cl atoms) to this LHP.
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The preliminary ‘interaction generation’ analysis of the InhA active site with no ligand bound (PDB:
4DRE, Figure 1C) revealed at least four HYD features, two of them located in the LHP. Structure–activity
relationships involving interactions of 3D pharmacophore have been previously reported for HIV-1
inhibition, genetic disorders treatment, or proton pump inhibition [19–21].
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Figure 1. (A) 3D-QSAR pharmacophore model (PH4) for triclosan (TCL) derivatives displaying 3
HYD (cyan) features and the mapping of the most active analog synthesized (IC50 = 21 nM [16],
PDB: 3FNH [21], five key interactions with InhA: HB—Tyr158, π–π—NAD and hydrophobic contacts).
(B) PH4 for pyrrolidine carboxamide (PCAM) derivatives displaying 2 HYD (light blue) and the mapping
of the most active derivative synthesized (IC50 = 390 nM [17], PDB: 4U0J [12], main interactions with
InhA: HB—Tyr158, HB—NAD). (C) PH4 for the active site of InhA, depicted in ribbon, (PDB: 4DRE [22])
with one acceptor in green color, one donor in purple color, and 4 HYD features (cyan), for clarity the
acceptor and donor spheres were removed. The LHP is enclosed by 2 residues in yellow color and
labeled in green surrounding two HYDs.

The main objective of this work was to design novel potent N-benzyl-4-((heteroaryl)methyl)
benzamides (BHMBs) based on a series of 19 (training set) plus 6 (validation set) nanomolar
inhibitors with observed inhibitory potencies as low as IC50

exp = 20 nM [23]. Starting with in
situ modification of the crystal structure of InhA-BHMB2 complex (PDB: 4QXM), we have elaborated
a QSAR model which correlated Gibbs free energies of InhA-BHMBx complex formation with the
potencies IC50

exp and determined the active conformation of BHMBs bound at the active site of InhA of
Mt (MM-PB complexation approach). Based on this active conformation we have formulated 3D QSAR
pharmacophore of InhA inhibition (PH4). Large virtual library of compounds sharing the BHMB
scaffold has been generated and in silico screened with the PH4. The screening yielded virtual hits that
exhibited predicted inhibitory potencies IC50

pre more than 60 times lower than the most active training
set compound BHMB1. Several of the identified putative inhibitors displayed favorable ADME profiles.
Moreover, a series of drugs currently used in clinical practice, which include the benzamide scaffold in
their molecular structure, were assessed with our new PH4 for InhA inhibition. Top five approved
drugs identified by the PH4 screening exhibited predicted potencies IC50

pre ranging from 1.7 to 60 nM.
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2. Results

2.1. Training and Validation Sets

The training set of 19 BHMBs and validation set of another 6 analogs (Table 1) were selected from
a homogeneous series of InhA inhibitors with known experimentally determined inhibitory activities
originating from a single laboratory [23]. The whole series was obtained by variations at two positions
R1 and R2 of the phenyl ring and amide group as shown in Table 1. The experimental half-maximal
inhibitory concentrations (20 ≤ IC50

exp
≤ 5930 nM) [23] cover a sufficiently wide concentration range

for building of a reliable QSAR model. The ratio between the sizes of training and validation sets
remains a critical point of correct classification but is limited by the count of the set of homologous
compounds available from the literature [24].

Table 1. Set (BHBM1-19) and validation set (BHBV1-6) of InhA inhibitors [23] used in the preparation
of QSAR models of inhibitor binding. The R1 and R2 groups are numbered in the first part of the Table
as #R ≡ group index.
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2.2. QSAR Model

2.2.1. One Descriptor QSAR Models

Each of the 19 training sets (TS) and 6 validation sets (VS) InhA-BHMBx complexes (Table 1), was
prepared by in situ modification of the refined template crystal structure (PDB entry code 4QXM [23])
of the complex InhA-BHMB2 as described in the Methods section. Further, the relative Gibbs free
energy of the InhA-BHMBx complex formation (∆∆Gcom) was computed for each of the 25 optimized
enzyme–inhibitor complexes. Table 2 lists computed values of ∆∆Gcom and its components as defined
in Equation (7), for the TS and VS of benzamides [23]. The QSAR model explained variation in
the BHMBs experimental inhibitory potencies (pIC50

exp = −log10(IC50
exp) [23]) by correlating it with

computed GFE ∆∆Gcom through linear regression (Equation (8), Table 2). In addition, significant
correlation obtained in this QSAR relationship permitted to determine the active bound conformation
of the BHMBs at the InhA binding site and enabled definition of the PH4 pharmacophore. In search for
a better insight into the binding affinity of BHBMs towards MtInhA, we have analyzed the enthalpy
of complexation in gas phase ∆∆HMM by correlating it with the pIC50

exp. The validity of this linear
correlation (for statistical data of the regression see Table 3, Equation A) allowed assessment of the
significance of inhibitor-enzyme interactions (∆∆HMM) when solvent effect and loss of entropy of
the inhibitor upon binding to the enzyme were neglected. This correlation explained about 94%
of the pIC50

exp data variation and underlined the role of the enthalpic contribution to the binding
affinity of the ligand. Similarly, the more advanced descriptor, namely the GFE of the InhA-BHMBx
complex formation including all components: ∆∆HMM, ∆∆TSvib and ∆∆Gsol, has been assessed
(for statistical data see Table 3, Equation B). Relatively high values of the regression coefficient R2,
leave-one-out cross-validated regression coefficient R2

xv and Fischer F-test of the correlation suggest
strong relationship between the 3D model of inhibitor binding and the observed inhibitory potencies
of the BHBMs [23]. Therefore, structural information derived from the 3D models of InhA-BHMBx
complexes can be expected to lead to reliable prediction of InhA inhibitory potencies for new BHMBs
analogs based on the QSAR model B, Table 3.

Table 2. Gibbs free energy (binding affinity) and its components for the training set of InhA inhibitors
BHMB1-19 and validation set inhibitors BHMV1-6 [23].

Training Set a Mw
b ∆∆HMM

c ∆∆Gsol
d ∆∆TSvib

e ∆∆Gcom
f IC50

exp g

[g·mol−1] [kcal·mol−1] [kcal·mol−1] [kcal·mol−1] [kcal·mol−1] [nM]

BHMB1 385 0 0 0 0 20
BHMB2 372 3.14 −1.75 −0.51 1.90 50
BHMB3 369 2.99 −0.56 −0.33 2.76 50
BHMB4 387 3.01 −3.09 −2.50 2.41 60
BHMB5 487 4.31 −5.38 −3.96 2.89 80
BHMB6 488 4.70 −1.02 −0.30 3.98 90
BHMB7 377 4.24 −3.22 −3.45 4.47 90
BHMB8 391 4.66 −0.01 −0.46 5.11 120
BHMB9 405 4.77 0.64 0.18 5.23 250

BHMB10 401 4.63 0.33 −0.62 5.58 260
BHMB11 369 6.31 1.59 1.58 6.32 350
BHMB12 358 7.61 −1.80 −1.63 7.45 500
BHMB13 398 7.06 0.29 0.65 6.70 540
BHMB14 389 7.62 −1.31 −2.20 8.51 1400
BHMB15 398 8.81 0.77 1.00 8.57 1580
BHMB16 354 8.26 1.50 1.04 8.72 1580
BHMB17 364 8.54 2.95 1.94 9.55 2510
BHMB18 337 9.26 1.80 2.01 9.05 3100
BHMB19 319 11.72 1.81 2.84 10.69 5930
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Table 2. Cont.

Validation Set
Mw

b ∆∆HMM
c ∆∆Gsol

d ∆∆TSvib
e ∆∆Gcom

f pIC50
pre/

pIC50
exp h

[g·mol−1] [kcal·mol−1] [kcal·mol−1] [kcal·mol−1] [kcal·mol−1]

BHMV1 375 2.41 −2.49 −2.95 2.87 0.99
BHMV2 416 4.58 0.32 1.45 3.44 1.00
BHMV3 386 4.61 4.53 2.47 6.67 0.97
BHMV4 354 8.63 1.49 2.12 8.01 1.01
BHMV5 377 8.47 0.47 0.77 8.17 1.02
BHMV6 361 8.20 0.48 −2.62 11.29 0.95
a for the chemical structures of the training set of inhibitors see Table 1; b Mw is the molar mass of inhibitors;
c ∆∆HMM is the relative enthalpic contribution to the GFE change related to E-I complex formation derived by MM;
∆∆HMM ≈ [EMM{E-Ix} − EMM{Ix}] − [EMM{E-Iref} − EMM{Iref}], Iref is the reference inhibitor BHMB1; d ∆∆Gsol is the
relative solvent effect contribution to the GFE change of E-I complex formation: ∆∆Gsol = [Gsol{E-Ix} − Gsol{Ix}] −
[Gsol{E-Iref} − Gsol{Iref}]; e

−∆∆TSvib is the relative entropic contribution of inhibitor Ix to the GFE of E-Ix complex
formation: ∆∆TSvib = [TSvib{Ix}E − TSvib{Ix}] − [TSvib{Iref}E − TSvib{Iref}]; f ∆∆Gcom is the overall relative GFE change
of E-Ix complex formation: ∆∆Gcom ≈ ∆∆HMM + ∆∆Gsol − ∆∆TSvib; g IC50

exp is the experimental half-maximal
inhibition concentration of InhA obtained from ref. [23]; h ratio of predicted and experimental half-maximal
inhibition concentrations pIC50

pre/pIC50
exp (pIC50

pre = −log10IC50
pre) was predicted from computed ∆∆Gcom using

the regression equation for InhA shown in Table 3, B.

Table 3. Analysis of computed binding affinities ∆∆Gcom, its enthalpic component ∆∆HMM, and
experimental half-maximal inhibitory concentrations pIC50

exp = −log10IC50
exp of BHMBs towards

MtInhA [23].

Statistical Data of Linear Regression (A) (B)

pIC50
exp = −0.2465 × ∆∆HMM + 7.9554 (A)

pIC50
exp = −0.2370 × ∆∆Gcom + 7.8783 (B)

Number of compounds n 19 19
Squared correlation coefficient of regression R2 0.94 0.97

LOO cross-validated squared correlation coefficient R2
xv 0.92 0.95

Standard error of regression σ 0.178 0.135
Statistical significance of regression, Fisher F-test 274.92 493.24

Level of statistical significance α >95 % >95 %
Range of activities IC50

exp [nM] 20–5930

The statistical data confirmed validity of the correlation Equations (A) and (B) plotted on Figure 2.
The ratio pIC50

pre/pIC50
exp � 1 (the pIC50

pre values were estimated using correlation Equation B,
Table 3) calculated for the validation set BHMV1-6 documents the substantial predictive power of the
complexation QSAR model from Table 2. Thus, the regression Equation B (Table 3) and computed
∆∆Gcom GFEs can be used for prediction of inhibitory potencies IC50

pre against MtInhA for novel
BHMB analogs, provided they share the same binding mode as the training set benzamides BHMB1-19.
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Figure 2. (Left) plot of correlation equation between pIC50
exp and relative enthalpic contribution to

the GFE (Equation (6)) ∆∆HMM [kcal·mol−1]. (Right) similar plot for relative complexation Gibbs
free energies of the InhA-BHMBx complex formation ∆∆Gcom [kcal·mol−1] of the training set [23].
The validation set data points are shown in red color.
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2.2.2. Binding Mode of BHMBs

Structural information enzyme–inhibitor interactions retrieved from the crystal structure of
InhA-BHMB1 complex [23] showed that BHMBs are InhA class 2 specific inhibitors. As indicated in
Figure 3, in the catalytic site I residue Tyr158 adopted the ‘out’ conformation [5]; the pyridine moiety
of the ligand (referred to as the “warhead” [6]) is in π–alkyl contact with Tyr158 and nicotinamide ring
and π–donor with the hydroxyl group adjacent to the ribose of NADH. The central benzene ring of
the inhibitor forms a recently observed π–π stacking interaction with Phe97 [6]. In the hydrophobic
site II, the dihalide-substituted benzene ring sits in the hydrophobic substrate cavity, surrounded
by side chains of predominantly nonpolar residues: Met103, Met98, Ile202, Leu207, Gly104, Phe149,
Ala157, Tyr158, and Ile215 [6,23]. In the hydrophilic site III, the inhibitor makes hydrogen bonds with
the sidechain of catalytic Met98, a key interaction reported recently [6]. These specific contacts were
observed for the novel class of InhA inhibitors except the interaction with the “Phe41–Arg43” pocket
previously unreported before Soutter et al. [6] and which will be discussed later.
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Figure 3. (Left) 2D schematic interaction diagram of the most potent inhibitor BHMB1 [23] at the active
site of InhA of Mt. (Right) 3D structure of the InhA active site with bound inhibitor BHMB1. (Bottom)
Hydrophobic surface of the active site of InhA showing conventional hydrogen bonds (green) and alkyl
group hydrophobic contacts (pink). Surface coloring legend: red = hydrophobic, blue = hydrophilic
and white = intermediate.

2.3. Interaction Energy

Other key structural information was provided by the interaction energy (IE, ∆Eint) diagram
obtained for each training set inhibitor. IE breakdown to contributions from InhA active site residue is
helpful for the choice of relevant R1-groups (site I) and R2-groups (site II) which could improve the
binding affinity of BHMB analogs to the MtInhA and subsequently enhance the inhibitory potency.
A comparative analysis of computed IE for training set BHMBs (Figure 4) divided into three classes
(highest, moderate, and lowest activity) has been carried out to identify the residues for which the
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contribution to binding affinity could be increased. However, the comparative analysis showed about
the same level of IE contributions from active site residues for all three classes of inhibitors. Therefore,
no suggestions of suitable substitutions able to improve the binding affinity as we previously reported
for thymine-like inhibitors of Mt thymidine monophosphate kinase design could be proposed [25].
Since specific substitutions could not be proposed, we have adopted a combinatorial approach to novel
BHMB analogs design and in silico screened a virtual library of 114921 BHMB analogs with help of the
PH4 pharmacophore of InhA inhibition derived from the complexation QSAR model. As we can see
from the IE analysis (Figure 4), the TS and VS benzamides [23] do not show significant interaction
energies with the “Phe41–Arg43” pocket.
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Figure 4. Mechanics intermolecular interaction energy Eint breakdown to residue contributions in
[kcal.mol−1]: (A) the most active inhibitors BHMB1-7, (B) moderately active inhibitors BHMB8-13,
(C) less active inhibitors BHMB14-19, Table 2 [23].

2.4. 3D-QSAR Pharmacophore Model

2.3.1. InhA Active Site Pharmacophore

The interaction generation protocol in Discovery Studio molecular modeling program [26]
provides the pharmacophore features of the active site of a protein. InhA predominantly displays
hydrophobic features at the active site (Figure 1C) as confirmed by previously reported works [16,17],
the larger being the site II hydrophobic pocket that accommodates the substrate long alkyl chains.
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InhA substrate-competitive inhibitors design often exploits the pocket flexibility because of the high
mobility of the Tyr158, Phe149 side chains and the substrate-binding loop (Thr196–Gly208) [27].

2.3.2. Generation and Validation of 3D-QSAR Pharmacophore

InhA inhibition 3D-QSAR pharmacophore was generated from the active conformation of 19
TS BHMB1-19 and evaluated by 6 VS BHMV1-6 covering a large range of experimental activity
(20–5930 nM) spanning more than two orders of magnitude. The generation process is divided into
three main steps: (i) the constructive step, (ii) the subtractive step, and (iii) the optimization step [26]
as described earlier [17]. During the constructive phase, BHMB1 alone was retained as the lead (since
only the activity of BHMB1 fulfilled the threshold criterion, IC50

exp
≤ 2 × 20 nM), and used to generate

the starting PH4 features. In the subtractive phase, compounds for which IC50
exp > 20 × 103.5 nM

= 63246 nM were considered inactive. Accordingly, none of the training set BHMBx was inactive
and no starting PH4 features were removed. Finally, during the optimization phase, the score of the
pharmacophoric hypotheses was improved. Hypotheses were scored according to errors in activity
estimates from regression and complexity via a simulated annealing approach. At the end of the
optimization, the top scoring 10 unique pharmacophore hypotheses were kept, all displaying five-point
features. The cost values, correlation coefficients, root-mean square deviation (RMSD) values, the
pharmacophore features, and the max-fit value of the top 10 ranked hypotheses (Hypo1−Hypo10) are
listed in Table 4. They were selected based on significant statistical parameters, such as high correlation
coefficient, low total cost, and low RMSD.

Table 4. Parameters of 10 generated PH4 pharmacophoric hypotheses for InhA inhibitor after
Cat-Scramble validation procedure (49 scrambled runs for each hypothesis at the selected level of
confidence of 98%).

Hypothesis RMSD a R2 b Total Costs c Costs Difference d Closest Random e

Hypo1 1.610 0.97 70.1 458.1 147.15
Hypo2 1.973 0.96 82.6 445.6 155.68
Hypo3 2.281 0.95 94.8 433.4 183.64
Hypo4 2.673 0.93 114.3 413.9 201.42
Hypo5 2.751 0.92 118.9 409.3 205.69
Hypo6 2.916 0.91 126.3 401.9 213.65
Hypo7 3.396 0.88 155.5 372.8 214.63
Hypo8 3.586 0.87 169.1 359.2 241.58
Hypo9 3.709 0.86 177.2 351.1 247.34

Hypo10 3.809 0.85 184.7 343.5 260.41
a root mean square deviation; b squared correlation coefficient; c overall cost parameter of the PH4 pharmacophore;
d cost difference between Null cost and hypothesis total cost; e lowest cost from 49 scrambled runs at a selected level
of confidence of 98%. The Fixed Cost = 45.4 with RMSD = 0, the Null Cost = 528.2 with RMSD = 7.215 and the
Configuration cost = 10.63.

The generated pharmacophore models were then assessed for their reliability based on the
calculated cost parameters ranging from 70.1 (Hypo1) to 184.7 (Hypo10). The relatively small gap
between the highest and lowest cost parameter corresponds well with the homogeneity of the generated
hypotheses and consistency of the TS of BHMBx. For this PH4 model, the fixed cost (45.4) is lower
than the null cost (528.2) by a difference ∆ = 482.8. This difference is a major quality indicator of the
PH4 predictability (∆ > 70 corresponds to an excellent chance or a probability higher than 90% that
the model represents a true correlation [26]). To be statistically significant, a hypothesis has to be as
close as possible to the fixed cost and as far as possible from the null cost. For the set of 10 hypotheses,
the difference ∆ ≥ 343.5, which attests to the high quality of the pharmacophore model. The standard
indicators such as the RMSD between the hypotheses ranged from 1.610 to 3.809, and the squared
correlation coefficient (R2) falls to an interval from 0.97 to 0.84. The first PH4 hypothesis with the
closest cost (70.1) to the fixed one (45.4) and best RMSD and R2 was retained for further analysis. The
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statistical data for the set of hypotheses (costs, RMSD, R2) are listed in Table 4. The configuration cost
(10.63 for all hypotheses) far below 17 confirms this pharmacophore as a reasonable one.

The link between the 98% significance and the number 49 scrambled runs of each hypothesis is
based on the formula S = [1 − (1 + X)/Y] × 100, with X the total number of hypotheses having a total
cost lower than the original hypothesis (Hypo 1) and Y the total number of HypoGen runs (initial +

random runs): X = 0 and Y = (1 + 49), hence 98% = {1 − [(1 + 0)/(49 + 1)]} × 100.
The evaluation of Hypo 1 was performed first through Fischer’s randomization cross-validation

test. The CatScramble program was used to randomize the experimental activities of the training
set. At 98% confidence level, each of the 49 scramble runs created ten valid hypotheses, using the
same features and parameters as in the generation of the original 10 pharmacophore hypotheses.
Among them, the cost value of Hypo1 is the lowest compared with those of the 49 randomly generated
hypotheses, as we can see in Table 4 where the lowest cost of the 49 random runs is listed for each
original hypothesis, and none of them was as predictive as the original hypotheses generated shown
in Table 4. Thus, there is a 98% probability that the best selected hypothesis Hypo1 represents a
pharmacophore model for inhibitory activity of BHMBs with a similar level of predictive power as
the complexation QSAR model, which relies on the BHMBx active conformation from 3D structures
of the InhA-BHMBx complexes and computed GFE of enzyme–inhibitor binding ∆∆Gcom. Another
evaluation of Hypo 1 is the mapping of the best active training set BHMB1 (Figure 5) displaying the
geometry of the Hypo1 pharmacophore of InhA inhibition. The regression equation for pIC50

exp vs.
pIC50

pre estimated from Hypo1: pIC50
exp = 1.0013 × pIC50

pre
− 0.0085 (n = 19, R2 = 0.95, Rxv

2 = 0.93,
F-test = 324.25, σ = 0.165, α > 98 %) is also plotted on Figure 5.
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Figure 5. Features (A) coordinates of centers, (B) angles between centers of pharmacophoric features,
(C) distances between centers, (D) mapping of pharmacophore of InhA inhibitor with the most potent
molecule BHMB1. The R1 position in the BHMBs of TS compounds is occupied by benzene ring (except
BHMB8), therefore the second HYD expected from the InhA active site PH4 (Figure 1C) is replaced by Ar
feature in BHMBs PH4. Feature legend: HYDA = Hydrophobic Aliphatic (blue), HYD = Hydrophobic
(cyan), Ar = Ring aromatic (orange), HBA = Hydrogen bond Acceptor (green). (E) correlation plot of
experimental vs. predicted inhibitory activity (open circles correspond to TS, red dots to VS).

We can carry out computational design and selection of new BHMB analogs with elevated inhibitory
potencies against MtInhA, based on a strategy using the noticeable presence of the hydrophobic features
included in the best pharmacophore model at the position of R2 coupled with mapping of R1 to the
aromatic ring feature and the appropriate ring substitution to the hydrophobic aliphatic feature in
Hypo1 (Figure 5).

2.4. Virtual Screnning

In silico screening of a virtual (combinatorial) library can lead to hit identification as it was shown
in our previous works on inhibitors design [17,28,29].

2.4.1. Virtual Library

An initial virtual library (VL) was generated by substitutions at positions for R1 and R2 (see Table 5)
on the benzamide scaffold. During the virtual library enumeration, all 339 R-groups listed in Table 5
were attached to in positions R1 and R2 of the BHMB scaffold to form a combinatorial library of the
size: R1 × R2 = 339 × 339 = 114,921 analogs. This initial diversity library was generated from building
blocks (chemicals) listed in the databases of available chemicals [30]. To design a more focused library
of a reduced size and increased content of drug-like molecules, we have introduced a set of filters and
penalties such as the Lipinski rule-of-five [31], which helped to select a smaller number of suitable
BHMBs that could be submitted to in silico screening. This focusing has reduced the size of the initial
library to 73,565 analogs, 64% of its original number size.
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Table 5. R1- and R2-groups (fragments, building blocks, substituents) used in the design of the initial diversity virtual combinatorial library of benzamides.
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4 1-F-Et 5 propyl 6 1-Brpropyl

7 Me-thiol 8 1-BrMe 9 1-ClEt

10 1-F-propyl 11 butyl 12 1-F-Me

13 1-BrEt 14 1-Clpropyl 15 1-F-butyl

16 1-Clbutyl 17 1-F-pentyl 18 hexyl

19 1-Brhexyl 20 isopentyl 21 6,6-diMeheptyl

22 6-diMe-heptyl 23 3,3-diMe-butyl 24 3-Mepentyl

25 6-Meoctyl 26 3-Etpentyl 27 Me-C3H5

28 Butyl-C3H5 29 Me-C4H7 30 Butyl-C4H7

31 Me-C5H9 32 Butyl-C5H9 33 Me-C6H11

34 Butyl-C6H11 35 cycloprop-2-en-1-yl 36 Thiophen-2-yl

37 Thiophen-3-yl 38 Furan-2-yl 39 5-Me-thiophen-2-yl

40 3,4,5-triMe-thiophen-2-yl 41 Thiophen-2-ylMe 42 furan-3-ylMe

43 3-Me-thiophen-2-yl 44 3,5-diMe-thiophen-2-yl 45 Furan-2-ylMe

46 2-(thiophen-2-yl)Et 47 4-Me-thiophen-2-yl 48 4,5-diMe-thiophen-2-yl

49 2-(furan-2-yl)Et 50 Thiophen-3-ylMe 51 Ph

52 4-ClPh 53 4-F-Ph 54 4-BrPh

55 p-tolyl 56 3-F-Ph 57 3-ClPh

58 3-BrPh 59 m-tolyl 60 2-F-Ph

61 2-ClPh 62 2-BrPh 63 o-tolyl

64 4-OHPh 65 4-MeOPh 66 4-OH-Bn

67 4-MeO-Bn 68 -Bn 69 4-F-Bn

70 4-Cl-Bn 71 4-Br-Bn 72 4-Me-Bn
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R-groups a

73 3,5-diMe-Bn 74 4-((1H-imidazol-2-yl)Me)-Bn 75 aminoMe

76 diClMe 77 2-(1H-imidazol-2-yl)Et 78 2-Clpropyl

79 3-Br-2-(thiazol-2-yl)propyl 80 (Furan-3-ylMe)thio 81 diBrMe

82 2-amino-2-ClEt 83 3,3-diBr-3-F-propyl 84 4-(pyridin-3-yl)butyl

85 F-Me-Cl 86 2-(1,3,4-thiadiazol-2-yl)Et 87 2-Br-2-(1,3,4-thiadiazol-2-yl)Et

88 1-Br-3-Clpropyl 89 4-(1H-imidazol-2-yl)butyl 90 4-Cl-3-OHbutyl

91 3-((F-Me)amino)propyl 92 4-OHhexyl 93 5-amino-6-Brhexyl

94 4-iodo-3-Mebutyl 95 3-(neopentylamino)propyl 96 5-(Meamino)pentyl

97 2-Me-3,3-diMebutyl 98 4-Cl-3-Mepentyl 99 6-aminooctyl

100 6-amino-3-Et-4-Meoctyl 101 cycloprop-2-en-1-ylMe 102 (4-Mecyclohexyl)Me

103 Me-cyclohexyl 104 Me-cyclopentyl 105 -Bn

106 4-Me-Bn 107 4-MeO-Bn 108 4-Et-Bn

109 4-Cl-Bn 110 4-F-Bn 111 4-(F-Me)-Bn

112 3,4-diF-Bn 113 3,5-diF-Bn 114 2-Cl-4-F-Bn

115 4-Cl-2-F-Bn 116 4-Br-5-Et-2-F-Bn 117 2-F-4-Me-Bn

118 2,6-diF-Bn 119 2,4-diF-Bn 120 2,4,6-triF-Bn

121 3-(CF3)pyridin-2-yl 122 2-(CF3)pyridin-3-yl 123 3-(CF3)pyridin-4-yl

124 3-Br-pyridin-2-yl 125 4-MeO-3-(CF3)pyridin-2-yl 126 4-(CF3)pyridin-3-yl

127 2-(CF3)Ph 128 Ph 129 EtO

130 2-(6-Et-3,6-dihydro-2H-pyran-2-yl)EtO 131 4-(5-F-1H-pyrazol-1-yl)Ph 132 4-(4-F-1H-pyrazol-1-yl)Ph

133 4-(3-F-1H-pyrazol-1-yl)Ph 134 4-(3,4-diF-1H-pyrazol-1-yl)Ph 135 4-(3,4,5-triF-1H-pyrazol-1-yl)Ph

136 4-(4,5-diF-1H-pyrazol-1-yl)Ph 137 4-(3,5-diF-1H-pyrazol-1-yl)Ph 138 4-(3-Br-1H-pyrazol-1-yl)Ph

139 4-(4-Br-1H-pyrazol-1-yl)Ph 140 4-(5-Br-1H-pyrazol-1-yl)Ph 141 4-(4,5-diBr-1H-pyrazol-1-yl)Ph

142 4-(3,4-diBr-1H-pyrazol-1-yl)Ph 143 4-(3,5-diBr-1H-pyrazol-1-yl)Ph 144 4-(3,4,5-triBr-1H-pyrazol-1-yl)Ph

145 4-(5-Me-1H-pyrazol-1-yl)Ph 146 4-(4-Me-1H-pyrazol-1-yl)Ph 147 4-(3-Me-1H-pyrazol-1-yl)Ph

148 4-(3,4-diMe-1H-pyrazol-1-yl)Ph 149 4-(4,5-diMe-1H-pyrazol-1-yl)Ph 150 4-(3,5-diMe-1H-pyrazol-1-yl)Ph

151 4-(3,4,5-triMe-1H-pyrazol-1-yl)Ph 152 4-(3-iodo-1H-pyrazol-1-yl)Ph 153 4-(4-iodo-1H-pyrazol-1-yl)Ph
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R-groups a

154 4-(5-iodo-1H-pyrazol-1-yl)Ph 155 4-(4,5-diI-1H-pyrazol-1-yl)Ph 156 4-(3,4-diI-1H-pyrazol-1-yl)Ph

157 4-(3,4,5-triiodo-1H-pyrazol-1-yl)Ph 158 4-(3,5-diI-1H-pyrazol-1-yl)Ph 159 4-(3-Cl-1H-pyrazol-1-yl)Ph

160 4-(4-Cl-1H-pyrazol-1-yl)Ph 161 4-(5-Cl-1H-pyrazol-1-yl)Ph 162 4-(4,5-diCl-1H-pyrazol-1-yl)Ph

163 4-(3,5-diCl-1H-pyrazol-1-yl)Ph 164 4-(3,4-diCl-1H-pyrazol-1-yl)Ph 165 4-(3,4,5-triCl-1H-pyrazol-1-yl)Ph

166 4-(3-amino-1H-pyrazol-1-yl)Ph 167 4-(4-amino-1H-pyrazol-1-yl)Ph 168 4-(5-amino-1H-pyrazol-1-yl)Ph

169 4-(4,5-diamino-1H-pyrazol-1-yl)Ph 170 4-(3,5-diamino-1H-pyrazol-1-yl)Ph 171 4-(3,4-diamino-1H-pyrazol-1-yl)Ph

172 4-(3,4,5-triamino-1H-pyrazol-1-yl)Ph 173 4-(3-Me-1H-pyrazol-1-yl)Ph 174 4-(4-Me-1H-pyrazol-1-yl)Ph

175 4-(5-Me-1H-pyrazol-1-yl)Ph 176 4-(4,5-diMe-1H-pyrazol-1-yl)Ph 177 4-(3,5-diMe-1H-pyrazol-1-yl)Ph

178 4-(3,4-diMe-1H-pyrazol-1-yl)Ph 179 4-(3,4,5-triMe-1H-pyrazol-1-yl)Ph 180 4-(5-Et-1H-pyrazol-1-yl)Ph

181 4-(4-Et-1H-pyrazol-1-yl)Ph 182 4-(5-Et-4-Me-1H-pyrazol-1-yl)Ph 183 4-(5-Et-3,4-diMe-1H-pyrazol-1-yl)Ph

184 4-(5-(Me-thio)-1H-pyrazol-1-yl)Ph 185 4-(4-Me-5-(Me-thio)-1H-pyrazol-1-yl)Ph 186 4-(4,5-bis(Me-thio)-1H-pyrazol-1-yl)Ph

187 4-(3-Me-4,5-bis(Me-thio)-1H-pyrazol-1-yl)Ph 188 4-(5-(aminothio)-1H-pyrazol-1-yl)Ph 189 4-(4-(aminothio)-1H-pyrazol-1-yl)Ph

190 4-(4-(aminothio)-5-ME-1H-pyrazol-1-yl)Ph 191 4-(4,5-bis(aminothio)-1H-pyrazol-1-yl)Ph 192 [1,1′-biPh]-4-yl

193 4-(5H-tetrazol-5-yl)Ph 194 4-(1H-imidazol-1-yl)Ph 195 4-(1H-1,2,4-triazol-1-yl)Ph

196 4-(1H-tetrazol-1-yl)Ph 197 4-(thiophen-2-yl)Ph 198 4-(pyridin-2-yl)Ph

199 4-(pyrazin-2-yl)Ph 200 4-(pyrimidin-2-yl)Ph 201 4-(pyridazin-3-yl)Ph

202 4-(piperazin-1-yl)Ph 203 3H-indol-2-yl 204 7H-purin-8-yl

205 1,8a-dihydroindolizin-2-yl 206 isoquinolin-6-yl 207 quinolin-6-yl

208 cyclopenta-2,4-dienecarbonyl 209 2-Mecyclopenta-2,4-dienecarbonyl 210 2-F-cyclopenta-2,4-dienecarbonyl

211 2-aminocyclopenta-2,4-dienecarbonyl 212 2-Mecyclopenta-2,4-dienecarbonyl 213 3-Mecyclopenta-2,4-dienecarbonyl

214 2,3-diMecyclopenta-2,4-dienecarbonyl 215 2-Clcyclopenta-2,4-dienecarbonyl 216 3-Clcyclopenta-2,4-dienecarbonyl

217 2,3-diClcyclopenta-2,4-dienecarbonyl 218 3-Brcyclopenta-2,4-dienecarbonyl 219 2-Brcyclopenta-2,4-dienecarbonyl

220 2,3-diBrcyclopenta-2,4-dienecarbonyl 221 2-iodocyclopenta-2,4-dienecarbonyl 222 3-iodocyclopenta-2,4-dienecarbonyl

223 2,3-diIcyclopenta-2,4-dienecarbonyl 224 amino(cyclopenta-2,4-dien-1-yl)Me 225 amino(2-F-cyclopenta-2,4-dien-1-yl)Me

226 NH2(2,3-diF-cyclopenta-2,4-dien-1-yl)Me 227 NH2(2-Mecyclopenta-2,4-dien-1-yl)Me 228 HN(2,3-diMecyclopenta-2,4-dien-1-yl)Me

229 (2,3-diMecyclopenta-2,4-dien-1-yl)(CH3NHMe 230 (CH3NH)(2-Mecyclo-penta-2,4-dien-1-yl)Me 231 (CH3NH)(3-Mecyclo-penta-2,4-dien-1-yl)Me

232 (3-F-cyclopenta-2,4-dien-1-yl)(CH3NH)Me 233 (2-F-cyclopenta-2,4-dien-1-yl)(CH3NH)Me 234 (2,3-diF-cyclopenta-2,4-dien-1-yl)(CH3NH)Me
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R-groups a

235 (2,3-diMecyclopenta-2,4-dien-1-yl)(FNH)Me 236 FNH(2-Mecyclopenta-2,4-dien-1-yl)Me 237 FNH(3-Mecyclopenta-2,4-dien-1-yl)Me

238 F-amino(3-F-cyclopenta-2,4-dien-1-yl)Me 239 (2,3-diF-cyclopenta-2,4-dien-1-yl)(FNH)Me 240 (2,3-diClcyclopenta-2,4-dien-1-yl)(FNH)Me

241 (2-Clcyclopenta-2,4-dien-1-yl)(FNH)Me 242 (3-Clcyclopenta-2,4-dien-1-yl)(FNH)Me 243 (3-Brcyclopenta-2,4-dien-1-yl)(F-amino)Me

244 (2,3-diBrcyclopenta-2,4-dien-1-yl)(FNH)Me 245 (2-Brcyclopenta-2,4-dien-1-yl)(FNH)Me 246 NH2(2-carbamoylcyclopenta-2,4-dien-1-yl)Me

247 NH2(3-carbamoylcyclopenta-2,4-dien-1-yl)Me 248 NH2(2-carbamoyl-3-F-cyclopenta-2,4-dien-1-yl)Me 249 NH2(2-carbamoyl-3-Clcyclopenta-2,4-dien-1-yl)Me

250 NH2(3-NH-2-carbamoylcyclo penta-2,4-dien-1-yl)Me 251 2-carbamoylPh-HCOO– 252 3-carbamoylPh-HCOO–

253 4-carbamoylPh-HCOO– 254 2-MePh-HCOO– 255 3-MePh-HCOO–

256 3-MePh-HCOO– 257 2,3-diMePh-HCOO– 258 (2-carbamoylPh)(imino)Me

259 imino(Ph)Me 260 3-carbamoylPh(imino)Me 261 4-carbamoylPh(imino)Me

262 imino(2-MePh)Me 263 2,3-diMePh(imino)Me 264 imino(3-MePh)Me

265 imino(4-MePh)Me 266 (F-imino)(2-F-Ph)Me 267 F-imino(3-F-Ph)Me

268 (3-BrPh)(F-imino)Me 269 (2-BrPh)(F-imino)Me 270 (2-ClPh)(F-imino)Me

271 (3-ClPh)(F-imino)Me 272 Brimino(3-ClPh)Me 273 Brimino(3-BrPh)Me

274 Cl-imino(3-ClPh)Me 275 Cl-imino(2-ClPh)Me 276 imino(o-tolyl)Me

277 imino(2-(CF3)Ph)Me 278 imino(3-(CF3)Ph)Me 279 3-formylbenzamide

280 2-formylbenzamide 281 4-formylbenzamide 282 -Bz-2-Me

283 -Bz-2,3-diMe 284 -Bz-3-Me 285 -Bz-4-Me

286 -Bz-2-Me 287 -Bz-2-(CF3) 288 -Bz-3-(CF3)

289 -Bz-2-F- 290 NH2(3-Br-2-carbamoylcyclopenta-2,4-dien-1-yl)Me 291 Carbamoyl

292 4-Cl-1H-pyrazol-1-yl 293 4,5-diCl-1H-pyrazol-1-yl 294 5-Cl-1H-pyrazol-1-yl

295 3-Cl-1H-pyrazol-1-yl 296 3-Br-1H-pyrazol-1-yl 297 4-Br-1H-pyrazol-1-yl

298 5-Br-1H-pyrazol-1-yl 299 4,5-diBr-1H-pyrazol-1-yl 300 3,4,5-triBr-1H-pyrazol-1-yl

301 4-Me-1H-pyrazol-1-yl 302 4,5-diMe-1H-pyrazol-1-yl 303 5-Me-1H-pyrazol-1-yl

304 5-iodo-1H-pyrazol-1-yl 305 4-iodo-1H-pyrazol-1-yl 306 3-iodo-1H-pyrazol-1-yl

307 3,4-diI-1H-pyrazol-1-yl 308 3,4,5-triiodo-1H-pyrazol-1-yl 309 3,4,5-triF-1H-pyrazol-1-yl

310 3-F-1H-pyrazol-1-yl 311 3,4-diF-1H-pyrazol-1-yl 312 4-F-1H-pyrazol-1-yl

313 5-F-1H-pyrazol-1-yl 314 3-NH2-1H-pyrazol-1-yl 315 4-amino-1H-pyrazol-1-yl
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R-groups a

316 5-amino-1H-pyrazol-1-yl 317 5-Me-1H-pyrazol-1-yl 318 5-Et-1H-pyrazol-1-yl

319 4-Me-1H-pyrazol-1-yl 320 4,5-diMe-1H-pyrazol-1-yl 321 5-(Me-Me)-1H-pyrazol-1-yl

322 4-Me-5-(Me-Me)-1H-pyrazol-1-yl 323 5-(H2N-thio)-4-Me-1H-pyrazol-1-yl 324 4,5-bis(aminothio)-1H-pyrazol-1-yl

325 4,5-bis(H2N-thio)-3-Me-1H-pyrazol-1-yl 326 5-Et-4-Me-1H-pyrazol-1-yl 327 pyridazin-3-yl

328 pyridazin-4-yl 329 pyrimidin-4-yl 330 1,3,5-triazin-2-yl

331 pyrimidin-2-yl 332 pyrazin-2-yl 333 Cyclohexyl

334 piperidin-1-yl 335 tetrahydropyridazin-1(2H)-yl 336 piperazin-1-yl

337 1,2,4-triazinan-1-yl 338 2-(thiazol-2-yl)butyl 339 2-(thiazol-2-yl)pentyl
a All fragments were used for substitutions in the R1 and R2 positions.
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2.4.2. In Silico Screening of Library of BHMBs

The focused library of 73,565 analogs was further screened for molecular structures matching
the 3D-QSAR PH4 pharmacophore model Hypo1 of InhA inhibition. 238 BHMBs mapped to at least
2 pharmacophoric features, 90 of which mapped to at least 4 features of the pharmacophore. These
best fitting analogs (PH4 hits) then underwent complexation QSAR model screening. The computed
GFE of InhA-BHMBx complex formation, their components, and predicted half-maximal inhibitory
concentrations IC50

pre calculated from the correlation Equation B (Table 3) are listed in Table 6.

Table 6. GFE and their components for the top scoring 90 virtual BHMB analogs. The analog numbering
concatenates the index of each substituent R1 to R2 with the substituent numbers taken from Table 5
except for hydrogen which is directly specified by the letter H.
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7 47–235 421 −5.66 3.16 −5.73 3.24 80 
8 54–282 505 −3.55 6.63 −3.02 6.1 370 
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26 95–215 606 −6.76 1.94 −2.28 −2.53 4 
27 106–215 605 −6.81 2.61 −6.96 2.76 60 
28 106–233 407 −7.12 5.75 −3.77 2.4 50 
29 106–241 432 −2.77 6.09 −2.2 5.51 270 
30 111–95 389 9.21 −0.51 0.18 8.52 1380 
31 112–208 388 2.68 0.15 −2.26 5.09 210 
32 114–232 460 −11.36 15.18 −4.36 8.18 1150 
33 118–84 443 −6.36 4.46 −0.67 −1.23 7 
34 118–235 500 −5.5 1.49 −3.13 −0.89 9 
35 122–57 400 −12.27 15.46 1.16 2.03 40 
36 122–88 445 −11.79 16.54 −0.93 5.68 290 
37 122–92 390 −18.45 16.69 7.09 −8.85 0.1 

Designed Analogs Mw
a

[g·mol−1]
∆∆HMM

b

[kcal·mol−1]
∆∆Gsol

c

[kcal·mol−1]
∆∆TSvib

d

[kcal·mol−1]
∆∆Gcom

e

[kcal·mol−1]
IC50

pre f

[nM]

N BHMB1 385 0 0 0 0 20 g

1 32–218 389 −21.96 14.78 0.15 −7.33 0.24
2 39–95 359 21.7 2.26 1.98 21.99 1996
3 40–232 439 −1.72 5.01 −1.65 4.94 200
4 40–234 405 −10.02 2.93 0.99 −8.08 0.16
5 41–93 409 −11.28 3.31 2.16 −10.14 0.052
6 42–207 342 −7.22 6.24 −4.45 3.47 90
7 47–235 421 −5.66 3.16 −5.73 3.24 80
8 54–282 505 −3.55 6.63 −3.02 6.1 370
9 65–235 413 −5.71 3.01 1.99 −4.69 1

10 67–67 375 −8.72 3.21 0.32 −5.83 0.55
11 67–212 505 0.56 2.82 −2.2 5.59 280
12 67–215 599 3.45 3.22 −2.52 9.18 1990
13 70–241 430 −13.98 14.15 −1.02 1.18 30
14 72–232 401 −10.09 4.74 −0.7 −4.65 1
15 79–9 402 −12.2 15.92 −2.82 6.54 470
16 79–92 439 −13.99 6.17 3.15 −10.97 0.033
17 79–215 683 −4.32 2.82 −5.06 3.56 94
18 79–338 375 −12.46 5.35 3.19 −10.3 0.047
19 79–339 389 −13.64 5 2.01 −10.65 0.039
20 86–233 393 −14.09 17.65 −2.46 6.02 350
21 87–24 410 −8.64 4.95 1.59 −5.28 0.74
22 87–122 480 −9.46 4.77 0.39 −5.07 0.83
23 87–205 450 −13.78 17.73 −4.81 8.75 1570
24 87–208 453 −7.19 3.56 −4.64 1.01 20
25 92–169 406 −14.2 14.73 5.02 −4.48 2
26 95–215 606 −6.76 1.94 −2.28 −2.53 4
27 106–215 605 −6.81 2.61 −6.96 2.76 60
28 106–233 407 −7.12 5.75 −3.77 2.4 50
29 106–241 432 −2.77 6.09 −2.2 5.51 270
30 111–95 389 9.21 −0.51 0.18 8.52 1380
31 112–208 388 2.68 0.15 −2.26 5.09 210
32 114–232 460 −11.36 15.18 −4.36 8.18 1150
33 118–84 443 −6.36 4.46 −0.67 −1.23 7
34 118–235 500 −5.5 1.49 −3.13 −0.89 9
35 122–57 400 −12.27 15.46 1.16 2.03 40
36 122–88 445 −11.79 16.54 −0.93 5.68 290
37 122–92 390 −18.45 16.69 7.09 −8.85 0.1
38 122–282 504 −6.19 12.29 2.79 3.31 81
39 128–232 493 −19.75 17.06 −6.07 3.38 83
40 138–65 416 −18.69 16.51 −0.24 −1.94 5
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Table 6. Cont.

Designed Analogs Mw
a

[g·mol−1]
∆∆HMM

b

[kcal·mol−1]
∆∆Gsol

c

[kcal·mol−1]
∆∆TSvib

d

[kcal·mol−1]
∆∆Gcom

e

[kcal·mol−1]
IC50

pre f

[nM]

41 147–282 744 −16.78 13.56 −7.11 3.89 110
42 158–209 453 −20.41 19.64 −2.82 2.05 41
43 166–92 393 −14.08 7.1 1.14 −8.12 0.15
44 169–232 485 −18.91 17.42 −5.38 3.9 113
45 172–235 495 −23.56 16.58 −4.17 −2.81 3
46 174–214 537 −15.39 17.46 −0.99 3.06 71
47 174–311 399 −20.87 18.65 −2.04 −0.18 12
48 177–282 571 −15.7 15.55 −7.49 7.34 725
49 178–233 515 −22.75 17.89 −5.82 0.96 23
50 185–282 494 −10.48 15.12 −4.02 8.66 1514
51 201–15 315 −15.79 15.32 3.25 −3.72 2
52 214–233 499 3.45 2.69 −2.89 9.03 1820
53 220–99 420 −7.16 3.71 5.22 −8.66 0.11
54 225–233 424 −7.4 15.23 −1.23 9.05 1863
55 232–276 451 −19 17.57 −0.81 −0.63 2
56 234–99 408 −8.67 3.96 4.31 −9.02 0.09
57 234–234 426 −5.74 17.27 2.21 9.32 2138
58 238–25 398 −5.51 5.21 8.81 −9.11 0.09
59 240–84 423 −15.36 16.82 −0.29 1.74 34
60 241–63 396 −7.77 19.23 5.04 6.42 437
61 244–99 426 −9.46 6.19 0.9 −4.17 2
62 245–43 394 −14.47 19.17 −0.26 4.96 200
63 245–174 483 −19.31 16.99 −4.81 2.48 52
64 261–212 585 −4.95 4.87 −8.29 8.21 1175
65 266–210 478 −3.42 4.54 −5.75 6.88 563
66 269–215 650 −4.2 3.14 −5.61 4.54 159
67 269–233 452 −12.9 5.61 −3.64 −3.65 2
68 269–236 575 −6.69 4.6 −5.62 3.53 92
69 270–232 486 −8.35 5.48 −6.4 3.53 92
70 279–214 525 −5.1 −0.63 −4.71 −1.02 8
71 279–282 522 −2.8 5.06 −4.06 6.32 417
72 282–26 448 −13.63 18.31 5.63 −0.95 8
73 282–280 522 −10.39 2.59 −3.51 −4.3 2
74 297–28 423 −5.81 3.84 2.05 −4.01 2
75 307–99 343 −7.43 6.73 3.3 −4.01 2
76 308–25 342 −6.7 6.12 3.74 −4.32 2
77 310–99 357 −10.86 4.79 2.67 −8.74 0.11
78 310–74 525 3.9 1.65 −3.08 8.63 1479
79 310–209 390 2.99 −0.1 −3.93 6.82 550
80 310–289 374 2.6 −0.5 −1.85 4.1 124
81 313–278 365 −20.4 18.73 −0.79 −0.88 9
82 316–150 689 −17.61 14.38 −8.08 4.85 187
83 317–98 446 −11.26 17.19 1.24 4.69 170
84 318–79 447 −10.86 9.09 −1.71 −0.07 13
85 318–89 365 −4.96 3.62 1.15 −2.48 4
86 318–198 370 0.06 4.96 1.85 3.17 75
87 318–207 370 −11.32 5.52 1.37 −7.17 0.26
88 318–212 493 −9.55 3.93 −1.59 −4.02 2
89 320–19 376 3.36 3.01 4.03 2.34 48
90 321–25 339 −1.01 2.16 4.2 −3.05 3

a Mw is molar mass of inhibitor; b ∆∆HMM is the relative enthalpic contribution to the GFE change of the InhA-BHMB
complex formation ∆∆Gcom (for details see footnote pf Table 2); c ∆∆Gsol is the relative solvation GFE contribution
to ∆∆Gcom; d ∆∆TSvib is the relative (vibrational) entropic contribution to ∆∆Gcom; e ∆∆Gcom is the relative Gibbs
free energy change related to the enzyme–inhibitor InhA-BHMB complex formation ∆∆Gcom � ∆∆HMM + ∆∆Gsol −

∆∆TSvib; f IC50
pre is the predicted inhibition potency towards MtInhA calculated from ∆∆Gcom using correlation

Equation B, Table 3; g IC50
exp [19] is given for the reference inhibitor BHMB1 instead of the IC50

pre.
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2.5. Novel BHMB Analogs

The design of virtual library of novel analogs was guided by structural information retrieved
from the BHMBx active conformation and was used for the selection of appropriate substituents
(R1- and R2-groups). In order to identify which substituents lead to new inhibitor candidates with the
highest predicted potencies towards the InhA of Mt, we have prepared histograms of the frequency
of occurrence of R1- and R2-groups among the 90 best fit PH4 hits (Figure 6). The histograms show
that the R1 groups 79, 310, and 318 were represented with the highest frequency of occurrence (5)
among the 90 BHMB hits. The R2-groups most frequently represented in this subset are 282 (10)
and 232, 233 (6) and 99, 215 and 235 (5). The top ten scoring virtual hits, namely, analogs are 79-92
(IC50

pre = 33 pM), 79-339 (39 pM), 79-338 (47 pM), 41-93 (52 pM), 234-99 (90 pM), 238-25 (90 pM),
122-92 (100 pM), 220-99 (110 pM), 310-99 (110 pM), and 166-92 (150 pM). They include the following
substituents at R1 position: 79: 3-Br-2-(thiazol-2-yl)Pr (3), 41: Thiophen-2-ylMe (1), 234: (2,3-diFC5H7-
2,4-dien-1-yl)(mercapto-amino)Me (1), 238: FNH(3-FC5H7-2,4-dien-1-yl)Me (1), 122: 2-(F3C)Pyri-
din-3-yl (1), 220: 2,3-diBr C5H7-2,4-diene-carbonyl (1), 310: 3-F-1-H-pyrazol-1-yl (1), 166: 4-(3-NH2-1-
H-pyrazol-1-yl)Ph (1), or at R2 position: 92: 4-HO-Hexyl (3), 339: 2-(thiazol-2-yl)butyl (1), 338:
2-(thiazol-2-yl)pentyl (1), 93: 5-NH2-6-Br Hexyl (1), 99: 6-NH2Octyl (3), 25: 6-MeOctyl (1). Due to
amino acid composition of the larger hydrophobic pocket, the R2-groups display preferences for larger
aliphatic building blocks from butyl to octyl [5].
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Figure 6. Histograms of frequency of occurrence of individual R-groups in the 90 best selected analogs
mapping to four features of the PH4 pharmacophore hypothesis Hypo1 (for the structures of the
fragments see Table 5); R1 = -3-Br-2-(thiazol-2-yl)propyl (79); -3-F-1H-pyrazol-1-yl (310); -5-Et-1H-
pyrazol-1-yl (318) and R2 = -(3-F-cyclopenta-2,4-dien-1-yl)(MeAmino)Me (232); -(2-F-cyclopenta-2,
4-dien-1-yl)(MeAmino)Me (233) and -Bz-2-Me (282).

The substitutions in R1 and R2 positions of BHMBs led to an overall increase of affinity of InhA
binding as exemplified by the inhibitory potencies of majority of new designed analogs. The best
designed benzamide BHMB 79–92 displays predicted half-minimal inhibitory concentration of IC50

pre

= 33 pM that is about 61 times lower than that of the most active compound of the TS, namely the
BHMB1 with IC50

exp = 20 nM, Figures 7 and 8.
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(B) Mapping of the BHMB 79–92 to InhA inhibition pharmacophore. (C) 2D schematic interaction 
diagram of the BHMB 79–92 at the active site of MtInhA. (D) 2D schematic interaction diagram of the 
analog BHMB 79–339 (IC50

pre = 39 pM) at the active site of MtInhA. (E) 2D schematic interaction 
diagram of the ligand ((2S,4S)-N-methyl-4-[[(2S,3R)-3-[(2-methylpropan-2-yl)oxy]-2-[[4-(pyrazol-1- 
ylmethyl)phenyl]carbonylamino]butanoyl]amino]-1-(phenylcarbonyl)pyrrolidine-2-carboxamide) in 
complex with MtInhA (PDB: 5G0W) displaying the HB contact with Arg43 as reported in [6]. 

Figure 7. (A) Close up of virtual hit 79–92, the most active designed BHMB analog (IC50
pre = 33 pM) at

the active site of InhA. Interacting residues are colored yellow, and NADH is not shown for clarity.
(B) Mapping of the BHMB 79–92 to InhA inhibition pharmacophore. (C) 2D schematic interaction
diagram of the BHMB 79–92 at the active site of MtInhA. (D) 2D schematic interaction diagram of
the analog BHMB 79–339 (IC50

pre = 39 pM) at the active site of MtInhA. (E) 2D schematic interaction
diagram of the ligand ((2S,4S)-N-methyl-4-[[(2S,3R)-3-[(2-methylpropan-2-yl)oxy]-2-[[4-(pyrazol-1-
ylmethyl)phenyl]carbonylamino]butanoyl]amino]-1-(phenylcarbonyl)pyrrolidine-2-carboxamide) in
complex with MtInhA (PDB: 5G0W) displaying the HB contact with Arg43 as reported in [6].
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2.6. Pharmacokinetic Profile of Novel BHMB Analogs

The pharmacokinetic profile of InhA inhibitors remains an important issue [7]. The best designed
triclosan derivative with very low oral bioavailability due to its poor water solubility and rapid phase II
metabolism has to be optimized for a possible use as antituberculotic and eventually antimalarial in case
of high affinity toward Pf EACP [32]. Among the ADME-related properties displayed in Table 7, such
as octanol-water partitioning coefficient; aqueous solubility; blood-brain partition coefficient; Caco-2
cell permeability; serum protein binding; number of likely metabolic reactions; and another eighteen
descriptors related to absorption, distribution, metabolism, and excretion (ADME) of the new analogs,
were computed by the QikProp program [33] based on the method of Jorgensen [34,35]. Experimental
data from more than 710 compounds including about 500 drugs and related heterocycles were used
to produce regression equations correlating experimental and computed descriptors, resulting in an
accurate prediction of pharmacokinetic properties of molecules. In line with the observed unfavorable
pharmacokinetic exposure for the best active triclosan derivative, the predicted oral bioavailability of
novel BHMB analogs ranges from 86% to 100%. Since a value greater than 80% is considered good, ten
analogs among the best predicted 14 display a human oral absorption in gastrointestinal tract (HOA)
of 100%. Drug likeness (#stars)—the number of property descriptors that fall outside the range of
optimal values determined for 95% of known drugs out of 24 selected descriptors computed by the
QikProp—was used as an additional ADME-related compound selection criterion. The values for
the best active designed BHMBs are compared with those computed for drugs used for treatment of
tuberculosis or currently undergoing clinical trials (Table 7). Our best designed analogs all display
#stars equal to zero, meaning that the optimal value range of none of the drug-likeness descriptors was
violated. Thus the designed BHMBs display a favorable pharmacokinetic profile.
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Table 7. ADME-related properties of the best designed BHMB analogs and known antituberculotic agents either in clinical use or currently undergoing clinical testing
computed by QikProp [33].

BHMBx a #stars b Mw
c

[g.mol−1]
Smol

d

[Å2]
Smol,hfo

e

[Å2]
Vmol

f

[Å3]
RotB g HBdon

h HBacc
i logPo/w

j logSwat
k logKHSA

l logB/B m BIPcaco
n

[nm.s−1]
#meta o IC50

pre

[nM] HOAq %HOAr

32–218 0 389 760 380.1 1340 10 3 3.5 5.1 −5.8 0.94 −0.49 320.6 4 0.24 3 89

40–234 1 405 703 285.9 1253 6 2 3.5 5.8 −7.2 1 −0.11 2551.9 8 0.16 1 100

41–93 0 409 691 230.2 1218 11 3 3.5 4.5 −4.6 0.57 −0.42 301.4 5 0.05 3 100

67–67 1 375 716 305.9 1278 8 1 4 5.8 −6.5 0.98 −0.42 3493.1 4 0.55 1 100

79–92 0 439 737 323.6 1306 12 2 5.7 4.8 −5.9 0.48 −1.01 1105.1 4 0.033 3 100

79–338 0 375 680 367.1 1268 12 2 5.7 4.5 −4.7 0.41 −0.83 1688.3 4 0.047 3 100

79–339 0 389 760 431.0 1368 13 2 5.7 5 −5.9 0.6 −1.15 1371.3 4 0.039 3 100

87–24 0 410 701 332.5 1226 9 1 4.5 4.8 −6.3 0.68 −0.96 882.4 3 0.74 1 100

87–122 0 480 762 347.2 1363 10 1 6.95 5 −6.3 0.5 −0.62 1884.2 6 0.83 1 100

122–92 0 390 808 522.4 1430 13 2 7.6 4.5 −5.9 0.39 −1.28 1347.2 6 0.10 3 100

166–92 0 393 739 244.7 1324 10 4 5.7 3.9 −5.5 0.44 −1.83 254.9 3 0.15 3 92

234–99 0 408 730 318.4 1343 13 4 4.5 4.5 −4.4 0.56 −0.79 180.9 5 0.09 3 93

310–74 1 525 797 239.5 1419 8 2 5 6 −7.8 1.07 −0.81 1168.4 3 0.11 1 91

318–207 0 370 683 215.9 1198 6 1 5.5 4.3 −6 0.53 −0.73 1021.2 3 0.26 3 100

Rifampin 1 137.1 314 0.0 480 * 2 3 4.5 −0.7 0 −0.8 −0.8 267.5 2 − 2 67

Isoniazid 4 123.1 * 300 0.0 443 * 1 2 5 −0.6 −0.5 −0.8 −0.7 298.4 4 − 2 67

Ethambutol 2 204.3 476 395.8 806 11 4 6.4 −0.2 0.6 −0.8 0.0 107.8 4 − 2 62

Pyrazinamide 10 823.0 * 1090 * 850.0 * 2300 * 25 * 6 20.3 * 3.0 −3.1 −0.3 −2.7 38.2 11 * − 1 34

Gatifloxacin 0 375.4 598 355.7 1093 2 1 6.8 0.5 −4.0 0 −0.6 17.0 1 − 2 52

Moxifloxacin 0 401.4 642 395.6 1168 2 1 6.8 1.0 −4.7 0.2 −0.6 20.9 1 − 2 56

Rifapentine 10 877.0 * 1025 * 844.9 * 2333 * 24 * 6 20.9 * 3.6 −2.2 −0.2 −1.5 224.0 13 * − 1 51

Bedaquiline 4 555.5 787 213.7 1532 9 1 3.8 7.6 * −6.9 1.7 0.4 1562.2 5 − 1 100

Delamanid 2 534.5 796 284.4 1470 7 0 6.0 5.8 −7.6 1.0 −1.0 590.9 2 − 1 85

Linezolid 0 337.4 555 337.2 996 2 1 8.7 0.6 −2.0 −0.7 −0.5 507.0 2 − 3 79

Sutezolid 1 353.4 594 330.6 1047 2 1 7.5 1.3 −3.4 −0.4 −0.4 449.3 0 − 3 82

Ofloxacin 1 361.4 581 337.0 1044 1 0 7.3 −0.4 −2.8 −0.5 −0.4 25.9 1 − 2 50

Amikacin 14 585.6 739 350.3 1500 22 * 17 * 26.9 * −7.9 * −0.2 −2.1 −3.5 0 14 * − 1 0

Kanamycin 10 484.5 656 258.9 1291 17 * 15 * 22.7 * −6.7 * 2.0 −1.4 −3.1 0 12 * − 1 0
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Table 7. Cont.

BHMBx a #stars b Mw
c

[g.mol−1]
Smol

d

[Å2]
Smol,hfo

e

[Å2]
Vmol

f

[Å3]
RotB g HBdon

h HBacc
i logPo/w

j logSwat
k logKHSA

l logB/B m BIPcaco
n

[nm.s−1]
#meta o IC50

pre

[nM] HOAq %HOAr

Imipenem 0 299.3 487 259.1 880 8 3 7.2 1.0 −1.8 −0.7 −1.4 35.0 3 − 3 61

Amoxicillin 2 365.4 561 164.6 1033 6 4.25 8.0 −2.5 −0.8 −1.1 −1.5 1.0 5 − 1 12

Clavulanate 0 199.2 397 184.6 630 4 2 6.5 −0.8 0.3 −1.3 −1.3 13.3 2 − 2 42
a designed BHMB analogs and known antituberculotic agents, Table 6; b drug likeness, number of property descriptors (24 out of the full list of 49 descriptors of QikProp, ver. 3.7,
release 14) that fall outside of the range of values for 95% of known drugs; c molar mass in [g.mol-1] (range for 95% of drugs: 130–725 g.mol−1) [33]; d total solvent-accessible molecular
surface, in [Å2] (probe radius 1.4 Å) (range for 95% of drugs: 300–1000 Å2); e hydrophobic portion of the solvent-accessible molecular surface, in [Å2] (probe radius 1.4 Å) (range for 95% of
drugs: 0–750 Å2); f total volume of molecule enclosed by solvent-accessible molecular surface, in [Å3] (probe radius 1.4 Å) (range for 95% of drugs: 500–2000 Å3); g number of non-trivial
(not CX3), non-hindered (not alkene, amide, small ring) rotatable bonds (range for 95% of drugs: 0–15); h estimated number of hydrogen bonds that would be donated by the solute to
water molecules in an aqueous solution. Values are averages taken over a number of configurations, so they can assume non-integer values (range for 95% of drugs: 0.0–6.0); i estimated
number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution. Values are averages taken over a number of configurations, so they can
assume non-integer values (range for 95% of drugs: 2.0–20.0); j logarithm of partitioning coefficient between n-octanol and water phases (range for 95% of drugs: −2 to 6.5); k logarithm of
predicted aqueous solubility, logS. S in [mol·dm–3] is the concentration of the solute in a saturated solution that is in equilibrium with the crystalline solid (range for 95% of drugs: −6.0 to
0.5); l logarithm of predicted binding constant to human serum albumin (range for 95% of drugs: −1.5 to 1.5); m logarithm of predicted brain/blood partition coefficient (range for 95% of
drugs: −3.0 to 1.2); n predicted apparent Caco-2 cell membrane permeability in Boehringer-Ingelheim scale in [nm s-1] (range for 95% of drugs: < 25 poor, > 500 nm s−1 great); o number of
likely metabolic reactions (range for 95% of drugs: 1–8); p predicted inhibition constants IC50pre. IC50pre was predicted from computed ∆∆Gcom using the regression Equation B shown
in Table 3; q human oral absorption (1 = low, 2 = medium, 3 = high); r percentage of human oral absorption in gastrointestinal tract (<25% = poor, >80% = high); * star in any column
indicates that the property descriptor value of the compound falls outside the range of values for 95% of known drugs.
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2.7. Predicted InhA Inhibition Potency for Current Drugs Bearing Benzamide Scaffold

Since the benzamide scaffold has been analyzed in this study, drugs currently used in the clinical
practice sharing this scaffold are worth evaluating with the help of our 3D-QSAR generated PH4
pharmacophore. The list of 24 compounds given in Table 8 is mostly indicated for treatment of
neural disorders and cancers [36]. As we can see on Figure 9, the mapping of the five most potent
predicted MtInhA inhibitors to PH4 pharmacophore sheds light on their affinity towards the enzyme
and suggests their experimental evaluation as antituberculotics as they predominantly occupy the
large hydrophobic pocket. The best predicted, Sultopride (IC50

pre = 1.7 nM) is an approved drug, used
in Japan, Hong Kong, and Europe for treatment of schizophrenia [36].
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Table 8. GFE, its components, and predicted InhA inhibitory potencies of 24 approved drugs which 
contain benzamide scaffold in their molecular structure (for 2D representation see Table 9). 

DrugBank 
Accession 
Number 

Name a 
Mw

 

[g⋅mol−1] 

ΔΔHMM 

[kcal⋅mol−1] 
ΔΔGsol 

[kcal⋅mol−1] 
ΔΔTSvib 

[kcal⋅mol−1] 
ΔΔGcom 

[kcal⋅mol−1] 
IC50

pre 

[nM] 

DB00345 Aminohippuric Acid 194 10.6 3.81 2.03 12.39 11,370 
DB00391 Sulpiride 341 4.53 3.59 3.91 4.2 132 
DB00409 Remoxipride 371 11.49 −1.65 7.06 2.78 60 
DB00604 Cisapride 465 8.47 −0.06 2.97 5.44 258 
DB00619 Imatinib 493 −3.54 13.79 2.56 7.69 879 
DB01035 Procainamide 235 12.97 2.22 6.14 9.05 1 847 
DB01168 Procarbazine 221 16.54 1.73 2.12 16.15 88,971 
DB01171 Moclobemide 268 −7.79 16.78 3.22 5.76 308 
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Table 8. GFE, its components, and predicted InhA inhibitory potencies of 24 approved drugs which
contain benzamide scaffold in their molecular structure (for 2D representation see Table 9).

DrugBank
Accession
Number

Name a Mw
[g·mol−1]

∆∆HMM
[kcal·mol−1]

∆∆Gsol
[kcal·mol−1]

∆∆TSvib
[kcal·mol−1]

∆∆Gcom
[kcal·mol−1]

IC50
pre

[nM]
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DB06421 Declopramide 269 −6.29 17.29 1.34 9.66 2577
DB06422 Tricalopride 313 −13.62 17.61 4.43 −0.44 10
DB06626 Axtinib 386 5.04 0.12 −0.46 5.62 281.8

DB07069 3-Hydroxyhippuric
Acid 195 0.99 5.78 1.41 5.36 247

DB08950 Indoramin 347 −2.33 18.92 4.19 12.39 11,495
DB09018 Bromopride 344 −8.55 17.12 3.08 5.49 265
DB11282 Diethyltoluamide 191 2.37 2.47 5.48 −0.64 9
DB11480 Zoalene 225 −0.72 7.5 0 6.78 535
DB12518 Raclopride 347 −12 18.54 1.78 4.77 178
DB13025 Tiapride 328 5.98 2.72 4.83 3.86 109
DB13273 Sultopride 354 −17.19 19.7 6.23 −3.42 1.7
DB13523 Veralipride 384 0.93 4.96 4.84 1.05 23
DB15445 Iodohippuric Acid 305 1.09 6.93 −1.76 9.78 2751

a for definition of the individual quantities see the footnote of Table 2.
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compounds (7.5–9.5 Å). Interestingly, the plot of this distance vs. inhibitory activity pIC50

exp displays 
a correlation. This distance seems to be one of the key determinants for binding affinity for the class 
2 InhA direct inhibitors instead of the existence of a HB. This structural specificity that emerged 
during the PH4 screening of the virtual library of benzamide analogs led to identification of new hits, 
the best of which are capable of forming a HB with the Arg43 residue. 
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the novel benzamide inhibitors display noticeable interaction with Phe97 and Arg43, suggesting that 
their length, which is comparable to that of TS BHMBs, is sufficient for concomitant interactions. 
Recently, site exclusion was observed for the ligands in complex with InhA (a pyrrolidine core and 
three substituents: benzoyl and 1-t-butoxy ethyl groups directly connected to the pyrrolidine core 
and a pyrazole benzaldehyde connected via the t-butoxy ethyl) benzoyl π–π stacks Phe97, methyl 
amide HB with Arg43), (PDB: 5G0W) [6]. As displayed in Figure 10, distance between the benzamide 
carbonyl oxygen and the Arg43 sidechain warhead carbon atom is relatively high for the training set 
compounds (7.5–9.5 Å). Interestingly, the plot of this distance vs. inhibitory activity pIC50

exp displays 
a correlation. This distance seems to be one of the key determinants for binding affinity for the class 
2 InhA direct inhibitors instead of the existence of a HB. This structural specificity that emerged 
during the PH4 screening of the virtual library of benzamide analogs led to identification of new hits, 
the best of which are capable of forming a HB with the Arg43 residue. 
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their length, which is comparable to that of TS BHMBs, is sufficient for concomitant interactions. 
Recently, site exclusion was observed for the ligands in complex with InhA (a pyrrolidine core and 
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carbonyl oxygen and the Arg43 sidechain warhead carbon atom is relatively high for the training set 
compounds (7.5–9.5 Å). Interestingly, the plot of this distance vs. inhibitory activity pIC50

exp displays 
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the best of which are capable of forming a HB with the Arg43 residue. 
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the best of which are capable of forming a HB with the Arg43 residue. 
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3.2. PH4-Based Screening of Approved Drugs Containing Benzamide Scaffold

A library of 24 benzamide scaffold drugs from DrugBank [36] was screened with the class 2 InhA
inhibition PH4. These drugs are mostly dedicated to a variety of neurological and psychiatric disorders
or nausea and vomiting treatment. The top five best PH4 hits have been evaluated also with the
complexation QSAR model Equation B, Table 3, to predict their antituberculotic IC50

pre towards the
MtInhA: Sultopride (IC50

pre = 1.7 nM), Diethyltoluamide (9 nM), Tricalopride (10 nM), Veralipride
(23 nM) and Remoxipride (60 nM). Their mapping to the pharmacophore features is displayed in
Figure 9. Therefore, experimental testing of these five approved drugs for MtInhA inhibition and
perhaps also for antibacterial effect against the Mt would be worthwhile.

4. Materials and Methods

4.1. Training and Validation Sets

Chemical structures and biological activities (IC50
exp) of training and validation sets of

N-benzyl-4-((heteroaryl)methyl) benzamides inhibitors of InhA used in this study were taken from
literature [23]. The potencies of these compounds cover a sufficiently broad range of half-maximal
inhibitory concentrations (20 ≤ IC50

exp
≤ 5930 nM) to allow construction of a QSAR model. The training

set (TS) containing 19 BHMB inhibitors and the validation set (VS) including 6 BHMBs were taken
from the ref. [23].

4.2. Model Building

Three dimensional (3D) molecular models of enzyme–inhibitor (E-I) complexes MtInhA-BHMBx,
free enzyme InhA and free inhibitors BHMBx were prepared from high-resolution (2.2 Å)
crystal structure of a reference complex containing the training set compound N-(2-chloro-4-
fluorobenzyl)-4-((3,5-dimethyl-1-H-pyrazol-1-yl)methyl)benzamide (BHMB2, Table 1) bound to the
mycobacterial InhA (Protein Data Bank [37] entry code 4QXM [23]) using Insight-II molecular modeling
program [38].

The structures of InhA and the E-I complexes were considered to be at pH of 7 with neutral N- and
C-terminal residues and all protonizable and ionizable residues charged. No crystallographic water
molecules were included in the model. The inhibitors were built into the reference structure 4QXM [23]
by in situ replacing of derivatized groups in the molecular scaffold of the template inhibitor BHMB2.
An exhaustive conformational search over all rotatable bonds of the replacing function groups coupled
with a careful gradual energy-minimization of the modified inhibitor and active site residues of the InhA
located in the vicinity of the inhibitor (within 5 Å distance) was employed to identify low-energy bound
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conformations of the modified inhibitor. The resulting low-energy structures of the E-I complexes were
then carefully refined by minimization of the whole complex. This procedure has been successfully
used for model building of viral, bacterial, and protozoal enzyme–inhibitor complexes and design
of peptidomimetic, hydroxynaphthoic, thymidine, triclosan, pyrrolidine carboxamide, nitriles, and
chalcone-based inhibitors [16,17,29,39–47].

4.3. Molecular Mechanics

Modeling of inhibitors, InhA, and E-I complexes was carried out by molecular mechanics using
CFF91 force field [48] as described earlier [17].

4.4. Conformational Search

Free inhibitor conformations were derived from their bound conformations in the E-I complexes
by gradual relaxation to the nearest local energy minimum as described earlier [17].

4.5. Solvation Gibbs Free Energies

The electrostatic component of solvation Gibbs free energy (GFE) that includes also the effects of
ionic strength via solving nonlinear Poisson–Boltzmann equation [49,50] was computed by the DelPhi
module in Discovery Studio [26] as described earlier [17].

4.6. Calculation of Binding Affinity and QSAR Model

The calculation of binding affinity expressed as complexation GFE has been described fully
earlier [17].

4.7. Interaction Energy

The calculation of MM interaction energy (Eint) between enzyme residues and the inhibitor CFF91
force field [48] was performed as described earlier [17].

4.8. Pharmacophore Generation

Bound conformations of inhibitors taken from the models of E-I complexes were used for
constructing of 3D-QSAR pharmacophore (PH4) by means of Catalyst HypoGen algorithm [51]
implemented in Discovery Studio [26] as described earlier [17].

4.9. ADME Properties

The pharmacokinetics profile of BHMBs were computed by the QikProp program [33] as described
earlier [17].

4.10. Virtual Library Generation

The virtual library generation was performed as described earlier [17].

4.11. ADME-Based Library Searching

The drug-likeness selection criterion served to focus the initial virtual library as described
earlier [17].

4.12. Pharmacophore-Based Library Searching

The pharmacophore model (PH4) described in Section 4.8 and derived from the bound
conformations of BHMBs at the active site of InhA served as library searching tool as described
earlier [17].
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4.13. Inhibitory Potency Prediction

The conformer with the best mapping on the PH4 pharmacophore in each cluster of the focused
library subset was used for ∆∆Gcom calculation and IC50

pre estimation (virtual screening) by the
complexation QSAR model as described earlier [17].

5. Conclusions

In this work novel class 2 InhA direct inhibitors with benzamide scaffold have been designed
to reach the picomolar inhibitory concentration range of the predicted IC50

pre (Table 6, Figure 8).
Even though these predicted inhibitory potencies may be somewhat too optimistic, they suggest that
benzamide-type MtInhA inhibitors more potent than the known TS and VS analogs [23] may exist.
Our QSAR model provided bound InhA inhibitor conformation, from which the enzyme–inhibitor
interaction energy breakdown to active site residue contribution clearly revealed structural determinants
needed for binding improvement involving the favorable contacts in the three active site subsites
(I, II, and III) including combination of π–π stacking with Phe97 and the HB contacts with Arg43. The
derived 3D QSAR pharmacophores identified during chemical space exploration around R1 and R2

positions novel BHMBs analogs with predicted picomolar MtInhA inhibitory potencies 79–92 (IC50
pre

= 33 pM), 79–39 (39 pM) and 79–338 (47 pM) all display also favorable pharmacokinetic profiles
compared to current antituberculotics. We believe that they are worth synthesizing and evaluating.

Moreover, current drugs sharing the benzamide scaffold have been in silico evaluated and
the top five predicted drugs, Sultopride (IC50

pre = 1.7 nM), Diethyltoluamide (9 nM), Tricalopride
(10 nM), Veralipride (23 nM), and Remoxipride (60 nM) are also suggested for biological evaluation as
potential antituberculotics.
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Abbreviations

2D Two-dimensional
3D Three-dimensional
ADME Absorption, distribution, metabolism, and excretion
AHO Hydroxamic acids inhibitors
BHMBx Training set of N-benzyl-4-((heteroaryl)methyl)benzamides
BHMVx Validation set of N-benzyl-4-((heteroaryl)methyl)benzamides
CAMD computer-aided molecular design
Eint MM enzyme–inhibitor interaction energy per residue
∆∆Gcom Relative complexation GFE
GFE Gibbs free energy
∆∆Gsol Relative solvation GFE
HBA Hydrogen bond Acceptor
HBD Hydrogen bond Donor
HMM Enthalpy component of GFE
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HOA Human oral absorption
HYD Hydrophobic
HYDA Hydrophobic Aliphatic
IC50 Half-maximal inhibitory concentration
IE Interaction energy
InhA 2-trans enoyl-acyl carrier protein reductase
KatG Mycobacterium tuberculosis catalase–peroxidase
LHP Large hydrophobic pocket
LOO Leave-one-out cross-validation
MM Molecular mechanics
MM-PB Molecular mechanics–Poisson–Boltzmann
Mt Mycobacterium tuberculosis
MtInhA 2-trans enoyl-acyl carrier protein reductase of Mycobacterium tuberculosis
PDB Protein Data Bank
Pf EACP 2-trans enoyl-acyl carrier protein reductase of Plasmodium falciparum
PH4 Pharmacophore
QSAR Quantitative structure–activity relationships
RMSD Root-mean square deviation
SAR Structure–activity relationships
TB Tuberculosis
TS Training set
VS Validation set
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