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A B S T R A C T   

Cortical synchronization in the gamma-frequency range (above ~30.0 Hz) and the signal/noise interplay described by stochastic resonance models have been proposed 
as basic mechanisms in neuronal synchronization and sensory information processing, particularly in vision. Here we report an observation in humans of linear and 
inverted-U distributions of the electrophysiological (EEG) responses to visual contrast stimulation in the gamma band and in the low frequency components of the 
visual evoked responses (VER), respectively. The combination of linear and inverted-U distributions is described by a stochastic resonance model (SR). The observation 
needs replication in larger subjects’ samples. It nevertheless adds to the available evidence of a role of gamma oscillatory signals and SR mechanisms in neuronal 
synchronization and visual processing. Some functional adaptation in human vision appears conceivable and further investigation is warranted.   

Introduction 

Activated neuronal networks synchronize rhythmically in the 
gamma-frequency range (~30.0–90.0 Hz). First observed in the visual 
system and implicated in sensory processing (Eckhorn et al., 1988; Gray 
et al., 1989; Engel et al., 1991, 1992), gamma band synchronization has 
been posited as a fundamental mode of neuronal activity allowing the 
transient tuning of neural assemblies and the spatiotemporal accuracy 
needed in time-related neuronal processes such as perceptual binding, 
selective attention and memory, cognitive functions (Singer, 1993, 
2018; Singer and Gray, 1995; Gray and McCormick, 1996; Sannita, 
2000; Buzsáki and Draguhn, 2004; Buzsáki and Wang, 2012; Fries et al., 
2007; Bressloff, 2019; Nikolić et al., 2013; Uhlhaas et al., 2010). Gamma 
oscillations recorded at cellular level synchronize over large portions of 
visual cortex and mediate in the time-dependent activation of the 
segregated neurons responding to selective stimulus properties (Eckhorn 
et al., 1988; Gray et al., 1989; Engel et al., 1991, 1992; Singer, 1993; 
Galuske et al., 2019). The information transfer from retina to visual 
cortex depends on mechanisms of synchronization comparable to 
cortico-cortical gamma coupling (Todorov et al., 2016). Cortical 
narrowband gamma activity appears selective for contrast visual stim-
ulation and related to the stimulus (grating) spatial frequency (Hermes 
et al., 2000; Bartoli et al., 2019; Sasaki et al., 2008). 

Oscillatory responses phase-locked to visual (contrast) stimuli, with 
frequency centered in the low gamma range (~20.0–45.0 Hz), are 
recorded in humans by magneto- or electro-encephalographic 

techniques as early components of the human broadband visual evoked 
responses (VERs) and have been suggested to contribute in the devel-
opment of VERs and in early visual processing. These oscillatory com-
ponents anticipates those in the VERs lower frequencies (<20.0 Hz) and 
have different factor structure and relationship with the stimulus 
contrast and spatial frequency; they have different cortical source ori-
entations than the VER low frequency components and are recorded in 
their absence in patients with brain damage impairing visual processing 
(Sannita, 2005; Sannita et al., 1999; Tzelepi et al., 2000; Bodis-Wollner 
et al., 2001; Sannita et al., 2007, 2009; De Carli et al., 2001; Narici et al., 
2003). In a group of healthy subjects we observed different distributions 
of the gamma- and lower frequency components of the VERs responses 
that suggest possible functional relationships. 

Methods 

We analyzed retrospectively (and in full anonymity except for age 
and stimulation/recording conditions) electrophysiological data previ-
ously obtained in a study purported to determine the laboratory stan-
dards for individual variability (unpublished). Subjects were acquainted 
with the recording procedures, laboratory setting and staff and had no 
evidence or history of ocular, neurological or systemic diseases; their 
visual acuity was better than 18/20 with optimal correction for the 
appropriate viewing distance. The electrophysiological retinal (elec-
troretinogram) and cortical (VERs) responses to contrast stimulation 
recorded according to the International Federation of Clinical 
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Neurophysiology (IFCN) guidelines (Deuschl and Eisen, 1999) were in 
all cases within normal limits for the laboratory standards. The ethical 
principles of the Declaration of Helsinki (1964) by the World Medical 
Association concerning human experimentation were followed. Data 
were from eleven volunteers (24–37 yr.; mean: 31.3 + 2.6 yr.). 

Standard procedures for visual evoked responses recording were 
applied following the IFCN guidelines for human electrophysiology of 
vision (Deuschl and Eisen, 1999). The subjects’ only commitment during 
recordings was to focus on the visual contrast stimuli. These were 
vertically oriented gratings with a sinusoidal profile (5.0 cycles/degree 
spatial frequency) produced on a Mitsubishi Diamond display by a 
digital generator (VENUS, Neuroscientific Co., Farmingdale, NY). 
Stimuli subtended the central 9.0º of visual field at 75 cm viewing dis-
tance and were reversed at 2.1 Hz. Mean luminance was 30 cd⋅m− 2; 
contrast was 80%. A fixation point on the screen was provided and the 
eye position was TV-monitored; single epochs with artifacts due to eye 
movements were automatically excluded offline. Stimulation was 
monocular (right eye, reportedly dominant in all subjects). Dermal 
Ag/AgCl electrodes were positioned 5 cm laterally to the inion and 5% of 
the inion-to-nasion distance above inion with reference at Fpz and the 
ground at Cz as indicated by the IFCN guidelines (Deuschl and Eisen, 
1999); the electrodes impedance was monitored and proved constant 
during the recording session. The electroencephalographic signal was 
continuously recorded; each recording lasted for 29.9 s (with 60 stim-
ulus reversals). The amplifiers (Physio-Amp) bandpass and gain were 
0.5–300.0 Hz and 50,000; A/D conversion was at 510 Hz. The digital 
system generating the stimuli also controlled the electrophysiological 
data acquisition, which started synchronously with the stimulus onset 
therefore compensating for the monitor refresh rate. 

Twelve recordings were available for each of eight subjects, 13 from 
two subjects and 21 from one subject. For each subject and each 
recording, the 500 ms. signal epochs following stimulus reversals were 
averaged and conventional broadband VERs were obtained. The full- 
length raw signal was then processed off-line by discrete Fourier trans-
form (DFT), with a 1.03 Hz final resolution, and the amplitude spectrum 
was computed for each recording. The gamma band oscillatory responses 
were separated from the low frequency components (predominant in the 
conventional broadband VERs) by a DFT-based digital filter setting to 
zero all spectral components below cut-off (20.0 Hz) and by averaging 
the epochs following stimulus onset. Previous work has showed that this 

oscillatory response is neither generated by filter distortion nor appears 
to depend on data acquisition or DFT parameters in these recording 
conditions (Sannita et al., 1999; Bodis-Wollner et al., 2001; De Carli 
et al., 2001; Narici et al., 2003) (Fig. 1). 

The raw signals were independently analyzed also by a bank of 
Butterworth filters to obtain a rectified average and better characterize 
the signal frequency/time dynamics. The 1–45 Hz frequency range was 
partitioned into 19 intervals with 2-Hz width centered from 1 Hz to 
39 Hz. For each recording, the rectified average was estimated across 
frequency and time in 1 s windows as the average of the modulus of the 
amplitude at each frequency interval of the signal. The rectified average 
reflects the activity phase locked to the stimulus. The method has been 
applied to characterize oscillatory signals evoked or induced by sensory 
inputs in animals and humans; its rationale and mathematical ground 
are described in detail elsewhere (Salmelin and Hari, 1994; Narici et al., 
1998). The values of the phase-locked low-frequency VERs components 
(<20.0 Hz) and gamma responses (~ 20.0–40.0 Hz) were computed for 
each subject and recording in the intervals indicated in Fig. 1 (right). 

Results and discussion 

Replicable conventional broadband VERs were recorded from all 
subjects, with latencies and amplitudes compatible with the laboratory 
normative standards (latency from stimulus of first positive wave: 
74.8 ± 8.9 ms.). High pass filtering allowed in all subjects the separation 
of the oscillatory components in the gamma range, always preceding in 
latency those of the broadband VERs (first positive wave: 
56.8 ± 7.9 ms.). The phase-locked activity (rectified average) in the 
gamma band (~ 20.0–40.0 Hz; amplitude SE within-subject ranging 
0.06–0.21) anticipated the activity of the response low frequency com-
ponents (<20.0 Hz; amplitude SE within-subject: 0.13–0.35) in all 
subjects. Fig. 1 summarizes the results from one study subject and rep-
licates those of previous normative studies (Sannita, 2005; Sannita et al., 
1999, 2009). Ordering from low to high the amplitude values of gamma 
band oscillations phase-locked to stimulus (~ 20.0–40.0 Hz) of all re-
cordings resulted in a linear distribution across subjects (R2: 0.926); the 
distribution of the corresponding values of the low-frequency responses 
across the scatterplot was better approximated by a non-monotonic, 
inverted-U function (2◦ order polynomial; R2: 0.774) (Fig. 2, top). 
Comparable inverted-U distributions were observed in the entire 

Fig. 1. VERs and rectified average obtained from one subject and summarizing the study recordings. LEFT. Superimposed averaged broadband consecutive VERs 
(0.5–150.0 Hz)(TOP) and oscillatory responses high-pass filtered by DFT (cutoff at 20.0 Hz)(BOTTOM). Right eye stimulation. Reversals of contrast stimuli are 
indicated by vertical bars. RIGHT. Time/frequency distribution of the signal having a constant time/phase relationship with the stimulus (rectified average) from the 
same subject. Note the clustering of phase-locked activity centered at ~20–40 Hz with earlier time dynamics than the activity in the low frequency components of the 
VERs (<20.0 Hz). These results replicate those from previous studies (Sannita, 2005; Sannita et al., 1999, 2009). 
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Fig. 2. TOP. Distribution across subjects of the activities phase-locked to stimulus in the gamma frequency band (20.0–40.0 Hz) ordered from low to highest 
amplitude and the corresponding values in the VERs low frequency interval (below 20.0 Hz). BOTTOM. Distribution across subjects and for each subject of the 
activity phase-locked to stimulus in the low frequency interval (VERs) vs. the corresponding activities in the gamma frequency. 

Fig. 3. Distribution for each subject of the activity phase-locked to stimulus in the low frequency interval of VERs vs. the corresponding activities in the gamma band 
frequency. Each subject’s values were normalized vs. the subject’s higher power value in the < 20.0 Hz frequency range. 
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subjects’ group (R2: 0.850) when each measure of the phase-locked ac-
tivity of low-frequency responses was plotted against the corresponding 
activity in the gamma frequency range (Fig. 2, bottom. Inverted-U dis-
tributions were observed for each subject, although with statistical 
approximation limited by the small sample sizes, but always better than 
when testing for linear distribution (Fig. 2, bottom: Fig. 3). These ob-
servations appear consistent with the evidence from microelectrode 
studies that low and high frequency electrophysiological signals convey 
independent information to the visual cortex (Belitski et al., 2008; 
Mazzoni et al., 2008). The relationship between the distributions of 
gamma oscillations and low-frequency responses appears compatible 
with a stochastic resonance model. 

According to theory and experiments, stochastic resonance (SR) is a 
phenomenon with enhanced information transfer and improved detec-
tion of signals (if weak and below threshold) when a random or un-
predictable interference (usually nicknamed “noise”) is added in optimal 
amounts in nonlinear (biological or artificial) threshold systems. The 
system is said to resonate at a particular noise level in relation to the 
signal (or system) intrinsic frequencies, thereby improving the signal-to- 
noise ratio. Further increases in the amount of noise degrade the signal- 
to-noise ratio and impair signal detectability (Wiesenfeld and Moss, 
1995; McDonnell and Ward, 2011; Moss et al., 2004; Ward, 2002; Ward 
et al., 2002) for references. Nonlinearity is a common characteristic of 
neurons and neural networks and noise in the nervous system originates 
from a variety of possible sources (from fluctuations in the neurotrans-
mitter release, number of activated postsynaptic receptors, ion concen-
trations, membrane conductance, effects of previous action potentials, 
etc.); synaptic transmission is non-stationary, nonlinear and noisy 
because of the varying contributions from depolarizing and hyper-
polarizing currents; synaptic noise affects relatively simple neuronal 
systems and small amounts of synaptic noise from dendritic synapses 
improve the response to independent, sub-threshold synaptic stimuli in 
agreement with the SR theory (Poliakov et al., 1996; Traynelis and 
Jaramillo, 1998; White et al., 2000; Stacey and Durand, 2000; Stocks 
and Manella, 2001; Linkenkaer-Hansen et al., 2004; Gong et al., 2009; 
Sejdić and Lipsitz, 2013); see for references (Wiesenfeld and Moss, 1995; 
McDonnell and Ward, 2011; Moss et al., 2004; Ward, 2002; Ward et al., 
2002). Studies applying psychophysics or magneto- or electroencepha-
lographic techniques have described SR phenomena to occur in the 
human visual system in a variety of conditions, such as in the perception 
of sub-threshold gratings, ambiguous figures or letters, 
three-dimensional perception of autostereograms, and in binocular ri-
valry, discrimination of motion directions, etc. (Ward, 2002; Ward et al., 
2002; Riani and Simonotto 1994; Simonotto et al., 1997, 1999; Speranza 
et al., 2001; Levi et al., 2005, 2008; Aihara et al., 2008; Sasaki et al., 
2008). The addition of white noise in proper amounts improves vision in 
the severily impaired (Itzcovich et al., 2017). Experimental evidence 
indicates that SR enhances phase-locking and promotes synchronization 
in neuronal systems across many levels of neuronal organization (Sor-
rentino et al., 2006; Ward et al., 2010; McDonnell et al., 2015). The 
functional role of gamma band activity as information carrier has been 
questioned in favor of its being unstructured noise from neuronal net-
works (Burns et al., 2011; Xing et al., 2012); some functional role in 
neuronal synchronization would not be excluded, though. Contributions 
from unstructured noise or a functional interaction between signals 
would both document the neuronal networks efficiency in benefiting 
from (intrinsic or artificially added) noise and the applicability of SR 
models in describing these phenomena. In this framework, the 
inverted-U relationship between gamma oscillations and low frequency 
responses and the signal disruption with higher amplitude gamma ac-
tivity observed in this study are consistent with a threshold SR model, 
with gamma serving as noise in some phase of early visual information 
processing. A model of suprathreshold stochastic resonance, in which 
small changes in the amount of noise improve signals already above 
threshold, would be particularly applicable (Sasaki et al., 2008; 
McDonnell et al., 2007; Stocks, 2000). 

Gamma activity is ubiquitous in both simple and complex nervous 
systems, has been observed in a variety of animal species and appears 
phylogenetically preserved in spite of the increase in size and 
complexity of mammalian brains (Singer, 2018; Buzsáki and Draguhn, 
2004; Buzsáki et al., 2013); SR phenomena have been observed at 
virtually all levels of neuronal complexity, from neuron membrane to 
human and animal behavior (Wiesenfeld and Moss, 1995; McDonnell 
and Ward, 2011; Moss et al., 2004). Some role as robust, basic mecha-
nisms of neuronal function is conceivable for both. The inverted-U dis-
tribution observed both across- and within-subject adds to the suitability 
of SR models in describing basic functions and suggests functional re-
lationships between the gamma and low frequency visual responses 
described by a SR modeling of neuronal synchronization. The observa-
tion appears also congruent with the evidence that signal bursts with 
specific resonant frequencies (depending on subthreshold membrane 
potential oscillations) cause a postsynaptic cell to fire more than bursts 
with higher/lower frequencies and mediate in the selective communi-
cation between neurons (Izhikevich et al., 2003). Integrated roles of 
gamma activity and SR phenomena seem practicable as the working 
hypothesis. 

Our observation needs replication and systematic research; it only 
allows inference in this regard and invites speculation. A SR phenome-
non should be hypothesized to also reflect (at least to an extent) a 
functional (visual) adaptation that can be identified in individuals and is 
also reflected in the variability across subjects. An evolutionary origin 
(and role) of the interaction between noise and sensory information 
processing in SR models has been suggested but never documented 
(Wiesenfeld and Moss, 1995); it remains speculative, although selective 
advantages in survival strategies have been identified in few animal 
studies (Bahar and Moss, 2004; Dees et al., 2008; Jaramillo and Wie-
senfeld, 1998). Operational benefits also in mammal vision are 
conceivable. 
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