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Background
Currently, we are still facing a global pandemic caused by the new coronavirus SARS-
CoV-2. The viral waves in Europe and the United States restarted in August and mid-
September are driving the steep upward trend of the global daily tally for new COVID-19 
cases that increases up to new high records, suggesting that this wave will be worse than 
the one that swept the countries over the spring–summer.

Even though mass vaccination campaigns have been started across countries, it remains 
difficult to achieve herd immunity in a short time and the proportion of the population that 
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is susceptible to the new coronavirus is still insufficient for new outbreaks to peter out. To 
meet the compelling need of finding new therapeutic options devoted to combat SARS-
CoV-2 infection [1, 2], promising insights come from drug repurposing, a recent strategy 
for identifying novel uses for drugs approved by the US Food and Drug Administration 
(FDA) outside the scope of their original medical indication [3]. Establishing whether an 
‘old drug’ can be reused for new therapeutic purposes represents a faster and cheaper alter-
native to de novo drug discovery, which generally takes 2–3 billion dollars and 12–15 years 
[3]. Hence, drug repurposing strategy appears as a powerful solution for emerging diseases, 
such as COVID-19 [4]. In this context, we developed SAveRUNNER (Searching off-lAbel 
dRUg aNd NEtwoRk), a new network-based tool for drug repurposing that exploits con-
cepts from the emerging field of network medicine [5–9]. According to the new paradigm 
of Network Medicine, diseases can be interpreted as local perturbations in the human 
interactome map (i.e., the cellular network of all physical molecular interactions), where the 
molecular determinants of a given disease (disease genes) are not randomly scattered, but 
co-localize and agglomerate in specific regions (disease modules) [6, 10]. Perturbations in 
these disease modules can contribute to pathobiological phenotype manifestation. From 
this perspective, also the drugs action can be interpreted as a local perturbation of the inter-
actome and thus, for a drug to be on-target effective against a specific disease or to cause 
off-target adverse effects, its target proteins should be within or in the immediate vicinity 
of the corresponding disease module [11–13]. Inspired by this philosophy, SAveRUNNER 
predicts drug–disease associations by quantifying the vicinity between the drug targets and 
the disease-associated proteins in the human interactome via a novel network-based simi-
larity measure that rewards associations between drugs and diseases located in the same 
network neighborhoods. SAveRUNNER yielded a high accuracy in the identification of 
well-known drug indications, as well as being able to provide interesting clues regarding 
off-label prediction of drugs to be repositioned against the new human coronavirus [14].

Implementation
SAveRUNNER (Searching off-lAbel dRUg aNd NEtwoRk) is a network-based algorithm 
for drug repurposing that, taking as input a list of drug targets and disease genes, pre-
dicts drug-disease associations by computing a new network-based similarity measure 
to prioritize associations between drugs and diseases located in the same network neigh-
borhoods by performing the following steps (Fig. 1).

Computation of network proximity

SAveRUNNER implements the network-based proximity measure (Eq. 1) to investi-
gate the extent to which disease and drug modules are close in the human interac-
tome [11]:

which is the average shortest path length between drug targets t in the drug module T  
and the nearest disease genes s in the disease module S.
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Computation of z‑score proximity and p values

The proximity value between a drug module T and a disease module S was z-score nor-
malized by applying a degree-preserving randomization procedure. In particular, to 
compute the z-scores and the corresponding p values, SAveRUNNER builds a reference 
distance distribution corresponding to the expected distance between two randomly 
selected groups of proteins with the same size and degree distribution of the original 
sets of disease proteins and drug targets in the human interactome. This procedure is 
repeated 1,000 times and the z statistic, together with its p value, is computed by using 
the mean and the standard deviation of the reference distance distribution. A p value 
≤ 0.05 (corresponding to a z ≤-1.65) was expected for a drug and disease module more 
proximal than expected by chance.

Selection of statistically significant drug‑disease associations

In order to filter out statistically insignificant drug-disease associations, a significance 
level for the p values should be set (typically, p value ≤ 0.05). It means that, given a dis-
ease A and a drug b, if the p value associated to their distance in the human interactome 

Fig. 1  SAveRUNNER conceptual organization. SAveRUNNER takes as input a list of drug-target interactions 
and disease-gene associations, and releases as output predicted drug-disease associations by performing 
seven steps (dashed box of this flowchart). In particular, Steps 1–3 bring to the construction of a 
proximity-based bipartite drug-disease network, where nodes are both drugs and diseases, edges are the 
statistically significant drug-disease associations (p value ≤ 0.05 , or z-score ≤ −1.65 ), weighted according 
to the proximity values; Steps 4–7 bring to the construction of a similarity-based bipartite drug-disease 
network, where the weights represent the adjusted similarity measure computed to prioritize the predicted 
drug-disease associations by rewarding the associations between drugs and diseases belonging to the 
same network neighborhood. Finally, the drug-disease associations predicted by SAveRUNNER were 
evaluated by performing a ROC curve probability analysis (solid line box of this flowchart). The ROC curve is 
computed for SAveRUNNER algorithm by plotting the true positive rate (TPR) placed on Y-axis against the 
false positive rate (FPR) placed on X-axis at various threshold settings. Diagonal grey line represents the line 
of no-discrimination between positive class (known drug-disease associations) and negative class (unknown 
drug-disease associations)
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is smaller of the chosen significance level, the probability that the off-label drug b would 
be effective for this disease A is greater than expected by chance.

Computation of network similarity

The network proximity measure p defined in Eq. 1 is translated in a similarity meas-
ure (Eq. 2) assuming values in the range [0–1]:

Null similarity means that the corresponding disease and drug modules are very distal 
in the human interactome (i.e., p is maximum); whereas maximum similarity means that 
the corresponding disease and drug modules are very proximal in the human interac-
tome (i.e., p equal to zero).

Cluster detection

SAveRUNNER exploits a clustering algorithm based on greedy optimization of the net-
work modularity [15] to detect groups of drugs and diseases in such a way that members 
in the same group (cluster) are more similar to each other than to those in other groups 
(clusters). The quality of each cluster is evaluated by SAveRUNNER through the compu-
tation of the quality cluster ( QC) score (Eq. 3):

where Win denotes the total weight of edges within the cluster, Wout denotes the total 
weight of edges connecting this cluster to the rest of network, and P is a penalty term 
which considers the node density within the cluster (i.e., the ratio of network nodes 
within each cluster).

Adjustment of network similarity

SAveRUNNER uses the QC score to reward associations between drugs and diseases 
belonging to the same cluster, based on the assumption that if a drug and a disease group 
together is more likely that the drug can be effectively repurposed for that disease. Thus, 
drug and the disease that are members of the same cluster tend to be “more similar” and 
this translates into the adjustment for the similarity (Eq. 4):

In this way, if two nodes fall in the same cluster their similarity value increases by a 
factor proportional to the QC score of the cluster which they belong; otherwise whether 
two nodes do not fall in the same cluster QC is set to zero and their similarity value does 
not change.

Normalization of network similarity

The similarity measure defined in Eq. 4 was normalized by applying the following sig-
moid function (Eq. 5):

(2)similarity =
max(p)− p

max(p)

(3)QC =
Win

Win +Wout + P

(4)similarity = (1+ QC) • similarity
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where x is the adjusted similarity measure (Eq. 4), d is the sigmoid midpoint (i.e., the 
value at which the function approaches to 0.5), c is the sigmoid steepness.

Eventually, SAveRUNNER releases a list of predicted/prioritized associations between 
drugs and diseases as a weighted bipartite drug-disease network, in which one set of 
nodes corresponds to drugs and the other one corresponds to diseases. A link between a 
drug and a disease occurs if the corresponding drug targets and disease genes are nearby 
in the interactome more than expected by chance (p value ≤ 0.05) and the weight of their 
interaction corresponds to the adjusted and normalized similarity value.

Results
SAveRUNNER predictions of repurposable drugs in relation to COVID‑19

In order to evaluate the effectiveness of predicted drug–disease associations, we applied 
SAveRUNNER on several human diseases for which original medical indications were 
available. In particular, given the deep impact of the ongoing COVID-19 pandemic, we 
selected a panel of 15 disorders, including COVID-19 and 14 diseases related to COVID-
19 (SARS-CoV-2) for genetic similarity, comorbidity, or for their association to drugs 
with ongoing clinical trials for treating COVID-19 patients. We tested Severe Acute 
Respiratory Syndrome (SARS) since it is caused by the coronavirus with the highest 
sequence identity with SARS-CoV-2 [12, 16] and there exists a well-established knowl-
edge of its associated disease genes [17]. Moreover, we included also diabetes, cardio-
vascular diseases, and hypertension, whose comorbidity in COVID-19 patients is well 
documented [18, 19]; and finally other viral infections (i.e., malaria, HIV and Ebola) and 
immune disorders (i.e., rheumatoid arthritis), since drugs approved for their treatment 
are being investigated for their potential effect to fight coronavirus disease [1, 20–27]. 
COVID-19-associated genes were download from [28], where the authors identified 332 
human proteins interacting with 26 SARS-CoV-2 proteins by using affinity purification 
mass spectrometry. Although this study has been carried out on human HEK293T kid-
ney cells that do not represent the primary physiological site of infection, the authors 
verified that these proteins were preferentially highly expressed in lung tissue (the typi-
cal environment where the virus causes a major damage). Yet, the disease-associated 
genes for the other selected 14 diseases were downloaded from Phenopedia [17], the 
drug-target interactions were acquired from DrugBank [29], and the human interactome 
was retrieved from [11] (Fig. 2 and Additional file 1).

The list of network-predicted drugs potentially able to treat SARS-CoV-2 infection 
contains a total of 98 drugs (Additional file 2), including 54 (i.e., 55%) COVID-19 specific 
and 44 (i.e., 45%) in common with the candidate repurposable drugs found for SARS-
CoV. The results of this study are broadly discussed in an our recent publication [14]. 
In Additional file 3, the data analysis details step-by-step were reported via a working 
example of SAveRUNNER application to COVID-19, from data collection, network, 
association analysis and predicted repurposable drugs.

(5)f (x) =
1

1+ e−c(x−d)
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SAveRUNNER performance evaluation

The drug–disease associations predicted by the SAveRUNNER was then evaluated 
in terms of the Receiver Operating Characteristic (ROC) probability curve analysis 
(Fig. 1). The predicted associations were ranked according to increasing p values and a 
“real association” was assigned according to the well-known drug-disease associations 
downloaded from Therapeutic Target Database (TTD) [30]: 1 corresponds to predicted 
drug-disease association that is already known, 0 otherwise. For a specified p value 
threshold, the true positive rate (i.e., sensitivity) was calculated as the fraction of known 
associations that are correctly predicted, while the false positive rate (i.e., 1-specificity) 
was computed as the fraction of unknown associations that are predicted. The ROC 
probability curve was drawn based on these measures at different thresholds and the 
corresponding Area Under the Curve (AUC) was computed. The higher the AUC, the 
better the algorithm is at distinguishing between two classes (i.e., known drug-disease 
associations vs. unknown drug-disease associations). SAveRUNNER achieved over 70% 
accuracy (AUC = 0.73) for identifying well-known drug-disease relationships (Fig.  1), 
meaning that there is 73% chance that the SAveRUNNER algorithm will be able to dis-
tinguish between positive class (known drug-disease associations) and negative class 
(unknown drug-disease associations).

Comparison with other methods

Among network-based methods proposed to predict direct drug–disease associations 
for drug repositioning [3, 31–35], the MBiRW algorithm has been shown to outperform 
other well-known network-based prediction methods [36–38] in correctly predicting 
true drug–disease associations. MBiRW adopts an effective mechanism to measure sim-
ilarity for drugs and diseases and applies a Bi-Random walk (BiRW) algorithm to predict 
potential new indications for existing drugs [35]. These captivating results prompted us 

Fig. 2  Used data resources. Summary of the all input data collection with the corresponding links to retrieve 
them
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to implement a BiRW-based algorithm against which we compared the performance of 
SAveRUNNER. Details of BiRW-based algorithm implementation are provided as Addi-
tional file 4.

We evaluated and compared the drug–disease predictions provided by BiRW and 
SAveRUNNER in terms of ROC probability curves with their corresponding AUC. In 
particular, we found that SAveRUNNER yielded over 70% accuracy (AUC = 0.73) for 
identifying well-known drug-disease relationships and overcame the one obtained by 
the BiRW-based algorithm (AUC = 0.59). In other words, there is 73% chance that SAve-
RUNNER algorithm will be able to distinguish between known and unknown drug-dis-
ease associations against the 59% of the BiRW-based algorithm (Fig. 3).

To further evaluate the performances of SAveRUNNER, we compared its outcomes 
with the predictions obtained by a recent study, where the authors integrated sev-
eral network-based drug repurposing strategies to prioritize 81 promising repurpos-
ing candidates against COVID-19 [13]. In particular, they combined three predictive 
approaches: (1) proximity-based methods that allowed to measure the distance between 
the viral protein targets and both (i) the targets of approved drugs and (ii) the differ-
entially expressed genes induced by each drug; (2) diffusion-based methods to rank 
drugs based on the network similarity of their targets to COVID-19 protein targets; (3) 
machine learning methods relying on artificial intelligence network. These pipelines 
offered altogether twelve ranked lists that were merged using a rank aggregation algo-
rithm in order to obtain a final list of 81 prioritized repurposable drugs. The overlap 
between these 81 repurposable drugs and the 98 ones predicted by SAveRUNNER is of 5 
drugs, i.e. isoniazid, lopinavir, romidepsin, sulfinpyrazone, tadalafil.

However, although the use of more methodologies can provide more reliable and fea-
sible drug repurposable candidates, the lack of a unified pipeline makes it difficult for 
non-expert users to exploit this approach for own research purposes.

Fig. 3  ROC curves for predicting drug–disease associations. The ROC curve is computed for SAveRUNNER 
algorithm (light blue curve) and BiRW algorithm (orange curve) by plotting the true positive rate (TPR), i.e., 
sensitivity placed on Y-axis against the false positive rate (FPR), i.e., 1-specificity placed on X-axis at various 
threshold settings. Diagonal grey line represents the line of no-discrimination between positive class (known 
drug-disease associations) and negative class (unknown drug-disease associations)



Page 8 of 10Fiscon and Paci ﻿BMC Bioinformatics          (2021) 22:150 

Availability and requirements

Project name: SAveRUNNER.
Project page: https://​github.​com/​giuli​afisc​on/​SAveR​UNNER.​git.
Operating system(s): macOS High Sierra 10.13.6, Windows 10 Pro.
Programming language: R.
Other requirements: R version 3.5.1 or higher.
License: GNU AFFERO GENERAL PUBLIC LICENSE.

Abbreviations
FDA: Food and drug administration; SAveRUNNER: Searching off-lAbel dRUg aNd NEtwoRk; QC: Quality score; AUC​: Area 
under the curve; TTD: Therapeutic target database; ROC: Receiver operating characteristic.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04076-w.

Additional file 1. Table composed of three separate sheets. The first sheet reports the analyzed diseases with the 
corresponding number of disease-causing genes. The second sheet reports the analyzed FDA-approved drugs with 
the corresponding number of target proteins. The third sheet reports the analyzed diseases with the corresponding 
number of repurposable drugs predicted by SAveRUNNER.

Additional file 2. List of repurposable drugs for COVID-19 predicted by SAveRUNNER along with their statistics.

Additional file 3. Working example of SAveRUNNER application to COVID-19.

Additional file 4. Implementation of BiRW-based algorithm for drug repurposing.
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