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Abstract
Most high‐grade serous ovarian cancer (HGSOC) patients develop resistance to plati-
num‐based chemotherapy and recur. Many biomarkers related to the survival and 
prognosis of drug‐resistant patients have been delved by mining databases; however, 
the prediction effect of single‐gene biomarker is not specific and sensitive enough. 
The present study aimed to develop a novel prognostic gene signature of platinum‐
based resistance for patients with HGSOC. The gene expression profiles were ob-
tained from Gene Expression Omnibus and The Cancer Genome Atlas database. A 
total of 269 differentially expressed genes (DEGs) associated with platinum resistance 
were identified (P < .05, fold change >1.5). Functional analysis revealed that these 
DEGs were mainly involved in apoptosis process, PI3K‐Akt pathway. Furthermore, 
we established a set of seven‐gene signature that was significantly associated with 
overall survival (OS) in the test series. Compared with the low‐risk score group, pa-
tients with a high‐risk score suffered poorer OS (P < .001). The area under the curve 
(AUC) was found to be 0.710, which means the risk score had a certain accuracy on 
predicting OS in HGSOC (AUC > 0.7). Surprisingly, the risk score was identified as 
an independent prognostic indicator for HGSOC (P < .001). Subgroup analyses sug-
gested that the risk score had a greater prognostic value for patients with grade 3‐4, 
stage III‐IV, venous invasion and objective response. In conclusion, we developed a 
seven‐gene signature relating to platinum resistance, which can predict survival for 
HGSOC and provide novel insights into understanding of platinum resistance mecha-
nisms and identification of HGSOC patients with poor prognosis.
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1 |  INTRODUCTION

Ovarian cancer is the most lethal gynecological malignancy in 
the world. It accounts for 2.5% of female malignant tumors, 
but 5% of cancer deaths due to low survival rates.1 There are 
four main histotypes of ovarian cancer: serous, endometrioid, 
mucinous, and clear cell.2 High‐grade serous ovarian cancer 
(HGSOC) has been thought to be the first leading histologi-
cal subtype of ovarian cancer death. It is characterized by ad-
vanced stage at diagnosis and rapid progress.3 Combination 
chemotherapy with platinum compounds and taxanes for six 
cycles after cytoreductive surgery is a standard adjuvant treat-
ment for patients with ovarian cancer. The majority of HGSOC 
patients responds well to platinum‐based chemotherapy. And 
5‐year survival rates for ovarian cancer have largely improved 
from 40% to 47% over the last decades.1 Despite high validity 
of standard treatment, many patients suffer platinum resistance 
after initial response, which is one of the causes for low survival 
rate in HGSOC. Therefore, studying prognostic signatures will 
be pivotal to improve clinical treatment of HGSOC patients.

Currently, several biomarkers have been used to predict 
patients’ survival in HGSOC. For example, it has been well 
established that carbohydrate antigen 125 (CA125) is a domi-
nant feature in diagnosis of ovarian cancer clinically.4 CA125 
has provided useful information on identifying patients for 
secondary tumor‐debulking surgery, as well as treatment time 
for multiple conventional and novel drugs.2 Unfortunately, 
some studies have failed to define CA125 levels as an in-
dependent factor of prognosis or a target to improve overall 
survival (OS) of patients.5-7 Bioinformatics is fast becoming 
a key tool in helping investigators with new research ideas 
about cancer. Although there is a growing body of literature 
that recognizes the effect of mRNA expression signatures on 
recurrence8,9 or OS,8,10-12 there are few integrated analysis 
have studied the association between gene expression related 
to platinum resistance and OS of HGSOC.

In this study, the Gene Expression Omnibus (GEO) da-
tabase13 was used to obtain differentially expression genes 
between platinum‐sensitive and resistant HGSOC tissue sam-
ples. The Cancer Genome Atlas (TCGA) database14 was used 
to identify a model consisted of mRNAs as a new indicator to 
predict outcome by analyzing the mRNA expression profiles 
and clinical features in HGSOC. Furthermore, the prognostic 
value of the indicator was also confirmed in patients with 
different clinical characteristics.

2 |  MATERIALS AND METHODS

2.1 | Datasets and patients’ information
Four datasets (GSE51373,15 GSE32602,16 GSE65986,17 
GSE2619318) with tissue, histological type, histologi-
cal grade, progression free survival (PFS), and drugs 

information were included for the analysis differentially 
expressed genes (DEGs) between platinum‐sensitive and 
resistant samples in HGSOC. Platform used in these data-
sets was GPL570 (Affymetrix Human Genome U133 Plus 
2.0 Array). Platinum‐resistant disease was characterized by 
PFS of <6 months after the last platinum‐based treatment. 
Patients with PFS of >12  months had platinum‐sensitive 
disease.2 Overall, 104 HGSOC patients were selected for 
the analysis including data from 87 platinum‐sensitive sam-
ples and 17 platinum‐resistant samples (Table 1). The ex-
pression data and clinical data were downloaded from GEO 
Databases (https ://www.ncbi.nlm.nih.gov/geo/). To test the 
prognostic significance of DEGs, gene expression data (level 
3) of HGSOC patients from TCGA Databases (https ://cance 
rgeno me.nih.gov/) with available clinical data were used.

2.2 | Identification of DEGs in 
HGSOC samples
Linear models for microarray data (limma) package19 were 
used for differential expression analysis. Robust multichip 
average (RMA) method was used for data normalization. 
Imputation for microarray data (impute) package20 was used 
to impute missing expression data. Surrogate variable analy-
sis package21 was used for removing batch effects and other 
unwanted variations in experiment. Expression difference 
was characterized by fold change (Fc) and P‐valve. Fc was 
defined by the ratio between platinum‐resistant group and 
sensitive group in expression value of each gene. Genes with 
Fc＞1.5 and P < .05 were defined as DEGs.

T A B L E  1  Top 10 up‐regulated differentially expressed genes 
(sorted by Fc)

mRNA Official full name Fc P‐value

C2orf40 Chromosome 2 Open Reading Frame 
40

1.62 .001

FAM84A Family with Sequence Similarity 84, 
Member A

1.51 .003

NLGN4X Neuroligin 4, X‐linked 1.32 .004

CMBL Carboxymethylenebutenolidase 
Homolog (Pseudomonas)

1.19 .001

CNTN3 Contactin 3 (plasmacytoma associated) 1.18 .006

MUM1L1 Melanoma Associated Antigen (mu-
tated) 1‐like 1

1.18 .012

PCP4 Purkinje Cell Protein 4 1.17 .020

SOX11 SRY (sex determining region Y)‐box 
11

1.10 .033

TCEAL2 Transcription Elongation Factor A 
(SII)‐like 2

1.09 .019

PCSK1N Proprotein Convertase Subtilisin/kexin 
Type 1 Inhibitor

1.07 <.001

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51373
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65986
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26193
https://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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2.3 | Gene annotation and pathway 
enrichment analyses
The Database for Annotation, Visualization and Integrated 
Discovery (DAVID, https ://david.ncifc rf.gov/home.jsp)22 
was used to perform gene function annotation and path-
way enrichment analysis. Gene annotations were performed 
from three aspects, namely, cellular component, biological 
process, and molecular function by gene ontology. KEGG 
(Kyoto Encyclopedia of Genes and Genomes)23 pathway 
enrichment analyses were also performed to investigate the 
underlying functions of aforementioned DEGs. P < .05 was 
used as the significance level.

2.4 | Construction of the DEGs‐based 
prognostic model and data analysis
Package survival24was used for Cox proportional hazard 
regression to construct the prognostic model. The univari-
ate regression with P  <  .05 was used to identify OS re-
lated mRNAs from the DEGs. The multivariate regression 
was used to confirm mRNAs selected by that univariate 
regression could be brought into prognostic model and cal-
culate risk score. The risk score of each patient was cal-
culated according to the formula: risk score  =  h0 (t) exp 
(β1*X1  +  β1*X1  +  … βn*Xn) (X: gene expression value; 
β: the coefficient derived from multivariate regression; h 
(0): baseline hazard function, not specified). HGSOC pa-
tients were divided into high‐risk group and low‐risk group 
according to the median risk score.25 Survival curves were 
created using survfit functions. And survdiff function was 
used to test survival curve differences. Package survival re-
ceiver operating characteristic (ROC)26 was used to create 
ROC curve to assess the predictive accuracy of the risk score 
for time‐dependent disease outcomes within 3 years. Cox re-
gression was also performed to evaluate the effect and inde-
pendence of risk score and clinicopathological parameters, 
including age, histological grade, stage, residual tumor size, 

anatomic neoplasm subdivision, and treatment outcome on 
OS of HGSOC patients.

3 |  RESULTS

3.1 | Identification of DEGs involved in 
platinum‐resistant HGSOC and pathway 
enrichment analyses
The gene expression profile with accession numbers 
GSE51373, GSE32062, GSE65986, and GSE26193 were 
downloaded from GEO database. The volcano plot (Figure 
S1A) showed the difference of mRNA expression between 
platinum‐sensitive (n  =  87) and resistant group (n  =  17). 
Compared with the sensitive group, 269 DEGs were ob-
tained including 123 up‐regulated and 146 down‐regulated 
in the resistant group (P < .05, Fc > 1.5). The heatmap pre-
sented the expression of DEGs with P <  .05 and Fc > 1.5 
(Figure S1B). The top 10 up‐regulated and down‐regulated 
DEGs (sorted by Fc) are displayed in Tables 1 and 2. Then 
we performed gene function analysis through the web‐tool: 
DAVID. As shown in Figure 1, DEGs were significantly en-
riched in cellular components (Figure 1A), protein homodi-
merization activity (Figure 1B), signal transduction, immune 
response, and apoptotic process (Figure 1C). And KEGG 
analysis (Figure 1D) showed that DEGs were enriched in the 
PI3K‐Akt signaling pathway, drug metabolism‐cytochrome 
P450, etc, P < .05 was used as the significance level.

3.2 | Construction of DEG‐based 
prognostic model
To explore whether DEGs are related to OS, 333 HGSOC 
samples with the expression profile in TCGA databases were 
selected for the Cox regression analysis. Univariate Cox re-
gression showed that 12 of 269 DEGs were determined to 
be associated with OS in HGSOC significantly (P  <  .05, 
Table 3), while multivariate Cox regression indicated that 

mRNA Official full name Fc P‐value

IGLC1 Immunoglobulin Lambda Constant 1 (Mcg marker) 2.21 .003

CXCL10 Chemokine (C‐X‐C motif) Ligand 10 1.51 .003

CXCL11 Chemokine (C‐X‐C motif) Ligand 11 1.49 .007

HLA‐DRB4 Major Histocompatibility Complex, Class II, DR 
beta 4

1.25 .038

CXCL9 Chemokine (C‐X‐C motif) Ligand 9 1.23 .016

CXCL13 Chemokine (C‐X‐C motif) Ligand 13 1.17 .010

CXCL8 Chemokine (C‐X‐C motif) Ligand 8 1.17 .008

GBP1 Guanylate Binding Protein 1, Interferon‐inducible 1.16 <.001

ADAMDEC1 ADAM‐like, Decysin 1 1.14 .012

SAMD9 Sterile Alpha Motif Domain Containing 9 1.11 .001

T A B L E  2  Top 10 down‐regulated 
differentially expressed genes (sorted by Fc)

https://david.ncifcrf.gov/home.jsp
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51373
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65986
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26193
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seven DEGs were included in the prognostic model (Table 
3). Among them, LYPD6B, CD38, CMBL, and KIAA2022 
were independent protective factors due to hazard ratio (HR) 
being less than 1. On the contrary, LYRRC17, ZHX3, and 
AKR1B10 were independent risky factors for OS in HGSOC 
patients, as the HR were greater than 1.

3.3 | The risk score as an independent 
prognosis indicator in HGSOC
Risk scores for each patient were calculated according to the 
formula mentioned in the materials and methods. All patients 
were divided into two groups: low‐risk group (n = 167) and 
high‐risk group (n = 166) by the median value of risk score 
(Figure 2A). Patients survival status is shown in Figure 2B. The 
different expression patterns of the seven DEGs in the low‐ and 
high‐risk groups are showed in heatmap (Figure 2C). As the 
value of risk score increased, the expression of protection fac-
tors tend to decrease, while the risky mRNAs tend to increase in 
expression. The survival curves revealed patients with high‐risk 
scores suffered poorer prognosis compared with the low‐risk 
group (P < .001, Figure 3A). The most striking result to emerge 

from the data is that the area under ROC curve (AUC) was 
0.710 (Figure 3B), indicating that the risk score had a certain 
accuracy on predicting 3‐year OS in HGSOC. In addition, to 
determine whether the prognostic function of the risk score de-
rives from one mRNA, we drew survival curves (Figure S2) and 
ROC curves (Figure S3) of every single mRNA. It is regrettable 
that none of these mRNAs was an accurate predictor of OS in 
HGSOC with AUC for ROC <0.7, which means the prognostic 
value of risk score was higher than any single mRNA.

Moreover the prognostic role of the novel risk score was 
also evaluated together with the classical clinical pathologi-
cal parameters that might influence the prognosis of HGSOC. 
Univariate and multivariate Cox regression analysis indi-
cated that only no‐meeting‐objective response (HR = 2.623, 
P < .001) and high‐risk score (HR = 1.899, P < .001) were 
independent prognostic indicators for OS (Table 4).

3.4 | Prognosis effect assessment of risk 
score in subsets of HGSOC patients
Last but not the least, the prognostic value of the risk score in 
the OS of HGSOC patients was also evaluated in subsets of 

F I G U R E  1  Differentially expressed genes were enriched in (A) cellular component, (B) molecular function, (C) biological process, and (D) 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (more details are presented in Table S1)
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HGSOC patients with different clinical characteristics, and 
the results obtained from the analysis are shown in Table 5. 
We analyzed the correlation between risk score and OS in 
different subgroups, such as age (≤58 or >58), histologic 
grade (high or low differentiation), clinical stage (early or 
advanced stage), lymphatic invasion, venous invasion, treat-
ment outcome objective response ([OR] or no‐meeting‐objec-
tive response), residual tumor size, and anatomic neoplasm 
subdivision (unilateral or bilateral). Subgroup analyses 
demonstrated that high‐risk score was associated with poor 
prognostic in the patients with grade 3‐4 (P < .001, Figure 
4A), advanced stage (P < .001, Figure 4B), venous invasion 
(P =  .0439, Figure 4C), and OR subsets (P <  .001, Figure 
4D) closely. In addition, there were strong relationships be-
tween the high‐risk score and low survival rate in different 
age groups (Figure 5A), lymphatic invasion (Figure 5B), re-
sidual tumor size (Figure 5C), anatomic neoplasm subdivi-
sion (Figure 5D). But no significant differences were found 
between the subgroups in these features.

4 |  DISCUSSION

High‐grade serous ovarian cancer is the main histologi-
cal type that causes death in patients with ovarian cancer. 
Therefore, studying signatures with prognostic value would 
be critical for treatment improvement of HGSOC patients. In 
this study, a potential platinum resistant‐related risk signa-
ture was built and evaluated to predict survival in HGSOC 
according to the results of DEGs identification involved in 
platinum‐resistant and Cox proportional regression analy-
sis. The risk score computed according to coefficients and 
expressions of seven mRNAs, including LRRC17, ZHX3, 
CD38, AKR1B10, LYPD6B, KIAA2022, and CMBL, could 

serve as an accurate and independent prognostic indicator for 
HGSOC. Several single genes were shown to be a power-
ful in assessment of prognosis for HGSOC. For example, 
some studies focused their point on the prognostic value of 
apolipoprotein B mRNA editing enzyme catalytic subunit 3 
(APOBEC3) and folate receptor 1 (FOLR1).27,28 Similarly, 
a study highlighted the prognostic value of a 11‐gene model 
which was obtained by Rebust likelihood‐based study on 
ovarian samples from TCGA.29 Despite those surprising 
findings, no biomarkers for prognosis prediction of HGSOC 
were yet in clinical use. However, there was no large scale 
genomic analysis studied the collaborative effect of multi-
ple genes related to platinum resistance on the prognosis in 
HGSOC. Therefore, it is extremely important to find and 
design a new model that can predict the prognosis of plati-
num resistance in HGSOC and with which we can predict the 
prognosis of patients with HGSOC and take corresponding 
treatment measures.

Platinum‐based chemotherapy combined with debulking 
surgery is the standard therapy for ovarian cancer patients. 
Despite high response rate to initial therapy, many patients 
would suffer platinum resistance and relapse after that, which 
lead to poor prognosis. So, we attempt to construct a potential 
platinum‐resistant focused model to predict the OS in HGSOC 
patients. Firstly, a total of 269 DEGs between platinum‐re-
sistant and sensitive HGSOC tissue samples were obtained. 
To understand the functions of DEGs, gene function analysis 
was performed. DEGs were involved in many biological pro-
cesses related to drug resistance, such as signal transduction 
and apoptosis process. They may also participate in the drug 
resistance of ovarian cancer through PI3K‐Akt signaling 
pathway and drug metabolism—cytochrome P450. Next, a 
prognosis model consisted of seven DEGs (LRRC17, ZHX3, 
CD38, AKR1B10, LYPD6B, KIAA2022, and CMBL) was 

T A B L E  3  Univariate and Multivariate analysis associated with overall survival in patients with high‐grade serous ovarian cancer

mRNA

Univariate Cox regression Multivariate Cox regression

β (Cox) P HR (95% CI) β (Cox) P HR (95% CI)

CD38 −0.122 .007 0.885 (0.811‐0.967) −0.143 .002 0.866 (0.793‐0.947)

FCGBP 0.110 .013 1.117 (1.023‐1.219)      

PDK4 0.184 .017 1.202 (1.033‐1.398)      

CXCL13 −0.068 .022 0.934 (0.881‐0.990)      

ATP1A2 0.079 .024 1.082 (1.010‐1.159)      

AKR1B10 0.074 .032 1.077 (1.006‐1.153) 0.101 .006 1.106 (1.030‐1.187)

LYPD6B −0.116 .033 0.890 (0.800‐0.990) −0.121 .031 0.886 (0.794‐0.989)

ADAMDEC1 −0.065 .033 0.937 (0.882‐0.995)      

LRRC17 0.108 .037 1.115 (1.007‐1.234) 0.170 .005 1.185 (1.052‐1.336)

CMBL −0.104 .041 0.901 (0.815‐0.996) −0.159 .003 0.853 (0.768‐0.948)

ZHX3 0.206 .043 1.229 (1.007‐1.499) 0.235 .041 1.265 (1.010‐1.584)

KIAA2022 −0.076 .045 0.927 (0.861‐0.998) −0.124 .004 0.883 (0.811‐0.962)



   | 1247WU et al.

constructed based on relationships between DEGs and the 
OS in 333 HGSOC patients from TCGA. Among them, 
LYPD6B, CD38, CMBL, and KIAA2022 were regarded as 
independent protective factors, while others were defined as 
risky factors. Surprisingly, survival and ROC curve analy-
ses revealed that the risk score generated from the prognosis 
model could serve as an indicator of the OS in HGSOC with 
certain accuracy. Moreover the independence of prognosis 
effect was also confirmed through comparing the novel risk 
score with classical clinical pathological parameters.

Among the identified seven genes (LRRC17, ZHX3, CD38, 
AKR1B10, LYPD6B, KIAA2022, and CMBL) in our study, 
CD38 was well known about its correlation with hematologi-
cal malignancies. High expression of CD38 was associated with 
shorter lymphocyte doubling time and poor prognosis in chronic 
lymphocytic leukemia30 In addition, several studied argued that 
CD38 played vital role in multiple myeloma.31-33 AKR1B10 is 
a member of aldo‐keto reductase family 1 member B subfamily 
and expressed in normal epithelial cells of the digestive tract as 
a cytosolic reductase.34 It has been observed that AKR1B10 was 
associated with survival in gastric cancer, colorectal cancer, and 

hepatocellular carcinoma.35-37 To date, Very little is currently 
known about AKR1B10 in ovarian cancer. Hong et al found 
that the low expression of LRRC17 was a risk factor for frac-
ture in postmenopausal women.38 However, there is little pub-
lished data on LRRC17 function in cancer.39,40 Ochoa et al41,42 
suggested that LYPD6B enhanced the sensitivity of (α3)3(β4)2 
nicotinic acetylcholine (ACh) receptors to ACh. CMBL, which 
is a highly expressed in liver cytosol, was the primary cyste-
ine hydrolase to bioactivate Olmesartan Medoxomil in the liver 
and intestine.43,44 Existing research has recognized the critical 
role of KIAA2022 in X‐linked mental retardation (XLMR) and 
brain development.45-49 KIAA2022 enhanced cell adhesion and 
migration by regulating adhesion molecules expression, such 
as N‐Cadherin and β1‐integrin.47,50 ZHX3 is a member of the 
zinc fingers and homeoboxes (ZHX) gene family. Although it 
is now well established that ZHX1 and ZHX2 worked as tumor 
suppressors,51-53 the role of ZHX3 in cancer is not clear. Studies 
showed that ZHX3 was upregulated and might be an indepen-
dent indicator of the OS in renal clear cell carcinoma.54,55

In the final part of this study, the prognosis efficacy of 
risk score was also evaluated in subsets of HGSOC patients 

F I G U R E  2  Seven differentially 
expressed gene (DEG) signatures related 
to risk score predict overall survival in the 
patients. A, DEG risk score distribution in 
each patient. B, Survival days of patients 
in order of the value of risk scores. C, A 
heatmap of seven selected genes’ expression 
profile
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with different clinical characteristics. Subgroup analyses 
demonstrated that high‐risk score was associated with shorter 
OS closely in the Grade 3‐4, late stage, venous invasion, and 
OR subsets. There also were strong relationships between the 

high‐risk score and low survival rate no matter what the age, 
lymphatic invasion, residual tumor size, anatomic neoplasm 
subdivision are. These findings, while preliminary, have 
important implications for developing platinum‐resistant 

F I G U R E  3  Kaplan‐Meier survival analysis for the patients with high‐grade serous ovarian cancer (HGSOC) in The Cancer Genome Atlas 
(TCGA) dataset. A, The Kaplan‐Meier curve for patients with HGSOC divided into high‐risk and low‐risk. B, Receiver operating characteristic 
curve in discriminating patients with high‐risk score from those with low‐risk score (AUC = 0.71)

T A B L E  4  Univariate and multivariate analysis for each clinical feature

Pathological parameters

Univariate Cox regression Multivariate Cox regression

β (Cox) P HR (95% CI) β (Cox) P HR (95% CI)

Age (>58/≤58)
163/170

0.037 .809 1.038 (0.768‐1.403)      

Grade (G3 ~ 4/G2)
294/39

0.351 .127 1.421 (0.905‐2.229)      

Histological stage (III ~ IV/II)
311/21

0.848 .062 2.336 (0.958‐5.695)      

Residual tumor (>10/≤10 mm)
84/219

0.225 .185 1.253 (0.898‐1.749)      

Anatomic neoplasm subdivision 
(bilateral/unilateral)

230/87

0.320 .081 1.377 (0.962‐1.972)      

Objective response (no/yes)
46/197

0.970 <.001 2.639 (1.744‐3.994) 0.964 <.001 2.623 (1.732‐3.971)

Venous invasion (yes/no)
58/38

−0.244 .471 0.784 (0.404‐1.520)      

Lymphatic invasion (yes/no)
91/45

0.350 .220 1.419 (0.811‐2.482)      

Risk score (high/low)
166/167

0.733 <.001 2.082 (1.530‐2.834) 0.641 <.001 1.899 (1.359‐2.653)
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focused indicator for survival assessment in HGSOC. The 
risk score will provide a new direction for the evaluation of 
HGSOC prognosis, which is different from the traditional 
assessment system. It might be helpful for individualized 
treatment and survival improvement through further patient 
stratification.

Additionally, some limitations of this study should be 
considered. First, the sample size in this study is small, so 
further validations with larger samples and other experimen-
tal methods are quite essential. Second, this study was limited 
to the analysis of mRNA expression profile without consid-
ering interactions with miRNA, lncRNA, and other factors, 
further comprehensive study are expected to be done. Third, 

previous studies of LRRC17, ZHX3, LYPD6B, KIAA2022, 
and CMBL in cancer still remain paucity despite the impor-
tance of them. Extensive researches are required to answer 
this question.

In conclusion, to the best of our knowledge, we have 
identified seven genes associated with platinum resistance 
in HGSOC patients using the Cox regression model. Further 
analysis revealed that the seven‐gene signature could be an 
independent factor predicting the prognosis of the platinum 
resistance in HGSOC patients. These findings may be a po-
tential biomarker for the prognosis of platinum resistance and 
provide insights into theoretical guidance and decision mak-
ing in clinical practice of HGSOC.

3‐y OS rate 
% (95% CI) High risk Low risk P‐value Number (high/low)

Age ≤58 63.0 (52.0‐76.1) 85.5 (76.5‐95.5) .013 87/83

Age >58 44.6 (33.6‐59.2) 71.8 (61.4‐83.9) <.001 79/84

Grade 2 62.3 (40.9‐94.9) 88.5 (74.8‐100.0) .208 16/23

Grade 3‐4 52.9 (44.3‐63.2) 76.1 (68.1‐85.1) <.001 150/144

Stage II 50.0 (18.8‐100.0) — .216 6/15

Stage 
III ~ IV

54.6 (46.2‐64.4) 75.9 (68.1‐84.5) <.001 159/152

Residual 
tumor 
≤10 mm

57.6 (47.6‐69.7) 78.2 (69.2‐88.4) .005 113/106

Residual 
tumor 
>10 mm

46.6 (33.0‐65.8) 68.3 (52.6‐88.6) .018 42/42

Anatomic 
neoplasm 
subdivision 
(unilateral)

48.2 (33.7‐69.0) 90.2 (80.1‐100.0) <.001 41/46

Anatomic 
neoplasm 
subdivision 
(Bilateral)

58.2 (48.7‐69.5) 73.1 (63.8‐83.9) .013 119/111

Objective 
response: 
yes

62.1 (52.3‐73.9) 80.8 (72.5‐90.1) .001 93/104

Objective 
response: 
no

24.6 (10.9‐55.5) 51.1 (28.7‐90.8) .070 25/21

Lymphatic 
invasion: no

58.4 (37.4‐91.3) 93.3 (81.5‐100.0) .015 22/23

Lymphatic 
invasion: 
yes

49.0 (34.3‐70.0) 74.0 (59.7‐91.8) .002 46/45

Venous inva-
sion: no

48.4 (26.3‐88.8) 85.7 (69.2‐100.0) .060 17/21

Venous inva-
sion: yes

59.9 (41.3‐86.8) 83.3 (69.2‐100.0) .044 26/32

T A B L E  5  Correlation of risk scores 
with overall survival (OS) in subsets of 
different clinical features
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F I G U R E  4  Kaplan‐Meier curves for prognostic value of risk‐score signature for patients divided by each clinical feature. A, Grade. B, Stage. 
C, Venous invasion. D, Objective response
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F I G U R E  5  Kaplan‐Meier curves for prognostic value of risk‐score signature for patients divided by each clinical feature. A, Age. B, 
Lymphatic invasion. C, Residual tumor size. D, Anatomic neoplasm subdivision
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