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Abstract

In this paper, we first introduce a new type of rough

sets called α‐upward fuzzified preference rodownward

fuzzy preferenceugh sets using upward fuzy preference

relation. Thereafter on the basis of α‐upward fuzzified

preference rough sets, we propose approximate preci-

sion, rough degree, approximate quality and their

mutual relationships. Furthermore, we presented the

idea of new types of fuzzy upward β‐coverings, fuzzy
upward β‐neighborhoods and fuzzy upward comple-

ment β‐neighborhoods and some relavent properties

are discussed. Hereby, we formulate a new type of

upward lower and upward upper approximations by

applying an upward β‐neighborhoods. After employing

the upward β‐neighborhoods based upward rough set

approach to it any times, we can only get the six dif-

ferent sets at most. That is to say, every rough set in a

universe can be approximated by only six sets, where

the lower and upper approximations of each set in the

six sets are still lying among these six sets. The re-

lationships among these six sets are established. Sub-

sequently, we presented the idea to combine the fuzzy

implicator and t‐norm to introduce multigranulation

( , )  ‐fuzzy upward rough set applying fuzzy upward

β‐covering and some relative properties are discussed.
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Finally we presented a new technique for the selection

of medicine for treatment of coronavirus disease

(COVID‐19) using multigranulation ( , )  ‐fuzzy up-

ward rough sets.
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1 | INTRODUCTION

Multiattribute group decision‐making problems has always been an important direction of
modern decision making sciences. Based on multiattribute group decision making systems
with different natures, researchers not only developed a wealth of decision‐making scheme,
but also solved various practical problems such as Kreyea et al.1 developed a new approach
of group decision making problem to manage their application in logistics, Mou et al.2

introduced group decision‐making technique based on graph approach under the in-
tuitionistic fuzzy (fuzzy preference relation) information and applied to energy related
problem. Ishizaka and Nemery3 introduced a new approach to multicriteria decision ana-
lysis and discussed their application in safety management. Alcantud4 developed a group
decision making technique to handle a problem related to facility location. Inan et al.5

initiated a multiattribute group decision approach for the comparison of firms occupational
health and safety management. Ishizaka and Nemery6 put forward a new idea of decision
making technique to solve a problems related to supplier selection. Aldape‐Perez et al.7

defined a novel approach to perform pattern classification tasks for medical decision sup-
port systems. Arsene et al.8 applied an expert system under the framework of software
agents for medicine diagnosis. Azar and Metwally9 presented a decision tree classifier for
automated medical diagnosis problem, Esfandiari et al.10 presented data mining application
in medicine. The whole of the world is engulfed with the spread of COVID‐19 and it is very
painstakingly difficult for the denizens of the world to live a peaceful life. The epidemic is
viral and the attack is so severe that the World Health Organization (WHO) is compelled to
announce a global emergency. In the last quarter of 2019, some cases of the disease were
reported in Wuhan city China, which after the diagnosis was found as coronavirus (COVID‐
19). In the wake of this incident, the virus is circulated in the entire world and became the
sole cause of the demise of thousands and thousands of people in the whole of the world.
The word "coronavirus" is derived from the Latin word "corona" which means a "crown i.e.,
a circle of light or nimbus." The virus promptly affects the lungs. It has similar symptoms as
those of influenza and pneumonia. In the very outset, it was found that the people who
worked or shopped at the seafood market in Wuhan became the victims of this virus. After
that it pervaded universally through import, export, travelling, and social contacting with
infected people. Several researchers investigated and developed different methods to ad-
dress the problem. In decision making, there have been a lot of uncertainties, imprecise,
and vague information, whose representation and management are always the central is-
sues. Health professionals and healthcare administrators are working to reduce clinical and
maintenance costs for the prevention and management of disease. It is concluded that the
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coronavirus is a burning issue and needs mathematical formulation/technique for selection
of medicine for treatment of the disease.

The main objective of this study is to establish decision making with the help of fuzzy rough
set theory. We developed a technique for the selection of medicine to treat the coronavirus
disease (COVID‐19) using fuzzy rough sets.

1.1 | Rough set theory and decision making problems

The theory of rough sets introduced by Pawlak11 provides a new mathematical approach to
extend classical set theory. In rough set theory, creating a pair of approximation operators
called lower and upper approximation operators is important. The classical approximation
operators are described with the help of an equivalent relation in the universe. Rough set
methodology is the fundamental method of solving uncertain knowledge and their application
in various fields such as, the field of expert systems, pattern recognition, image processing,
decision analysis, artificial intelligence, and so on. Accordingly, to enhance the utilization rate
of information in information systems, several authors have extended the definition of rough
set approximation through applying general relations, such as Bonikowski introduced algebraic
structures of rough sets,12 Liu and Zhu13 further generalized the work of Bonikowski by
introducing algebraic structures of generalized rough sets, Slowinski and Stefanowski14 dis-
cussed the solution of medical information systems problems based on rough fuzzy hybridized
structure. Dubois and Prade15 combined the notion of rough sets and fuzzy sets to form fuzzy
rough sets and rough fuzzy sets. Then the upper and lower approximation operators of ap-
proximate space in fuzzy environment are widely used.16 After the formation of rough set,11

number of generalizations have been presented in terms of various demands. Dubois and
Prade15 initiated the idea of rough set theory based on set valued mapping. Zhu17 integrated the
idea of generalized rough sets using general relation. Yao and Yao18 initiated the idea of rough
sets based on covering approach and their applications. Zhu19 presented the idea of covering
rough sets based on topological properties and their applications. Zhu and Wang20 studied
covering rough sets based on reduction of attributes and their applications. Further, Zhu and
Wang discussed three different types of rough sets based on covering and their mutual re-
lationships.21 Based on topological approach, Zhao22 introduced various types of rough sets
based on covering and their applications. Deng and Yao23 studied fuzzy environment based
three way approximation with decision theoretic fuzzy rough sets and applied to group decision
making problems. Sun et al.24 integrated the idea of rough fuzzy sets based on decision the-
oretic approach and applied to multiattribute group decision‐making problems. Ziarko25 in-
troduced another rough set model called variable precision rough sets model, which is the
generalized form of Pawlak's rough set model. Yao26 initiated three way decisions analysis with
the help of probabilistic rough sets and discussed their applications in multiattribute group
decision making problem. Greco et al.27‐29 initiated rough approximations based on dominance
relations and their applications in various multicriteria group decision making problems. Qian
et al.30,31 generalized the Pawlak's single granulation rough set model to a multigranulation
rough set model for finding two terminologies called optimistic/pessimistic multigranulation
rough set models and disclosed their applications in decision making process. Qian et al.32

further extended multigranulation methodology to decision theoretic rough sets and applied
them to multicriteria group decision making problem. Lin et al.33 initiated covering based
multigranulation rough sets and applied them in decision making problems. Ali et al.34
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originated multigranulation rough sets approaches based on dominance relations and their
application in labor management negotiations in conflict analysis problems. Rehman et al.35

applied soft preference relation for the construction of soft optimistic/soft pessimistic multi-
granulation rough sets and presented their application in conflict problems. Different re-
searchers have confabulated the applications of rough sets in medical sciences such as, Cheng
and Liu36 argued wavelet packet based rough set technique for Identify brain disease.

1.2 | Covering based fuzzy rough set theory

The original definition of a fuzzy covering is given in Reference [37]. Let q q q= { , , }1 2 3 be the
set of three alternatives/medicines which are evaluated by different attributes/tests, where
C = { , , }1 2 3   is the collection of different attributes/tests. For these attributes/tests
C C C{ ( ), ( ), ( )}1 2 3   , where

C
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where C q( )( )i j denotes the efficiency of the medicine qj for the test i . Ma defined fuzzy
β‐covering which is the generalized form of fuzzy covering to replace 1 by a parameter
β (0, 1]∈ .38 Subsequently, Ma38 presented two new types of rough set models based on fuzzy
covering by applying the concept of fuzzy β‐neighborhood. Further, Ma38 defined two types of
rough set models based on fuzzy covering and presented their applications in fuzzy lattice
theory. Yang and Hu39 initiated various types of rough set models using fuzzy covering ap-
proach and applied them to medical diagnosis problems. Zhan et al.40 combined the fuzzy
implicator and t‐norm to introduce multigranulation ( , )  ‐fuzzy rough set models based on
covering and further studied their application in assessment of appointing a system analysis
engineer. Based on fuzzy implicator and t‐norm, Jiang et al.41 presented variable precision
( , )  ‐fuzzy rough sets using covering methodology and presented their application to supplier
selection problems. Zhang et al.42 integrated the idea of fuzzy rough sets applying fuzzy soft
covering methodology and discussed their applications to select athletes for table tennis team.
Zhang and Zhan,43 introduced a new hybridized structure called fuzzy rough sets using fuzzy
soft β‐covering model and its application in decision making problem.

1.3 | Goals of this study

There are some limitation, for instance, the above example is fuzzy β ‐covering model for
β (0, 0.4]∈ . If the required critical value β = 0.5, then how is it possible to make β‐covering
model for β (0, 0.5]?∈ Hu et al.44 adopted the well‐known logis transfer function to compute
the fuzzy preference degree of the feasible alternatives. Pan et al.45 pointed out that the transfer
fuzzy preference degree of Hu et al. is not additive consistent and suggested another transfer
function. The motive of this paper is first to point out that the transfer function for computing
the fuzzy preference degree of Pan et al.45 for the construction of upward/downward fuzzy
preference relations are not additive consistent. The appropriate counterexample is given and
their modified versions are presented. Furthermore, we construct upward consistency matrices
of experts which satisfy the upward additive consistency and the upward order consistency
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simultaneously. Subsequently, we introduced a new type of rough sets called α‐upward fuz-
zified preference rough sets using upward fuzzy preference relation. On the basis of α‐upward
fuzzified preference rough sets, we introduced approximate precision, rough degree, approx-
imate quality and their mutual relationships. Furthermore, we presented the idea of new types
of fuzzy upward β‐coverings, fuzzy upward β‐neighborhoods and fuzzy upward complement
β‐neighborhoods and related properties are discussed. Hereby, we propose a new type of
upward lower and upward upper approximations by employing an upward β‐neighborhoods. It
is worth mentioning by applying an upward β‐neighborhoods based upward rough set ap-
proach to it any times, we can only get the six different sets at most. That is to say, every rough
set in a universe can be approximated by only six sets, where the lower and upper approx-
imations of each set in the six sets are still lying among these six sets. The relationships among
these six sets are established. Afterwords, we presented the idea to combine the fuzzy im-
plicator and t‐norm to introduce multigranulation ( , )  ‐fuzzy upward rough set applying
fuzzy upward β‐covering and some related properties are discussed. Finally we presented a new
technique for the selection of medicine to treat the coronavirus disease (COVID‐19) using
multigranulation ( , )  ‐fuzzy upward rough sets.

1.4 | The structure of this paper

The remainder of this manuscript is as follows: Section 2 recalls preliminary notions con-
cerning fuzzy preference relation, fuzzy additive consistency and logis sigmoid transfer func-
tion. In Section 3, we construct upward/downward fuzzy preference relations which are
additive consistent. Furthermore, we construct upward consistency matrices of experts which
satisfy the upward additive consistency and the upward order consistency. Section 4, introduce
a new type of roughness called α‐upward fuzzified preference rough sets using upward fuzzy
preference relation. A new type of upward lower and upward upper approximations by ap-
plying an upward β‐neighborhoods and after employing an upward β‐neighborhoods based
upward rough sets approach to it any times, we get the six different sets at most are discussed in
Section 5. In Section 6, we presented the idea to combine the fuzzy implicator and t‐norm to
introduce optimistic/pessimistic multigranulation ( , )  ‐fuzzy upward rough sets using fuzzy
upward β‐covering approach. Section 7, confabulated the algorithm to handle the uncertainty
problems using multigranulation ( , )  ‐fuzzy upward rough sets. Section 8 highlights the
applications of the proposed model in prescription of medicine for treatment of coronavirus
disease (COVID‐19). In Section 9, we focus our attention on comparison of various models with
the proposed technique. The paper is concluded in Section 10.

2 | PRELIMINARIES

In this section, some basic notations of fuzzy preference relation, fuzzy additive consistency
and logis sigmoid transfer function have been discussed.

Definition 1 (Herrera‐Viedma et al.46). A fuzzy preference relation  is a fuzzy set in
×  , which is a membership function μ q q q: × [0, 1], = { , , …, }n1 2   → is the set

of feasible alternatives. The fuzzy preference relation can also be represented by an n n×

matrix f( )ij n n× as:
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where fij shows that the preference degree of qi over q f f f, [0, 1], + = 1j ij ij ji∈ , for all
i j n, {1, 2, …, }∈ . Especially, f = 0.5ij means that the behavior of qi and qj are same in
fuzzy information system; f > 0.5ij shows that the behavior of qi is better than the
behavior of q f; = 1j ij means that the behavior of qi is absolutely better than the behavior
of qj; the f < 0.5ij depicts that the behavior of qj is better than the behavior of q f; = 0i ij

means that the behavior of qj is absolutely better than the behavior of qi.

Definition 2. A fuzzy preference relation f= ( )ij n n× is called additive consistent, if
f f f= − + 0.5ij ik kj , for all i, j k n, {1, 2, …, }∈ .

In the above definition, the fuzzy preference relation is considered, fij merely presents that the
degree of preference of feasible alternative qi is before the feasible alternative qj. However, in

practical applications, we need to show the degree of qi is poorer than qj. To satisfy both the cases,

we call the fuzzy preference relation as an upward fuzzy preference relation and the other down-

ward fuzzy preference relation. The upward fuzzy preference relation is denoted as ( )f=
ij n n×

⇑ ⇑

and downward fuzzy preference relation as ( )f=
ij n n×

⇓ ⇓ . In general, f f+ = 1
ij ij
⇑ ⇓ . For down-

ward fuzzy preference relation, f = 0.5
ij
⇓ means that the behavior of qi and qj are same in fuzzy

information system; f > 0.5
ij
⇓ depicts that the behavior of qi is poorer than the behavior of qj;

f = 1
ij
⇓ means the behavior of qi is absolutely poorer than the behavior of q f; < 0.5j ij

⇓ shows that

the behavior of qj is poorer than the behavior of q f; = 0i ij
⇓ means that behavior of qj is absolutely

poor than the behavior of qi.

Hu et al.44 used the well‐known logis sigmoid transfer function
e

1

1 + k g qi c g qj c( ( , )+ ( , ))
for the con-

struction of fuzzy preference degree of the feasible alternative qi to the feasible alternative qj as
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where k is a positive constant. Pan et al.45 showed that the fuzzy preference degree based on logis
sigmoid transfer function is not additive consistent and they suggested another transfer function to
compute the fuzzy preference degree. The fuzzy preference degree of qi to qj is given by
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where g q c( , ) [0, 1]i ∈ .

3 | PROPOSED UPWARD/DOWNWARD FUZZY
PREFERENCE RELATION

We observed that in the case when the value of feasible alternatives on any criterion are
different then the technique of Pan et al. works, but on a larger domain of equal values of
feasible alternatives on some criteria Pan et al.'s technique fails. Further, in the current
manuscript we pointed out that the transfer function for computing the fuzzy preference degree
of 45 for the construction of upward/downward fuzzy preference relations are not additive
consistent as seen in the following example.

Example 1. It is difficult to come to the exact number of births every day since not all
births are registered or recorded. The UNICEF estimates that an average of 353,000 babies
are born each day around the world. The crude birth rate is 18.9 births per 1000 population
or 255 births globally per minute or 4.3 births every second (as of Dec 2013 estimate). Based
on the initial record (birth information, weight, age, etc. of the babies), of the babies birth's
taken from various hospitals, we have the following example. Let A q j= { : = 1, 2, …, 9}j be
the set of (feasible alternatives) babies born in a same minute in the world,C c c c= { , , }1 2 3 be
the set criteria, where c1, shows the weight of the babies, c2, represent the ages of babies in
the same minute and c3 shows baby birth on normal delivery. In this study, the value of
information function g q c( , )j i is belonging to [0, 1] and g q c( , )j i describe the fuzzy evaluation
of qj on criterion ci. The information system is given in the following Table 1.

Based on criterion c1 and using Equation (1), to calculate the upward fuzzy preference
degree of qi i( = 1, 2, …, 9) to qj j( = 1, 2, …, 9), one can acquire

q q( , )

=

0.5000 0.9167 1 0.6667 0.8333 1 0.9167 0.9167 0.9167
0.0833 0.5000 0.5833 0.2500 0.4167 0.5833 0.5000 0.5000 0.5000

0 0.4167 0.5000 0.1667 0.3333 0.5000 0.4167 0.4167 0.4167
0.3333 0.7500 0.8333 0.5000 0.6667 0.8333 0.7500 0.7500 0.7500
0.1667 0.5833 0.6667 0.3333 0.5000 0.6667 0.5833 0.5833 0.5833

0 0.4167 0.5000 0.1667 0.3333 0.5000 0.4167 0.4167 0.4167
0.0833 0.5000 0.5888 0.2500 0.4167 0.5833 0.5000 0.5000 0.5000
0.0833 0.5000 0.5888 0.2500 0.4167 0.5833 0.5000 0.5000 0.5000
0.0833 0.5000 0.5888 0.2500 0.4167 0.5833 0.5000 0.5000 0.5000

.

c i j1


⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⇑

TABLE 1 Fuzzy information system

q1 q2 q3 q4 q5 q6 q7 q8 q9

c1 0.8 0.3 0.2 0.6 0.4 0.2 0.3 0.3 0.3

c2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

c3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
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But with criterion c2, one can derive
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Similarly we can see that the values of fij
⇑ do not exist for all i j, = 1, 2, …, 9. Thus the

upward fuzzy preference relations q q( , )c i j2
⇑ cannot be obtained based on the Pan et al.

technique. Hereby, we present another transfer function for the construction of upward/
downward fuzzy preference degree of qi to qj is
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Based on criterion c1 and using Equation (5), to calculate the upward fuzzy preference
degree of qi i( = 1, 2, …, 9) to qj j( = 1, 2, …, 9), one can acquire

q q( , )

=

0.50000 0.66667 0.70000 0.56667 0.63333 0.70000 0.66667 0.66667 0.66667
0.33333 0.50000 0.53333 0.40000 0.46667 0.53333 0.50000 0.50000 0.50000
0.30000 0.46667 0.50000 0.36667 0.43333 0.50000 0.46667 0.46667 0.46667
0.43333 0.60000 0.63333 0.50000 0.56667 0.63333 0.60000 0.60000 0.60000
0.36667 0.53333 0.56667 0.43333 0.50000 0.56667 0.53333 0.53333 0.53333
0.30000 0.46667 0.50000 0.36667 0.43333 0.50000 0.46667 0.46667 0.46667
0.33333 0.50000 0.53333 0.40000 0.46667 0.53333 0.50000 0.50000 0.50000
0.33333 0.50000 0.53333 0.40000 0.46667 0.53333 0.50000 0.50000 0.50000
0.33333 0.50000 0.53333 0.40000 0.46667 0.53333 0.50000 0.50000 0.50000

.

c i j1


⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⇑

Further based on criterion c2 and using Equation (5), to calculate the upward fuzzy
preference degree of qi i( = 1, 2, …, 9) to qj j( = 1, 2, …, 9), one can get

q q( , )

=

0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000

.

c i j2


⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⇑
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Finally based on criterion c3 and using Equation (5), to calculate the upward fuzzy
preference degree of qi i( = 1, 2, …, 9) to qj j( = 1, 2, …, 9), one can acquire

q q( , )

=

0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000

.

c i j3


⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⇑

The above example consists of two types of attributes (criteria) first like c1 (where all/some values
of the feasible alternatives are different) and second like c2 or c3 (where all values of
the feasible alternatives are same). On criterion like c1, the Pan et al.'s transfer function and the
proposed transfer function work to yield the upward fuzzy preference relation. On the other hand, on
criterion like c2 or c3, the transfer function of Pan et al. fails to obtain the upward fuzzy preference
relation, but the proposed transfer function works to obtain the upward fuzzy preference relation.

In real world problems, the information system depends on the behavior of the decision
maker(s), so such type of attributes (criteria) like c2 and/or c3 may or may not exist. If
attributes (criteria) like c2 and/or c3 are exist, then we do not have any technique to handle
the situation. Existence of criterion like c2 or c3 in a fuzzy information system has its own
importance. Regarding the reducing a criterion from the information system by a decision
maker using his/her own technique arises the question that whether the technique works on
this criterion or not? If c2 or c3 to be reduced from the information system to apply Pan et al.
technique for the construction of upward fuzzy preference relation and develop a technique
based on Pan et. al. technique, then as seen in above example, c2 or c3 cannot be reduced
because Pan et. al. technique fails to handle c2 or c3. The proposed technique presents the
only way to handle the failure situations.

Further we prove that our constructed upward fuzzy preference relation is upward fuzzy
additive consistent we can get

(i) f
g q c g q c

g q c g q c

g q c g q c

g q c g q c
= 0.5 ×

( , ) − ( , )

( , ) + ( , ) + 0.5
−

( , ) − ( , )

( , ) + ( , ) + 0.5
+ 1

= 0.5 × (0 + 1) = 0.5.

ii
i i

n
i

i
n

i i
n

i

i i
n

i

i
n

i i
n

i

=1

=1 =1

=1

=1 =1

⎛
⎝⎜

⎞
⎠⎟

∧

∨ ∧

∧

∨ ∧
⇑

(ii) f f+ = 0.5 × − + 1

+ 0.5 × − + 1

= 0.5 ×
− + 1

+ − + 1

= 0.5 × (1 + 1) = 1.

ij ji

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

i j
n

j

j
n

j j
n

j

j j
n

j

j
n

j j
n

j

j i
n

i

j
n

j j
n

j

i j
n

j

j
n

j j
n

j

i j
n

j

j
n

j j
n

j

j j
n

j

j
n

j j
n

j

j j
n

j

j
n

j j
n

j

i i
n

i

j
n

j j
n

j

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⇑ ⇑ ∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧
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(iii) f f

f

+ = 0.5 × − + 1

+ 0.5 × − + 1

= 0.5 ×
− + 1

+ − + 1

= 0.5 × − + 2

= 0.5 × − + 1 + 0.5

= + 0.5.

ij jk

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

g q c g q c

ik

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

( , ) − ( , )

( , ) + ( , ) + 0.5

i j
n

j

j
n

j j
n

j

j j
n

j

j
n

j j
n

j

j j
n

j

j
n

j j
n

j

k j
n

j

j
n

j j
n

j

i j
n

j

j
n

j j
n

j

j j
n

j

j
n

j j
n

j

j j
n

j

j
n

j j
n

j

k j
n

j

j
n

j j
n

j

i j
n

j

j
n

j j
n

j

k j
n

j

j
n

j j
n

j

i j
n

j

j
n

j j
n

j

k j
n

j

j
n

j j
n

j

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

=1

=1 =1

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⇑ ⇑ ∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

∧

∨ ∧

⇑

Theorem 1. Let ( )f=
ij n n×

⇑ ⇑ be the upward fuzzy preference relation which satisfy the
upward additive consistency condition. Then based on ⇑, we can derive the upward
additive consistency matrix for ⇑ which satisfies the additive consistency, where

( )( )f
n

f f f f= =
1

2
− + − + 0.5 .

ik n n
j

n

ij ji jk kj

n n
×

=1 ×


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑⇑ ⇑ ⇑ ⇑ ⇑ ⇑

Proof. The proof is straightforward. □

Theorem 2. The upward consistency matrix ( )f=
ik n n×

⇑ ⇑ satisfies the upward
additive consistency condition and the upward order consistency condition as follows:

(i) f f+ = 1
ik ki
⇑ ⇑ ;

(ii) f = 0.5
ii
⇑ ;

(iii) f f f= + − 0.5
ik is sk
⇑ ⇑ ⇑ ;

(iv) f f
ik is
≤⇑ ⇑ for all i n{1, 2, …, }∈ , where k n{1, 2, …, }∈ and s n{1, 2, …, }∈ ;

(v) f f f f− = −
ik is tk ts
⇑ ⇑ ⇑ ⇑ for all i n{1, 2, …, }∈ and t n{1, 2, …, }∈ , where k n{1, 2, …, }∈

and s n{1, 2, …, }∈ .

Proof. The proof is straightforward. □

4 | α‐UPWARD FUZZIFIED PREFERENCE ROUGH SET

Preference relations are very useful in expressing decision maker's preference information in
ordinal decision problems. Fuzzy preference relation is first proposed by Orlovsky (1978) to
represent an expert's opinion about a set of alternatives. The fuzzy preference relation not only
can reflect that one alternative is before another alternative, but also can show the preference
degree. The Pawlak's rough set model and fuzzy rough set are not able to receive and extract
the information of ordinal structure and cannot be used to analyze the information with
preference relations. Pawlak discussed this problem in Reference [47]. Greco et al. proposed a
novel rough set model for preference analysis and constructed dominance relation based on the
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decision preference.27‐29 Hu et al. proposed a type of fuzzy preference relation rough sets model
in Reference [44]. Hu et al.44 adopted the well‐known logis transfer function to compute the
fuzzy preference degree of the feasible alternatives for the construction of fuzzy preference
relation and proposed a new type of fuzzy preference relation rough set model. Pan et al.45

pointed out that the transfer fuzzy preference degree of Hu et al. is not additive consistent and
they suggested another transfer function to modify the fuzzy preference relation rough set
model of Hu et al. As mentioned earlier that the transfer function for computing the fuzzy
preference degree in Pan et al.45 for the construction of upward/downward fuzzy preference
relations are not additive consistent. Less effort has been made to explore the structure of
these fuzzy preference relation rough sets using fuzzy preference relations. In current literature
the researchers utilized the idea of fuzzy preference relation to find the fuzzy approximations.
However the scholars were unable/incapable to find the crisp approximations with the help of
fuzzy preference relations. Naturally question arises that whether we can find the crisp approx-
imations with the help of fuzzy preference relations? The affirmative answer to this question has
led the present authors to the introduction of α‐upward fuzzified preference rough sets. Moreover,
the approximation defined based on α‐upward fuzzified preference rough sets play a bridging role
between fuzzy preference relation and crisp set. Furthermore, the approximation defined based
on α‐upward fuzzified preference rough sets are useful in different uncertainties such as
approximate precision, rough degree, and approximate quality and their mutual relationships.
Similarly the very same concept can be applied for linguistic/ordinal information systems.

Definition 3. The upward and downward fuzzy preference classes i
⇑ and i

⇓ of qi
induced by the upward and downward additive fuzzy preference relations⇑ and⇓ are
defined by

= + + +

= + + + ,

i
f

q

f

q

f

q

i
f

q

f

q

f

q

i i in

n

i i in

n

1

1

2

2

1

1

2

2









⋯

⋯

⇑ ⇑ ⇑ ⇑

⇓ ⇓ ⇓ ⇓

where "+" means the union operation. The upward fuzzy preference relation and
downward fuzzy preference relation from a family of fuzzy information granules from
the universe which composes the upward fuzzy preference granular structure and
downward fuzzy preference granular structure given by

{ }( ) = , , …, ,n1 2      ⇑
⇑ ⇑ ⇑

and

{ }( ) = , , …, .n1 2      ⇓
⇓ ⇓ ⇓

Definition 4. Let ( , ( ))  ⇑ be an upward fuzzy preference approximation space,
where  is an arbitrary universe and ( ) ⇑ an upward additive fuzzy preference
granular structure. For any α [0.5, 1)∈ , the upward fuzzified preference lower and upper
approximations for a given set 1 ⊆ are defined as

{ }( ) q f α qA ( ) = : < 1 − for allα
i ij j

c
1 1   


∈ ∈▽ ⇑ ⇑

⇑

and
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{ }( ) q f α q( ) = : 1 − for some .α
i ij j1 1   


∈ ≥ ∈△ ⇑ ⇑

⇑

The pair ( )( ) ( )A ( ) , ( )α α
1 1   

 
▽ ⇑ △ ⇑
⇑ ⇑ is referred as an α‐upward fuzzified preference

rough set. The positive, negative and boundary regions of 1 ⊆ for any α [0.5, 1)∈ are
defined and denoted as:

( )
( )

( )

( ) ( )

POS

NEG

BND

( ) = A ( )

( ) = ( )

( ) = ( ) − A ( ) .

α

α
c

α α

1 1

1 1

1 1 1

  

  

    

 

 

  

⇑ ▽ ⇑

⇑ △ ⇑

⇑ △ ⇑ ▽ ⇑

⇑ ⇑

⇑ ⇑

⇑ ⇑ ⇑

Theorem 3. Let ( , ( ))  ⇑ be an upward fuzzy preference approximation space and
α α1 2≤ , where α α, [0.5, 1)1 2 ∈ . Then

(i) ( ) ( )A ( ) A ( )α α
1 1

2 1   
 

⊆▽ ⇑ ▽ ⇑
⇑ ⇑ ;

(ii) ( ) ( )( ) ( )α α
1 1

1 2   
 

⊆△ ⇑ △ ⇑
⇑ ⇑ .

Proof.

(i) For any q f α( A ( ) ) , < 1 −i
α

ij1 2
2 


∈ ▽ ⇑ ⇑

⇑ for all qj
c
1∈ . But α α1 − 1 −2 1≤ ,

we have f α< 1 −
ij 1
⇑ for all qj

c
1∈ . Thus q ( A ( ) )i

α
1

1 


∈ ▽ ⇑
⇑ showing that

( A ( ) ) ( A ( ) )α α
1 1

2 1   
 

⊆▽ ⇑ ▽ ⇑
⇑ ⇑ .

(ii) For any q f α( ( ) ) , 1 −i
α

ij1 1
1 


∈ ≥△ ⇑ ⇑

⇑ for some qj 1∈ . But α α1 − 1 −2 1≤ ,

we have f α1 −
ij 2≥⇑ for some qj 1∈ . Thus q ( ( ) )i

α
1

2 


∈ △ ⇑
⇑ showing that

( ( ) ) ( ( ) )α α
1 1

1 2   
 

⊆△ ⇑ △ ⇑
⇑ ⇑ . □

Theorem 4. Let ( , ( ))  ⇑ be an upward fuzzy preference approximation space and
α [0.5, 1)∈ . Then

(i) ( A ( ) ) ( ( ) )α α
1 1 1    

 
⊆ ⊆▽ ⇑ △ ⇑

⇑ ⇑ ,

(ii) ( A ( ) ) = = ( ( ) )α α 
 
∅ ∅ ∅▽ ⇑ △ ⇑

⇑ ⇑ and ( A ( ) ) = = ( ( ) )α α    
 
▽ ⇑ △ ⇑
⇑ ⇑ ,

(iii) ( A ( ) ) = (( ( ) ) )c α α c
1 1   

 
▽ ⇑ △ ⇑
⇑ ⇑ and ( ( ) ) = (( A ( ) ) )c α α c

1 1   
 
△ ⇑ ▽ ⇑
⇑ ⇑ ,

(iv) if 1 1 ⊆ , then ( A ( ) ) ( A ( ) )α α
1 1   

 
⊆▽ ⇑ ▽ ⇑

⇑ ⇑ and ( ( ) ) ( ( ) )α α
1 1   

 
⊆△ ⇑ △ ⇑

⇑ ⇑ ,

(v) if 1 2 ⊆⇑ ⇑, then ( A ( ) ) ( A ( ) )α α
1 1

2 1
   

 
⊆▽ ⇑ ▽ ⇑

⇑ ⇑ and ( ( ) )α1
1

 

△ ⇑
⇑ ( ( ) )α1

2
 


⊆ △ ⇑

⇑ ,

(vi) ( A ( ) ) ( A ( ) ) ( A ( ) )α α α
1 1 1 1      

  
∪ ⊇ ∪▽ ⇑ ▽ ⇑ ▽ ⇑

⇑ ⇑ ⇑ ,

(vii) ( ( ) ) ( ( ) ) ( ( ) )α α α
1 1 1 1      

  
∩ ⊆ ∩△ ⇑ △ ⇑ △ ⇑

⇑ ⇑ ⇑ ,

(viii) ( A ( ) ) = ( A ( ) ) ( A ( ) )α α α
1 1 1 1      

  
∩ ∩▽ ⇑ ▽ ⇑ ▽ ⇑

⇑ ⇑ ⇑ ,

(ix) ( ( ) ) = ( ( ) ) ( ( ) )α α α
1 1 1 1      

  
∪ ∪△ ⇑ △ ⇑ △ ⇑

⇑ ⇑ ⇑ .
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Proof.

(i) and (ii) straightforward.
(iii) Let q ( A ( ) )c α

1 


∈ ▽ ⇑
⇑ . Then f α< 1 −

ij
⇑ for all q ( ) =j

c c
1 1 ∈ . This implies that

f α1 −
ij
≥⇑ for some qj 1∈ . This implies that q ( ( ) )α1 


∉ △ ⇑

⇑ . Therefore q ∈

(( ( ) ) )α c
1 


△ ⇑
⇑ . On the other hand, for any q (( ( ) ) )α c

1 


∈ △ ⇑
⇑ , then q ∉

( ( ) )α1 

△ ⇑
⇑ . This implies that f α1 −

ij
≥⇑ for some qj 1∈ , we can get f α< 1 −

ij
⇑

for all qj 1∈ . Thus q ( A ( ) )c α
1 


∈ ▽ ⇑

⇑ . Therefore ( A ( ) ) = (( ( ) ) )c α α c
1 1   

 
▽ ⇑ △ ⇑
⇑ ⇑ .

Similarly we can get ( ( ) ) = (( A ( ) ) )c α α c
1 1   

 
△ ⇑ ▽ ⇑
⇑ ⇑ .

(iv) Let q ( A ( ) )α1 


∈ ▽ ⇑
⇑ . Then f α< 1 −

ij
⇑ for all qj

c
1∈ . But c c

1 1 ⊆ , this implies

that f α< 1 −
ij
⇑ for all qj

c
1∈ . Hence q ( A ( ) )α1 


∈ ▽ ⇑

⇑ . Therefore ( A ( ) )α1 


⊆▽ ⇑
⇑

( A ( ) )α1 

▽ ⇑
⇑ . Similarly we can get ( ( ) ) ( ( ) )α α

1 1   
 

⊆△ ⇑ △ ⇑
⇑ ⇑ .

(v) Let q ( A ( ) )i
α

1
2

 


∈ ▽ ⇑
⇑ . Then f α< 1 −

ij2
⇑ for all qj

c
1∈ . But f f

1 2
≤⇑ ⇑, this implies

that f α< 1 −
ij1
⇑ for all qj

c
1∈ . Thus q ( A ( ) )α1

1
 


∈ ▽ ⇑

⇑ . Therefore ( A ( ) )α1
2

 


⊆▽ ⇑
⇑

( A ( ) )α1
1

 

▽ ⇑
⇑ . Similarly ( ( ) ) ( ( ) )α α

1 1
1 2

   
 

⊆△ ⇑ △
⇑ ⇑ .

The proof process of (vi) and (vii) is similar to the proof of (iv).

(viii) By using (iv), we can write ( A ( ) ) ( A ( ) )α α
1 1 1    

 
∩ ⊆▽ ⇑ ▽ ⇑

⇑ ⇑ and ( A ( ) )α1 1  


∩▽ ⇑
⇑

( A ( ) )α1 


⊆ ▽ ⇑
⇑ . This implies that ( A ( ) ) ( A ( ) )α α

1 1 1    
 

∩ ⊆▽ ⇑ ▽ ⇑
⇑ ⇑

( A ( ) )α1 


∩ ▽ ⇑
⇑ . For the reverse inclusion, let q ( A ( ) ) ( A ( ) )i

α α
1 1   

 
∈ ∩▽ ⇑ ▽ ⇑

⇑ ⇑ .

Then qi ∈( A ( ) )α1 

▽ ⇑
⇑ and qi ∈( A ( ) )α1 


▽ ⇑
⇑ . This implies that f α< 1 −

ij
⇑ for all

qj
c
1∈ and f α< 1 −

ik
⇑ for all qk

c
1∈ . This implies that f α< 1 −

il
⇑ for all ql ∈

c c
1 1 ∪ = ( )c1 1 ∩ . Thus q ( A ( ) )i

α
1 1  


∈ ∩▽ ⇑

⇑ . Therefore ( A ( ) ) =α
1 1  


∩▽ ⇑

⇑

( A ( ) ) ( A ( ) )α α
1 1   

 
∩▽ ⇑ ▽ ⇑

⇑ ⇑ .

(ix) The proof process is similar to the proof of (viii). □

Definition 5. Let ( , ( ))  ⇑ be an upward fuzzy preference approximation space and
α [0.5, 1)∈ . The approximate precision ρ ( )α

1
⇑

⇑ of 1 is defined by:

( )

( )
ρ ( ) =

A ( )

( )
,α

α

α
1

1

1


 

 






⇑

▽ ⇑

△ ⇑
⇑

⇑

⇑

where 1 is a nonempty subset of  and ∣⋅∣ denotes the cardinality of a set. Let
μ ρ( ) = 1 − ( )α α

1 1  
⇑ ⇑

⇑ ⇑ . Then μ ( )α
1
⇑

⇑ is called the rough degree of 1 , where
μ ρ( ) , ( ) [0, 1]α α

1 1   ∈⇑ ⇑
⇑ ⇑ .

The following theorem describes the relationship of the rough degree μ ( )α
1
⇑

⇑ and the ap-
proximate precision ρ ( )α

1
⇑

⇑ for the union and intersection of subsets 1 and 1 of the universe  .
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Theorem 5. Let ( , ( ))  ⇑ be an upward fuzzy preference approximation space and
α [0.5, 1)∈ . Then the approximate precision and rough degree of the subsets

, ,1 1 1 1   ∪ and 1 1 ∩ of the universe  satisfy the following relations.

(i) ( ) ( )

( ) ( )

( ) ( )

μ

μ μ

μ

( ) ( ) ( )

( ) ( ) + ( ) ( )

− ( ) ( ) ( ) .

α α α

α α α α

α α α

1 1 1 1

1 1 1 1

1 1 1 1

     

     

     

  

   

  

∪ ∪

≤

∩ ∩

△ ⇑ △ ⇑

△ ⇑ △ ⇑

△ ⇑ △ ⇑

⇑ ⇑ ⇑

⇑ ⇑ ⇑ ⇑

⇑ ⇑ ⇑

(ii) ( ) ( )

( ) ( )

( ) ( )

ρ

ρ ρ

ρ

( ) ( ) ( ) ( )

( ) ( ) + ( ) ( )

− ( ) ( ) ( ) ( ) .

α α α

α α α α

α α α

1 1 1 1 1

1 1 1 1

1 1 1 1 1

      

     

      

  

   

  

∪ ∪

≥

∩ ∩

⇑ △ ⇑ △ ⇑

⇑ △ ⇑
⇑ △ ⇑

⇑ △ ⇑ △ ⇑

⇑ ⇑ ⇑

⇑ ⇑ ⇑ ⇑

⇑ ⇑ ⇑

Proof. The proof is straightforward. □

Definition 6. Let ( , ( ))  ⇑ be an upward fuzzy preference approximation space and
α [0.5, 1)∈ . The approximate quality γ ( )α

1⇑ of 1 is defined by:

( )
γ ( ) =

A ( )
,α

α

1

1


 





∣ ∣

▽ ⇑

⇑

⇑

where 1 is a nonempty subset of  and γ ( ) [0, 1]α
1 ∈⇑ .

The following theorem describes the relationship of the rough degree μ ( )α
1⇑ and the ap-

proximate quality γ ( )α
1⇑ for the union and intersection of subsets 1 and 1 of the universe  .

Theorem 6. Let ( , ( ))  ⇑ be an upward fuzzy preference approximation space and
α [0.5, 1)∈ . Then the rough degree and approximate quality for all subsets , ,1 1 1 1   ∪
and 1 1 ∩ of the universe  satisfy the following relation:

( ) ( )

( ) ( )

( ) ( )

{ }

μ

γ γ

μ

( ) ( ) ( )

( ) + ( ) − ( ) + ( )

− ( ) ( ) ( ) .

α α α

α α α α

α α α

1 1 1 1

1 1 1 1

1 1 1 1

     

      

     

  

   

  

∪ ∪

≤

∩ ∩

△ ⇑ △ ⇑

△ ⇑ △ ⇑

△ ⇑ △ ⇑

⇑ ⇑ ⇑

⇑ ⇑ ⇑ ⇑

⇑ ⇑ ⇑

Proof. The proof is straightforward. □

The following theorem highlights the relationship between approximate precision and
approximate quality for the union and intersection of two sets.
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Theorem 7. Let ( , ( ))  ⇑ be an upward fuzzy preference approximation space and
α [0.5, 1)∈ . Then the approximate quality and approximate precision for all subsets

,1 1  , 1 1 ∪ and 1 1 ∩ of the universe  satisfy the following relation:

( ) ( )

( ) ( ) ( )

{ }

ρ

γ γ

ρ

( ) ( ) ( )

( ) + ( )

− ( ) ( ) .

α α α

α α

α α α

1 1 1 1

1 1

1 1 1 1

     

  

     

  

 

  

∪ ∪

≥

∩ ∩

△ ⇑ △ ⇑

△ ⇑ △ ⇑

⇑ ⇑ ⇑

⇑ ⇑

⇑ ⇑ ⇑

Proof. The proof is straightforward. □

5 | β‐NEIGHBORHOOD BASED UPWARD ROUGH SETS

In this section, we first find upward β‐neighborhood in the fuzzy upward covering approx-
imation space and then present upward rough sets and discussed some of their properties.

Definition 7. Let  be an arbitrary universal set and ( ) ⇑ be an upward additive

fuzzy preference granular structure. Then for each β (0, 1]∈ , ( ) ⇑ is a fuzzy upward β‐

covering of  , if q β( )
i

n

i
=1


⎛
⎝⎜

⎞
⎠⎟⋃ ≥⇑ for each q ∈ . The pair ( , ( ))  ⇑ is called fuzzy

upward covering approximation space.

Definition 8. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space, where
( ) ⇑ is a fuzzy upward β‐covering of  . For each q ∈ , we define

(i) the fuzzy β‐upward neighborhood q
β ⇑ of q as

{ }q β= ( ): ( ) .q
β

i i     ⋂ ∈ ≥⇑ ⇑
⇑ ⇑

(ii) the fuzzy complementary β‐upward neighborhood q
β⇑ of q as

y q y( ) = ( ) for all .q
β

y
β  ∈⇑ ⇑

Proposition 1. For each q q β, ( )q
β ∈ ≥⇑ .

Proof. Let q ∈ . Then it follows that

q q q β( ) = ( ) = ( ) .q
β

q β

i
q β

i

( ) ( )
i i

  








 

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⋂ ∧ ≥⇑

≥ ≥⇑

⇑

⇑

⇑

□

Proposition 2. For all q y z, , ∈ , if y β( )q
β ≥⇑ and z β( )y

β ≥⇑ , then z β( )q
β ≥⇑ .
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Proof. For y β( )q
β ≥⇑ and for each i I n= {1, 2, …, }∈ , if q β( )i

 ≥
⇑

, then y β( )i
 ≥
⇑

.
Similarly if z β( )y

β ≥⇑ which implies y β( )i
 ≥
⇑

, and thus z β( )i
 ≥
⇑

. Hence, for each
i I q β, ( )i

∈ ≥
⇑

implies z β( )i
 ≥
⇑

. Therefore z β( )q
β ≥⇑ . □

Proposition 3. If β β1 2≤ , then q
β

q
β1 2 ⊆⇑ ⇑ for all q ∈ .

Proof. Let β β1 2≤ for each q ∈ . q β q β{ : ( ) } { : ( ) }i i i i1 2      ≥ ⊇ ≥
⇑ ⇑ ⇑ ⇑

. Hence

q β q β= { : ( ) } { : ( ) } =q
β

i i i i q
β

1 2
1 2        ⋂ ≥ ⊆ ⋂ ≥⇑ ⇑⇑ ⇑ ⇑ ⇑

. □

Definition 9. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space, where
( ) ⇑ is a fuzzy upward β‐covering of  for some β (0, 1]∈ . Then for each q ∈ , we

define the upward β‐neighborhood Nq
β⇑ of q as:

{ }N y y β= : ( ) .q
β

q
β ∈ ≥⇑ ⇑

Definition 10. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space, where
( ) ⇑ is a fuzzy upward β‐covering of  for some β (0, 1]∈ . We define the upward lower

approximation ( A ( ))β 1 ▽ ⇑ and the upward upper approximation ( ( ))β 1 △ ⇑ of 1 as:

( )
( )

( ) ( )

{ }N NA ( ) = : ;

( ) = A .

β q
β

q
β

β β
c

c

1 1

1 1

  

   

∪ ⊆▽ ⇑ ⇑ ⇑

△ ⇑ ▽ ⇑

Further, 1 is called a definable set on upward approximation space if
( A ( )) = ( ( ))β 1 1   ▽ ⇑ △ ⇑. Otherwise, the pair (( A ( )) , ( ( )) )β β1 1   ▽ ⇑ △ ⇑ is called
upward rough set, where c

1 denote the complementary set − 1  of 1 ⊆ .

Theorem 8. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space, where
( ) ⇑ is a fuzzy upward β‐covering of  for some β (0, 1]∈ . Then

(i) ( ( ( ))) = ( ( ))β β β1 1    △ △ ⇑ △ ⇑,
(ii) ( A ( A ( ))) = ( A ( ))β β β1 1    ▽ ▽ ⇑ ▽ ⇑.

In classical rough set theory, if the lower approximation R ( )1 and upper approximation

R ( )1 of the set 1 are equal to 1 , then 1 is called definable, otherwise 1 is considered a rough

set. So both R ( )1 and R ( )1 of the set 1 in Pawlak's rough set model are definable sets, that is,

R R R R R R R R R R( ( )) = ( ) = ( ( )), ( ( )) = ( ) = ( ( ))1 1 1 1 1 1      . But in upward β‐neighborhood

based upward rough sets, the upward lower approximation ( A ( ))β 1 ▽ ⇑ and the upward

upper approximation ( ( ))β 1 △ ⇑ of 1 are hardly definable sets. In general, they are still

rough sets, that is,( A ( A ( ))) = ( A ( )) ( ( A ( ))) , ( ( ( ))) =β β β β β β β1 1 1 1          ≠▽ ▽ ⇑ ▽ ⇑ △ ▽ ⇑ △ △ ⇑

( ( )) ( A ( ( )))β β β1 1    ≠△ ⇑ ▽ △ ⇑. We now give an example to show this fact.

Example 2. Let q j= { : = 1, 2, …, 9}j be the set of actions. Consider the fuzzy upward
β‐neighborhoods as follows:
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q q q q q

q q q q

q q q q q

q q q q

q q q q q

q q q q

q q q q q

q q q q

q q q q q

q q q q

q q q q q

q q q q

q q q q q

q q q q

q q q q q

q q q q

q q q q q

q q q q

=
0.5000

+
0.9167

+
1.0000

+
0.6667

+
0.8333

+
1.0000

+
0.9167

+
0.9167

+
0.9167

;

=
0.0833

+
0.5000

+
0.5833

+
0.2500

+
0.4167

+
0.5833

+
0.5000

+
0.5000

+
0.5000

;

=
0.0000

+
0.4167

+
0.5000

+
0.1667

+
0.3333

+
0.5000

+
0.4167

+
0.4167

+
0.4167

;

=
0.3333

+
0.7500

+
0.8333

+
0.5000

+
0.6667

+
0.8333

+
0.7500

+
0.7500

+
0.7500

;

=
0.1667

+
0.5833

+
0.6667

+
0.3333

+
0.5000

+
0.6667

+
0.5833

+
0.5833

+
0.5833

;

=
0.0000

+
0.4167

+
0.5000

+
0.1667

+
0.3333

+
0.5000

+
0.4167

+
0.4167

+
0.4167

;

=
0.0833

+
0.5000

+
0.5833

+
0.2500

+
0.4167

+
0.5833

+
0.5000

+
0.5000

+
0.5000

;

=
0.0833

+
0.5000

+
0.5833

+
0.2500

+
0.4167

+
0.5833

+
0.5000

+
0.5000

+
0.5000

;

=
0.0833

+
0.5000

+
0.5833

+
0.2500

+
0.4167

+
0.5833

+
0.5000

+
0.5000

+
0.5000

.

q

q

q

q

q

q

q

q

q

0.5

1 2 3 4 5

6 7 8 9

0.5

1 2 3 4 5

6 7 8 9

0.5

1 2 3 4 5

6 7 8 9

0.5

1 2 3 4 5

6 7 8 9

0.5

1 2 3 4 5

6 7 8 9

0.5

1 2 3 4 5

6 7 8 9

0.5

1 2 3 4 5

6 7 8 9

0.5

1 2 3 4 5

6 7 8 9

0.5

1 2 3 4 5

6 7 8 9

1

2

3

4

5

6

7

8

9



















⇑

⇑

⇑

⇑

⇑

⇑

⇑

⇑

⇑

Also

N q q q q q q q q q N q q q q q q N q q N

q q q q q q q q N q q q q q q q q N

q q N q q q q q q N q q q q q q N

q q q q q q

= { , , , , , , , , }, = { , , , , , }, = { , },

= { , , , , , , , }, = { , , , , , , , },

= { , }, = { , , , , , }, = { , , , , , },

= { , , , , , }

q q q q

q q

q q q

0.5
1 2 3 4 5 6 7 8 9

0.5
2 3 6 7 8 9

0.5
3 6

0.5

2 3 4 5 6 7 8 9
0.5

1 2 3 5 6 7 8 9
0.5

3 6
0.5

2 3 6 7 8 9
0.5

2 3 6 7 8 9
0.5

2 3 6 7 8 9

1 2 3 4

5 6

7 8 9

⇑ ⇑ ⇑ ⇑

⇑ ⇑

⇑ ⇑ ⇑

.

Now let q q= { , }1 3 6 . Then q q( A ( A ( ))) = ( A ( )) = { , }β β β1 1 3 6    ▽ ▽ ⇑ ▽ ⇑ and

q q q q q q q q q( ( A ( ))) = { , , , , , , , , }β β 1 1 2 3 4 5 6 7 8 9  △ ▽ ⇑ . Thus ( A ( A ( ))) =β β 1  ▽ ▽ ⇑
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( A ( )) ( ( A ( )))β β β1 1    ≠▽ ⇑ △ ▽ ⇑. Similarly we can get ( ( ( ))) =β β 1  △ △ ⇑

( ( )) ( A ( ( )))β β β1 1    ≠△ ⇑ ▽ △ ⇑.

From the above example we see that ( A ( ))β 1 ▽ ⇑ and ( ( ))β 1 △ ⇑ are still rough sets, if we
apply the lower or upper approximation operations over and over again to a subset 1 , we
obtain six different sets at most. These sets are

( A ( )) , ( ( A ( ))) , ( A ( ( A ( )))) , ( ( )) ,

( A ( ( ))) , ( ( A ( ( )))) .

β β β β β β β

β β β β β

1 1 1 1

1 1

          

      

▽ ⇑ △ ▽ ⇑ ▽ △ ▽ ⇑ △ ⇑

▽ △ ⇑ △ ▽ △ ⇑

Theorem 9. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space, where
( ) ⇑ is a fuzzy upward β‐covering of  for some β (0, 1]∈ . For any crisp subset 1 of  ,

the following properties hold:

(i) ( ( A ( ( A ( ))))) = ( ( A ( )))β β β β β β1 1       △ ▽ △ ▽ ⇑ △ ▽ ⇑;

(ii) ( A ( ( A ( ( ))))) = ( A ( ( )))β β β β β β1 1       ▽ △ ▽ △ ⇑ ▽ △ ⇑.

Proof.
(i) As we know that ( A ( )) ( ( A ( )))β β β1 1    ⊆▽ ⇑ △ ▽ ⇑. This implies that ( A ( A ( )))β β 1  ▽ ▽ ⇑

( A ( ( A ( ))))β β β 1   ⊆ ▽ △ ▽ ⇑. Therefore ( A ( )) ( A ( ( A ( ))))β β β β1 1     ⊆▽ ⇑ ▽ △ ▽ ⇑. Also

( ( A ( ))) ( ( A ( ( A ( )))))β β β β β β1 1       ⊆△ ▽ ⇑ △ ▽ △ ▽ ⇑. Now ( A ( ( A ( ))))β β β 1   ▽ △ ▽ ⇑

( ( A ( )))β β 1  ⊆ △ ▽ ⇑. This implies that ( ( A ( ( A ( )))))β β β β 1     ⊆△ ▽ △ ▽ ⇑

( ( ( A ( )))) = ( ( A ( )))β β β β β1 1      △ △ ▽ ⇑ △ ▽ ⇑.

Therefore ( ( A ( ( A ( ))))) = ( ( A ( )))β β β β β β1 1       △ ▽ △ ▽ ⇑ △ ▽ ⇑.
(ii) Now ( A ( ( ))) ( ( ))β β β1 1    ⊆▽ △ ⇑ △ ⇑. Then ( ( A ( ( )))) ( ( ( )))β β β β β1 1      ⊆△ ▽ △ ⇑ △ △ ⇑

= ( ( ))β 1 △ ⇑. This implies that ( A ( ( A ( ( )))))β β β β 1     ⊆▽ △ ▽ △ ⇑ ( A ( ( )))β β 1  ▽ △ ⇑.

Moreover, it follows from that ( A ( ( ))) ( ( A ( ( ))))β β β β β1 1      ⊆▽ △ ⇑ △ ▽ △ ⇑.

Also ( A ( A ( ( ))))β β β 1    ⊆▽ ▽ △ ⇑ ( A ( ( A ( ( )))))β β β β 1    ▽ △ ▽ △ ⇑. This implies that

( A ( ( )))β β 1  ▽ △ ⇑ ( A ( ( A ( ( )))))β β β β 1    ⊆ ▽ △ ▽ △ ⇑.

Therefore ( A ( ( A ( ( ))))) = ( A ( ( )))β β β β β β1 1       ▽ △ ▽ △ ⇑ ▽ △ ⇑.
□

The following theorem gives the relationship between the aforesaid six sets.

Theorem 10. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space, where
( ) ⇑ is a fuzzy upward β‐covering of  for some β (0, 1]∈ . For any crisp subset 1 of  ,

the following properties hold:

(i) ( A ( ( A ( ( ))))) = ( A ( ( ))) =β β β β β β1 1       ▽ △ ▽ △ ⇑ ▽ △ ⇑ ( A ( A ( ( ))))β β β 1   ▽ ▽ △ ⇑;
(ii) ( ( A ( ( A ( ))))) = ( ( A ( ))) =β β β β β β1 1       △ ▽ △ ▽ ⇑ △ ▽ ⇑ ( ( ( A ( ))))β β β 1   △ △ ▽ ⇑;
(iii) If ( A ( )) = ( ( ))β β1 1   ▽ ⇑ △ ⇑, then ( A ( )) = = ( ( )) = ( A ( ( )))β β β β1 1 1 1       ▽ ⇑ △ ⇑ ▽ △ ⇑

= ( ( A ( ( )))) = ( ( A ( ))) =β β β β β1 1      △ ▽ △ ⇑ △ ▽ ⇑ ( A ( ( A ( ))))β β β 1   ▽ △ ▽ ⇑;

REHMAN ET AL. | 3721



(iv) If ( ( )) = ( A ( ( A ( ))))β β β β1 1     △ ⇑ ▽ △ ▽ ⇑, then ( ( )) = ( A ( ( )))β β β1 1    △ ⇑ ▽ △ ⇑

=( ( A ( ( )))) = ( ( A ( )))β β β β β1 1      △ ▽ △ ⇑ △ ▽ ⇑= ( A ( ( A ( ))))β β β 1   ▽ △ ▽ ⇑;

(v) If ( A ( )) = ( ( A ( ( ))))β β β β1 1     ▽ ⇑ △ ▽ △ ⇑, then ( A ( )) = ( ( A ( )))β β β1 1    ▽ ⇑ △ ▽ ⇑

= ( ( A ( ( )))) = ( A ( ( )))β β β β β1 1      △ ▽ △ ⇑ ▽ △ ⇑= ( A ( ( A ( ))))β β β 1   ▽ △ ▽ ⇑;

(vi) If ( ( )) = ( ( A ( )))β β β1 1    △ ⇑ △ ▽ ⇑, then ( ( )) = ( ( A ( ))) =β β β1 1    △ ⇑ △ ▽ ⇑

( ( A ( ( ))))β β β 1   △ ▽ △ ⇑ and ( A ( ( ))) = ( A ( ( A ( ))))β β β β β1 1      ▽ △ ⇑ ▽ △ ▽ ⇑;

(vii) If ( A ( )) = ( A ( ( )))β β β1 1    ▽ ⇑ ▽ △ ⇑, then ( A ( )) = ( A ( ( ))) =β β β1 1    ▽ ⇑ ▽ △ ⇑

( A ( ( A ( ))))β β β 1   ▽ △ ▽ ⇑ and ( ( A ( ))) = ( ( A ( ( ))))β β β β β1 1      △ ▽ ⇑ △ ▽ △ ⇑;

(viii) If ( A ( ( A ( )))) = ( ( A ( ( ))))β β β β β β1 1       ▽ △ ▽ ⇑ △ ▽ △ ⇑, then ( ( A ( ))) =β β 1  △ ▽ ⇑

( ( A ( ( )))) = ( A ( ( ))) =β β β β β1 1      △ ▽ △ ⇑ ▽ △ ⇑ ( A ( ( A ( ))))β β β 1   ▽ △ ▽ ⇑;

(ix) If ( ( A ( ))) = ( A ( ( )))β β β β1 1     △ ▽ ⇑ ▽ △ ⇑, then ( ( A ( ))) =β β 1  △ ▽ ⇑

( ( A ( ( )))) = ( A ( ( )))β β β β β1 1      △ ▽ △ ⇑ ▽ △ ⇑ = ( A ( ( A ( ))))β β β 1   ▽ △ ▽ ⇑.

6 | MULTIGRANULATION (ℐ, ) ‐FUZZY UPWARD ROUGH
SETS APPLYING FUZZY UPWARD β‐COVERING

Qian et al. generalized the Pawlak's single granulation rough set model to a multigranulation rough
set model for finding two terminologies called optimistic/pessimistic multigranulation rough set
models and discussed their applications in decision making process.30,31 Qian et al.32 further ex-
tended multigranulation methodology to decision theoretic rough sets and applied them to multi-
criteria group decision making problem. In this section, we presented the idea to combine the fuzzy
implicator and t‐norm to introduce optimistic/pessimistic multigranulation ( , )  ‐fuzzy upward
rough sets using fuzzy upward β‐covering approach and some relative properties are discussed.

Definition 11 (Radzikowska and Kerre48). Let : [0, 1] × [0, 1] [0, 1] → be an
increasing, associative and commutative mapping which satisfy the boundary
condition, for all q q q[0, 1], ( , 1) =∈ . Then  is called t‐norm.

Similarly if : [0, 1] × [0, 1] [0, 1] → is an increasing, associative and commutative
mapping which satisfy the boundary condition, for all q q q[0, 1], ( , 0) =∈ , then  is called
t‐conorm.

Let : [0, 1] × [0, 1] [0, 1] → be a mapping which satisfy the conditions:  is left
monotonic decreasing and right monotonic increasing; (1, 0) = 0, (1, 1) = (0, 1) =  

(0, 0) = 1 . Then  is called the implicator.
Generally speaking, the main popular continuous t‐norms and t‐conorms are:

(i) q y q y( , ) = min{ , }M ;
(ii) q y q y( , ) = max{ , }M ;
(iii) q y q y( , ) =P ∗ ;
(iv) q y q y q y( , ) = + −P ∗ ;
(v) q y q y( , ) = max{0, + − 1}L ;
(vi) q y q y( , ) = min{1, + }L .
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Definition 12. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space. Then
for every fuzzy subset μ of  , the lower approximation μ( A )β ▽ ⇑ and the upper
approximation μ( )β△ ⇑ of μ are defined by:

{ }( ) ( )

( ) { }

μ q y μ y q

μ q y μ y q

A ( ) = 1 − ( ) ( ) , ,

( ) = ( ) ( ) , .

β
y

q
β

β
y

q
β

  

  





∧

∨

∨ ∈

∧ ∈

▽ ⇑

∈

⇑

△ ⇑

∈

⇑

Definition 13. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space and

( )= ⇑ { ( ), ( ), ( ), …, ( )c c c cl1 2 3
       ⇑ ⇑ ⇑ ⇑ } be l fuzzy upward β‐covering of  with

β (0, 1]∈ , where ( ) = { , , …, }c n1 2t

ct ct ct    
  ⇑
⇑ ⇑ ⇑

for all t l= 1, 2, …, . Assume that q
β

ct
 ⇑

is a fuzzy upward β‐neighborhood of q in  induced by c t l, = 1, 2, …,t . Then for all
fuzzy set μ of the universe  , we define the optimistic multigranulation ( , )  ‐fuzzy
upward lower approximation μ( A ( ))

t

l
β

o
=1 1

( ) ∑ ▽ ⇑ and the optimistic multigranulation

( , )  ‐fuzzy upward upper approximation ( )μ( )
t

l
β

o

=1
1

( )



∑ △

⇑
by

{ }μ q y μ y qA ( ) ( ) = ( ), ( ) ,
t

l

β

o

t

l

y
q
β

c

=1 1

( )

=1
t

   





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∨ ∧∑ ∈▽

⇑

∈

⇑

and

{ }μ q y μ y q( ) = ( ), ( ) , .
t

l

β

o

t

l

y
q
β

c

=1 1

( )

=1
t

   





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∧ ∨∑ ∈△

⇑

∈

⇑

The pair ( ) ( )μ μA ( ) , ( )
t

l
β

o

t

l
β

o

=1
1

( )

=1
1

( )
 

 ⎛
⎝⎜

⎞
⎠⎟∑ ∑▽

⇑
△

⇑
is called optimistic multigranulation

( , )  ‐fuzzy upward rough set of the fuzzy subset μ if ( )μA ( )
t

l
β

o

=1
1

( )



∑ ≠▽

⇑

( )μ( )
t

l
β

o

=1
1

( )



∑ △

⇑
. Otherwise μ is called a definable on multigranulation ( , )  ‐fuzzy

upward approximation space.

(i) If  and  are the Kleene–Dienes implicator KD and standard min operator M
based on S and M , respectively, then the above definition become

{ }( )μ q y μ y qA ( ) ( ) = 1 − ( ) ( ) ,
t

l

β

o

t

l

y
q
β

c

=1 1

( )

=1
t

  





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∨ ∧∑ ∨ ∈▽

⇑

∈

⇑

and
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{ }μ q y μ y q( ) ( ) = ( ) ( ) , .
t

l

β

o

t

l

y
q
β

c

=1 1

( )

=1
t

  





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∧ ∨∑ ∧ ∈△

⇑

∈

⇑

This means that ( ) ( )μ μA ( ) , ( )
t

l
β

o

t

l
β

o

=1
1

( )

=1
1

( )
 

 ⎛
⎝⎜

⎞
⎠⎟∑ ∑▽

⇑
△

⇑
is the optimistic multi-

granulation fuzzy upward rough set of μ.

(ii) If y y( ) = ( )q
β

c q
β

( )t i ⇑ , then the above expression become:

{ }μ q y μ y qA ( ) ( ) = ( ), ( ) ,
t

l

β

o

t

l

y
q

β

=1 1

( )

=1
( )i   





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∨ ∧∑ ∈▽

⇑

∈

and

{ }μ q y μ y q( ) ( ) = ( ), ( ) , .
t

l

β

o

t

l

y
q

β

=1 1

( )

=1
( )i   





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∧ ∨∑ ∈△

⇑

∈

This means that ( ) ( )μ μA ( ) , ( )
t

l
β

o

t

l
β

o

=1
1

( )

=1
1

( )
 

 ⎛
⎝⎜

⎞
⎠⎟∑ ∑▽

⇑
△

⇑
is the optimistic multi-

granulation fuzzy rough set of μ as proposed by Zhan et al.40

(iii) If c c c c= = = = l1 2 ⋅⋅⋅ or m = 1, then the above definition as follows:

{ }( )μ q y μ y qA ( ) ( ) = 1 − ( ) ( ) ,
t

l

β

o

y
c q

β

=1 1

( )

  





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∧∑ ∨ ∈▽

⇑

∈

⇑

and

{ }μ q y μ y q( ) ( ) = ( ) ( ) , .
t

l

β

o

y
q
β

c

=1 1

( )

  





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∨∑ ∧ ∈△

⇑

∈

⇑

This means that ( ) ( )μ μA ( ) , ( )
t

l
β

o

t

l
β

o

=1
1

( )

=1
1

( )
 

 ⎛
⎝⎜

⎞
⎠⎟∑ ∑▽

⇑
△

⇑
is the fuzzy upward

rough set of μ.

(iv) If y y( ) = ( )q
β

c q
β

( ) ⇑ , then the above expression become as follows:

{ }( )μ q y μ y qA ( ) ( ) = 1 − ( ) ( ) ,
t

l

β

o

y
q

β

=1 1

( )

( )  





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∧∑ ∨ ∈▽

⇑

∈

and

{ }μ q y μ y q( ) ( ) = ( ) ( ) , .
t

l

β

o

y
q

β

=1 1

( )

( )  





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∨∑ ∧ ∈△

⇑

∈
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This means that ( ) ( )μ μA ( ) , ( )
t

l
β

o

t

l
β

o

=1
1

( )

=1
1

( )
 

 ⎛
⎝⎜

⎞
⎠⎟∑ ∑▽

⇑
△

⇑
is the fuzzy rough set of

μ as proposed by Ma.38

Remark 1. Let  be an implicator 1 and 2 be t‐norms and  be a t‐conorm. Then the
following hold:

C( )1 q y z q y q z( , ( , )) ( ( , ), ( , ))1 1    ≥ ∀q y z, , [0, 1]∈ . If = M1  and  is right
monotonic, then the inequality will be equality.

C( )2 q y z q y q z( , ( , )) ( ( , ), ( , ))1 2 2 1 1    ≥ ∀q y z, , [0, 1]∈ . If = M1  , then the in-
equality will be equality.

C( )3 q y z q y q z( , ( , )) ( ( , ), ( , ))    ≥ ∀q y z, , [0, 1]∈ . If = M  and  is right
monotonic, then the inequality will be equality.

Theorem 11. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space and

( )= ⇑ { ( ), ( ), ( ), …, ( )c c c cl1 2 3
       ⇑ ⇑ ⇑ ⇑ } be l fuzzy upward β‐covering of  with

β (0, 1]∈ , where ( ) = { , , …, }c n1 2t

ct ct ct    
  ⇑
⇑ ⇑ ⇑

for all t l= 1, 2, …, . Assume that q
β

ct
 ⇑ is

a fuzzy upward β‐neighborhood of q in  induced by c t l, = 1, 2, …,t . If μ λ, are fuzzy sets
in  , then the following hold:

(i) If μ λ⊆ and  is right monotonic, then ( )μA ( )
t

l
β

o

=1
1

( )



∑ ▽

⇑

( )λA ( )
t

l
β

o

=1
1

( )



⊆ ∑ ▽

⇑
;

(ii) If μ λ⊆ , then ( ) ( )μ λ( ) ( )
t

l
β

o

t

l
β

o

=1
1

( )

=1
1

( )
 

 
∑ ⊆ ∑△

⇑
△

⇑
;

(iii) If  and 1 satisfy the condition C( )1 , then ( )μA ( )
t

l
β

o

=1
1

( )

1




∑ ∩▽
⇑

( ) ( )λ μ λA ( ) A ( )
t

l
β

o

t

l
β

o

=1
1

( )

=1
1

( )

1
 






∑ ⊆ ∑ ∩▽
⇑

▽
⇑
;

(iv) If  is right monotonic, then ( ) ( )μ λA ( ) A ( ) =
t

l
β

o

t

l
β

o

=1
1

( )

=1
1

( )
 

 
∑ ∩ ∑▽

⇑
▽

⇑

( )μ λA ( )
t

l
β

o

=1
1

( )



∑ ∩▽

⇑
;

(v) If 1 and 2 satisfy the condition C( )2 , then ( )μ λ( )
t

l
β

o

=1
1

( )

2

1

 


∑ ∩ ⊆△

⇑

( ) ( )μ λ( ) ( )
t

l
β

o

t

l
β

o

=1
1

( )

=1
1

( )1

2

1

 





∑ ∩ ∑△

⇑
△

⇑
;

(vi) If  and  satisfy condition C( )3 , then ( ) ( )μ λA ( ) A ( )
t

l
β

o

t

l
β

o

=1
1

( )

=1
1

( )
 






∑ ∪ ∑ ⊆▽
⇑

▽
⇑

( )( )μ λA
t

l
β

o

=1
1

( )

 


∑ ∪▽

⇑

;

(vii) If 1 and  satisfy the weak distributivity laws, then ( )μ λ( )
t

l
β

o

=1
1

( )1

 


∑ ∪ ⊆△

⇑

( ) ( )μ λ( ) ( )
t

l
β

o

t

l
β

o

=1
1

( )

=1
1

( )1 1

 





∑ ∪ ∑△

⇑
△

⇑
.

Definition 14. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space and

( )= ⇑ { ( ), ( ), ( ), …, ( )c c c cl1 2 3
       ⇑ ⇑ ⇑ ⇑ } be l fuzzy upward β‐covering of  with

β (0, 1]∈ , where ( ) = { , , …, }c n1 2t

ct ct ct    
  ⇑
⇑ ⇑ ⇑

for all t l= 1, 2, …, . Assume that q
β

ct
 ⇑
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is a fuzzy upward β‐neighborhood of q in  induced by c t l, = 1, 2, …,t . Then for all
fuzzy set μ in the universe  , we define the pessimistic multigranulation ( , )  ‐fuzzy

upward lower approximation ( )μA ( )
t

l
β

p

=1
1

( )



∑ ▽

⇑
and the pessimistic multigranulation

( , )  ‐fuzzy upward upper approximation ( )μ( )
t

l
β

p

=1
1

( )



∑ △

⇑
of μ as:

{ }μ q y μ y qA ( ) ( ) = ( ), ( ) ,
t

l

β

p

t

l

y
q
β

c

=1 1

( )

=1
t

   





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∧ ∧∑ ∈▽

⇑

∈

⇑

and

{ }μ q y μ y q( ) ( ) = ( ), ( ) , .
t

l

β

p

t

l

y
q
β

c

=1 1

( )

=1
t

   





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∨ ∨∑ ∈△

⇑

∈

⇑

The pair ( ) ( )μ μA ( ) , ( )
t

l
β

p

t

l
β

p

=1
1

( )

=1
1

( )
 

 ⎛
⎝⎜

⎞
⎠⎟∑ ∑▽

⇑
△

⇑
is called pessimistic multigranulation

( , )  ‐fuzzy upward rough set of the fuzzy subset μ if ( )μA ( )
t

l
β

p

=1
1

( )



∑ ≠▽

⇑

( )μ( )
t

l
β

p

=1
1

( )



∑ △

⇑
. Otherwise μ is called definable on multigranulation ( , )  ‐fuzzy up-

ward approximation space.

(i) If  and  are the Kleene–Dienes implicator KD and standard min operator M
based on S and M , respectively, then from the above definition it follows that

{ }( )μ q y μ y qA ( ) ( ) = 1 − ( ) ( ) ,
t

l

β

p

t

l

y
q
β

c

=1 1

( )

=1
t

  





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∧ ∧∑ ∨ ∈▽

⇑

∈

⇑

and

{ }μ q y μ y q( ) ( ) = ( ) ( ) , .
t

l

β

p

t

l

y
q
β

c

=1 1

( )

=1
t

  





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∨ ∨∑ ∧ ∈△

⇑

∈

⇑

This means that ( ) ( )μ μA ( ) , ( )
t

l
β

p

t

l
β

p

=1
1

( )

=1
1

( )
 

 ⎛
⎝⎜

⎞
⎠⎟∑ ∑▽

⇑
△

⇑
becomes the pessimistic

multigranulation fuzzy upward rough set of μ.

If y y( ) = ( )q
β

c q
β

( )t i ⇑ , then the above expression becomes as

{ }μ q y μ y qA ( ) ( ) = ( ), ( ) ,
t

l

β

p

t

l

y
q

β

=1 1

( )

=1
( )i   





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∧ ∧∑ ∈▽

⇑

∈

and
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{ }μ q y μ y q( ) ( ) = ( ), ( ) , .
t

l

β

p

t

l

y
q

β

=1 1

( )

=1
( )i   





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∨ ∨∑ ∈△

⇑

∈

This means that ( ) ( )μ μA ( ) , ( )
t

l
β

p

t

l
β

p

=1
1

( )

=1
1

( )
 

 ⎛
⎝⎜

⎞
⎠⎟∑ ∑▽

⇑
△

⇑
becomes the pessimistic

multigranulation fuzzy rough set of μ as proposed by Zhan et al.40

Theorem 12. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space and

( )= ⇑ { ( ), ( ), ( ), …, ( )c c c cl1 2 3
       ⇑ ⇑ ⇑ ⇑ } be l fuzzy upward β‐covering of  with

β (0, 1]∈ , where ( ) = { , , …, }c n1 2t

ct ct ct    
  ⇑
⇑ ⇑ ⇑

for all t l= 1, 2, …, . Assume that q
β

ct
 ⇑ is

a fuzzy upward β‐neighborhood of q in  induced by c t l, = 1, 2, …,t . If μ and λ are fuzzy
sets in  , then the following hold:

(i) If μ λ⊆ and  is right monotonic, then ( ) ( )μ λA ( ) A ( )
t

l
β

p

t

l
β

p

=1
1

( )

=1
1

( )
 

 
∑ ⊆ ∑▽

⇑
▽

⇑
;

(ii) If μ λ⊆ , then ( ) ( )μ λ( ) ( )
t

l
β

p

t

l
β

p

=1
1

( )

=1
1

( )
 

 
∑ ⊆ ∑△

⇑
△

⇑
;

(iii) If  and 1 satisfied condition C( )1 , then ( ) ( )μ λA ( ) A ( )
t

l
β

p

t

l
β

p

=1
1

( )

=1
1

( )

1
 






∑ ∩ ∑▽
⇑

▽
⇑

( )( )μ λA
t

l
β

p

=1
1

( )

1
 


⊆ ∑ ∩▽

⇑

;

(iv) If  is right monotonic, then ( )μA ( )
t

l
β

p

=1
1

( )



∑ ∩▽

⇑

( )λA ( ) =
t

l
β

p

=1
1

( )



∑ ▽

⇑

( )μ λA ( )
t

l
β

p

=1
1

( )



∑ ∩▽

⇑
;

(v) If 1 and 2 satisfy the condition C( )2 , then ( )μ λ( )
t

l
β

p

=1
1

( )

2

1

 


∑ ∩ ⊆△

⇑

( ) ( )μ λ( ) ( )
t

l
β

p

t

l
β

p

=1
1

( )

=1
1

( )1

2

1

 





∑ ∩ ∑△

⇑
△

⇑
;

(vi) If  and  satisfied condition C( )3 , then ( ) ( )μ λA ( ) A ( )
t

l
β

p

t

l
β

p

=1
1

( )

=1
1

( )
 






∑ ∪ ∑▽
⇑

▽
⇑

( )μ λA ( )
t

l
β

p

=1
1

( )
 


⊆ ∑ ∪▽

⇑
;

(vii) If 1 and  satisfy the weak distributivity laws, then ( )μ λ( )
t

l
β

p

=1
1

( )1

 


∑ ∪ ⊆△

⇑

( ) ( )μ λ( ) ( )
t

l
β

p

t

l
β

p

=1
1

( )

=1
1

( )1 1

 





∑ ∪ ∑△

⇑
△

⇑
.

Definition 15. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space and

( )= ⇑ { ( ), ( ), ( ), …, ( )c c c cl1 2 3
       ⇑ ⇑ ⇑ ⇑ } be l fuzzy upward β‐covering of  with

β (0, 1]∈ , where ( ) = { , , …, }c n1 2t

ct ct ct    
  ⇑
⇑ ⇑ ⇑

, for all t l= 1, 2, …, . Assume that the

fuzzy complementary β‐upward neighborhood q
β⇑ of q in  induced by c t l, = 1, 2, …,t .

Then for all fuzzy set μ in the universe  , define the optimistic multigranulation ( , )  ‐fuzzy

upward lower approximation ( )μA
t

l
β

o

=1
2

( )



∑ ▽

⇑
and the optimistic multigranulation ( , )  ‐

fuzzy upward upper approximation ( )μt

l
β

o

=1
2

( )



∑ △

⇑
of μ by:
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{ }μ q y μ y qA ( ) = ( ), ( ) ,
t

l

β

o

t

l

y
q
β

c

=1 2

( )

=1
t

   





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∨ ∧∑ ∈▽

⇑

∈

⇑

and

{ }μ q y μ y q( ) = ( ), ( ) , .
t

l

β

o

t

l

y
q
β

c

=1 2

( )

=1
t

   





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∧ ∨∑ ∈△

⇑

∈

⇑

The pair ( ) ( )μ μA ( ) , ( )
t

l
β

o

t

l
β

o

=1
2

( )

=1
2

( )
 

 ⎛
⎝⎜

⎞
⎠⎟∑ ∑▽

⇑
△

⇑
is called optimistic multigranulation

( , )  ‐fuzzy upward rough set of the fuzzy set μ if ( )μA ( )
t

l
β

o

=1
2

( )



∑ ≠▽

⇑

( )μ( )
t

l
β

o

=1
2

( )



∑ △

⇑
. Otherwise μ is called a definable on multigranulation ( , )  ‐fuzzy

upward approximation space.

Theorem 13. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space and

( )= ⇑ { ( ), ( ), ( ), …, ( )c c c cl1 2 3
       ⇑ ⇑ ⇑ ⇑ } be l fuzzy upward β‐covering of  with

β (0, 1]∈ , where ( ) = { , , …, }c n1 2t

ct ct ct    
  ⇑
⇑ ⇑ ⇑

, for all t l= 1, 2, …, . Assume that the

fuzzy complementary β‐upward neighborhood q
β⇑ of q in  induced by c t l, = 1, 2, …,t . If

μ λ, are fuzzy sets in  , then the following hold:

(i) If μ λ⊆ and  is right monotonic, then ( ) ( )μ λA A
t

l
β

o

t

l
β

o

=1
2

( )

=1
2

( )
 

 
∑ ⊆ ∑▽

⇑
▽

⇑
;

(ii) If μ λ⊆ , then ( ) ( )μ λ
t

l
β

o

t

l
β

o

=1
2

( )

=1
2

( )
 

 
∑ ⊆ ∑△

⇑
△

⇑
;

(iii) If  and 1 satisfied condition C( )1 , then ( ) ( )μ λA A
t

l
β

o

t

l
β

o

=1
2

( )

=1
2

( )

1
 






∑ ∩ ∑▽
⇑

▽
⇑

( )μ λA ( )
t

l
β

o

=1
2

( )

1
 


⊆ ∑ ∩▽

⇑
;

(iv) If  is right monotonic, then ( ) ( )μ λA A =
t

l
β

o

t

l
β

o

=1
2

( )

=1
2

( )
 

 
∑ ∩ ∑▽

⇑
▽

⇑

( )μ λA ( )
t

l
β

o

=1
2

( )



∑ ∩▽

⇑
;

(v) If 1 and 2 satisfy the condition C( )2 , then ( )μ λ( )
t

l
β

o

=1
2

( )

2

1

 


∑ ∩ ⊆△

⇑

( ) ( )μ λ( ) ( )
t

l
β

o

t

l
β

o

=1
2

( )

=1
2

( )1

2

1

 





∑ ∩ ∑△

⇑
△

⇑
;

(vi) If  and  satisfied condition C( )3 , then( ) ( )μ λA A
t

l
β

o

t

l
β

o

=1
2

( )

=1
2

( )
 






∑ ∪ ∑ ⊆▽
⇑

▽
⇑

( )μ λA ( )
t

l
β

o

=1
2

( )
 


∑ ∪▽

⇑
;

(vii) If 1 and  satisfy the weak distributive laws, then ( )μ λ( )
t

l
β

o

=1
2

( )1

 


∑ ∪ ⊆△

⇑

( ) ( )μ λ( ) ( )
t

l
β

o

t

l
β

o

=1
2

( )

=1
2

( )1 1

 





∑ ∪ ∑△

⇑
△

⇑
.

Definition 16. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space and

( )= ⇑ { ( ), ( ), ( ), …, ( )c c c cl1 2 3
       ⇑ ⇑ ⇑ ⇑ } be l fuzzy upward β‐covering of  with

3728 | REHMAN ET AL.



β (0, 1]∈ , where ( ) = { , , …, }c n1 2t

ct ct ct    
  ⇑
⇑ ⇑ ⇑

, for all t l= 1, 2, …, . Assume that the

fuzzy complementary β‐upward neighborhood q
β⇑ of q in  induced by c t l, = 1, 2, …,t .

Then for all fuzzy set μ in the universe  , define the pessimistic multigranulation ( , )  ‐

fuzzy upward lower approximation ( )μA
t

l
β

p

=1
2

( )



∑ ▽

⇑
and the pessimistic multigranulation

( , )  ‐fuzzy upward upper approximation ( )μt

l
β

p

=1
2

( )



∑ △

⇑
of μ by:

{ }μ q y μ y qA ( ) = ( ), ( ) ,
t

l

β

p

t

l

y
q
β

c

=1 2

( )

=1
t

   





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∧ ∧∑ ∈▽

⇑

∈

⇑

and

{ }μ q y μ y q( ) = ( ), ( ) , .
t

l

β

p

t

l

y
q
β

c

=1 2

( )

=1
t

   





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∨ ∨∑ ∈△

⇑

∈

⇑

The pair ( ) ( )μ μA ( ) , ( )
t

l
β

p

t

l
β

p

=1
2

( )

=1
2

( )
 

 ⎛
⎝⎜

⎞
⎠⎟∑ ∑▽

⇑
△

⇑
is called pessimistic multigranulation

( , )  ‐fuzzy upward rough set of the fuzzy subset μ if ( )μA ( )
t

l
β

p

=1
2

( )



∑ ≠▽

⇑

( )μ( )
t

l
β

p

=1
2

( )



∑ △

⇑
. Otherwise μ is called definable on multigranulation ( , )  ‐fuzzy

upward approximation space.

Theorem 14. Let ( , ( ))  ⇑ be a fuzzy upward covering approximation space and

( )= ⇑ { ( ), ( ), ( ), …, ( )c c c cl1 2 3
       ⇑ ⇑ ⇑ ⇑ } be l fuzzy upward β‐covering of  with

β (0, 1]∈ , where ( ) = { , , …, }c n1 2t

ct ct ct    
  ⇑
⇑ ⇑ ⇑

, for all t l= 1, 2, …, . Assume that the

fuzzy complementary β‐upward neighborhood q
β⇑ of q in  induced by c t l, = 1, 2, …,t . If

μ and λ are fuzzy sets in  , the following hold:

(i) If μ λ⊆ and  is right monotonic, then ( ) ( )μ λA A
t

l
β

p

t

l
β

p

=1
2

( )

=1
2

( )
 

 
∑ ⊆ ∑▽

⇑
▽

⇑
;

(ii) If μ λ⊆ , then ( ) ( )μ λ
t

l
β

p

t

l
β

p

=1
2

( )

=1
2

( )
 

 
∑ ⊆ ∑△

⇑
△

⇑
;

(iii) If  and 1 satisfied condition C( )1 , then ( ) ( )μ λA A
t

l
β

p

t

l
β

p

=1
2

( )

=1
2

( )

1
 






∑ ∩ ∑▽
⇑

▽
⇑

( )μ λA ( )
t

l
β

p

=1
2

( )

1
 


⊆ ∑ ∩▽

⇑
;

(iv) If  is right monotonic, then ( ) ( )μ λA A =
t

l
β

p

t

l
β

p

=1
2

( )

=1
2

( )
 

 
∑ ∩ ∑▽

⇑
▽

⇑

( )μ λA ( )
t

l
β

p

=1
2

( )



∑ ∩▽

⇑
;

(v) If 1 and 2 satisfy the condition C( )2 , then ( )μ λ( )
t

l
β

p

=1
2

( )

2

1

 


∑ ∩ ⊆△

⇑

( ) ( )μ λ( ) ( )
t

l
β

p

t

l
β

p

=1
2

( )

=1
2

( )1

2

1

 





∑ ∩ ∑△

⇑
△

⇑
;
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(vi) If  and  satisfied condition C( )3 , then( ) ( )μ λA A
t

l
β

p

t

l
β

p

=1
2

( )

=1
2

( )
 






∑ ∪ ∑ ⊆▽
⇑

▽
⇑

( )( )μ λA
t

l
β

p

=1
2

( )

 


∑ ∪▽

⇑

;

(vii) If 1 and  satisfy the weak distributive laws, then ( )μ λ( )
t

l
β

p

=1
2

( )1

 


∑ ∪ ⊆△

⇑

( ) ( )μ λ( ) ( )
t

l
β

p

t

l
β

p

=1
2

( )

=1
2

( )1 1

 





∑ ∪ ∑△

⇑
△

⇑
.

7 | ALGORITHM FOR DECISION MAKING PROBLEM

Over the years, numerous decision making procedures have been introduced in the literature,
of which technique for order preference by similarity to ideal solution (TOPSIS) is one of the
extensively and efficiently used famous methods. Hwang and Yoon49 presented the TOPSIS to
deal multiattribute decision making problems. According to which the alternative is the
smallest distance from the positive ideal solution and the furthest distance from the negative
ideal solution in decision making problems is the best alternative.

Some advantages of fuzzy TOPSIS are:

(i) When the fuzzy analytic hierarchy process (AHP) and fuzzy TOPSIS methods are com-
pared with respect to the amount of computations, fuzzy AHP requires more complex
computations than fuzzy TOPSIS.

(ii) Pairwise comparisons for criteria, sub criteria and alternatives are made in fuzzy AHP,
while there is no pairwise comparison in fuzzy TOPSIS which are in fact based on their
relative distances to positive ideal solution and negative ideal solutions.

(iii) TOPSIS has been proved to be one of the best methods addressing rank reversal issue that is
the change in the ranking of the alternatives when a nonoptimal alternative is introduced.

(iv) Zhan et al. proposed TOPSIS method based on generalized fuzzy rough sets. While
comparing their proposed model with other models they achieved more correct ranking of
the alternatives than other models (See tables 15 and 16 of Reference [50]).

Now we present an approach for solving multiattributes decision making problem of medicine
selections under the environment of multigranulation ( , )  fuzzy upward rough sets. For this, let

q j n= { : = 1, 2, …, }j be the set of n alternatives which are evaluated by the different attributes/
tests, where c c cC = { , , …, }l1 2 is the collection of different attributes/tests. The unknown weight
vector of l attributes is denoted byW ω ω ω= ( , , …, )l

T
1 2 with subject toω 0i ≥ for i l= 1, 2, …, such

that ω = 1
i

l
i=1

∑ . Let E be a finite set of the domain for the information function g q c( , )i t , where
g q c( , ) [0, 1]i t ∈ . Here we present the fuzzy information system W E( , C, , ) .

7.1 | The steps of the decision making model

To find the most suitable medicine among the given ones, we initiate an algorithm based on the
proposed multigranulation ( , )  ‐fuzzy upward rough sets applying fuzzy upward β‐covering
approach and their corresponding steps are compiled as follows:

Input: Given fuzzy information system W E( , C, , ) ;
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Step 1: Using the proposed transfer function for the construction of ct⇑ , where t m= 1, 2, …, ;
Step 2: Compute q

β
c jt
 ⇑ of qj with respect to ct;

Step 3: Apply the principle of fuzzy TOPSIS method to compute the individual's best and
worst fuzzy decision making objects c 1

+
t
 and c 1

−
t
 where

{ }q i n= max ( ): = 1, 2, …,c
j n

i j1
+

1t

ct 
≤ ≤

⇑ (7)

and

{ }q i n= min ( ): = 1, 2, …, ,c
j n

i j1
−

1t

ct 
≤ ≤

⇑ (8)

where t l= 1, 2, …, .
Step 4: Integrate the following approximations ( A ( )) , ( ( )) ;

t

l
β c

o
t

l
β c

o
=1 1

+
1

( )
=1 1

+
1

( )
t t

    ∑ ∑▽ ⇑ △ ⇑

( A ( ))
t

l
β c

o
=1 1

−
1

( )
t

  ∑ ▽ ⇑and ( ( ))
t

l
β c

o
=1 1

−
1

( )
t

  ∑ △ ⇑;

Step 5: Find the ranking function δ q( )k j , where

( ) ( )

( ) ( )

δ q

q q

q q

( ) =
1

2

A ( ) − A ( )

+ ( ) − ( )

;k j

t

l

β c

o

j

t

l

β c

o

j

t

l

β c

o

j

t

l

β c

o

j

=1

1
+

1

( )

=1

1
−

1

( ) 2

=1

1
+

1

( )

=1

1
−

1

( ) 2

t t

t t

1
2

   

   

 

 

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

⎧
⎨⎪
⎩⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬⎪
⎭⎪

⎧
⎨⎪
⎩⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬⎪
⎭⎪

⎫

⎬

⎪⎪⎪

⎭

⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭

⎪⎪⎪⎪

∑ ∑

∑ ∑

▽

⇑

▽

⇑

△

⇑

△

⇑
(9)

Step 6: Constructed the optimal index function δ q( )j , where

δ q ω δ q( ) = ( )j

t

l

k k j

=1

∑ (10)

and determine the weight vectors of every attributes/tests according to δ q( )k j by

ω
δ q δ q

δ q δ q
=

( ) − ( )

( ) − ( )
;k

i

n

j

n
k i k j

t

l

i

n

j

n
k i k j

=1 =1

=1 =1 =1

∑ ∑

∑ ∑ ∑
(11)

Step 7: Rank the alternatives/medicines by the value of the overall ranking function δ q( )j
and make the decision.

Output: A ranking result of all the alternatives/medicines.

7.2 | Algorithm with pseudo code

Begin
for i = 1 to n and t = 1 to l do
compute ct⇑ , where t = 1 to l//according to Equation (5)

end
for j = 1 to n and t = 1 to l do
compute q

β
c jt
 ⇑ of qj with respect to ct//according to

Definition 8
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end
for i = 1 to n j, = 1 to n and t = 1 to l do
compute c 1

+
t
 and c 1

−
t
 //according to Equation (7) and Equation (8)

end
for t = 1 to l do
compute ( ) ( ) ( )A ( ) , ( ) , A ( )

t

l
β c

o

t

l
β c

o

t

l
β c

o

=1 1
+

1

( )

=1 1
+

1

( )

=1 1
−

1

( )

t t t
     

  
∑ ∑ ∑▽

⇑
△

⇑
▽

⇑
and

( )( )
t

l
β c

o

=1 1
−

1

( )

t
 


∑ △

⇑
//according to Definition 13

end
for k = 1 to m and j = 1 to n do
calculate δ q( )k j //according to Equation (9)

end
for k = 1 to m i, = 1 to n and j = 1 to n do
calculate δ q( )j //according to Equation (10)

end
End

8 | APPLICATIONS: AN ILLUSTRATIVE EXAMPLE

The doctors usually combine some kinds of medicines to treat the coronavirus disease, denoted by A.
Let q i n= { : = 1, 2, …, }i be the universe of n kinds of medicines y p k= { : = 1, 2, …, }p be k
most common symptoms (e.g., dry cough, fever, tiredness, etc.) of the coronavirus disease A, and E
be a finite set of the domain for the information function g q c( , )i , where g q c( , ) [0, 1]i ∈ . Now
g q c( , )i shows the degree of recommendation of medicine qi by the doctor c. q( )i j

c ⇑ denote the
efficacy value of the medicine qi for the symptom y i n p k( = 1, 2, …, , = 1, 2, …, )i . For a critical
value β suppose that for each medicine qi ∈ , there is at least one symptoms yp ∈ such that the
efficacy value of the medicine qj for the symptom yi is not less than β, and ( )c ⇑ is a fuzzy upward
β‐covering of  . Then the fuzzy upward β‐neighborhood q

β
c j
 ⇑ of qj with respect to c is a fuzzy set

given by

{ }q q β q t l( ) = : ( ) ( ), = 1, 2, …, ,q
β

c t i i j tj

c c   ⎡⎣ ⎤⎦⋂ ≥⇑ ⇑ ⇑

which denotes the minimum value among all the efficacy values of each medicine qk for treating the
symptoms. If a fuzzy set μ denotes the ability of all medicines in  to cure the coronavirus disease
A, since the inaccuracy of μ, then we can take it approximate evaluation according to the lower and
upper approximation of μ. Let q i= { : = 1, 2, …, 9}i be the set of medicines and ci be the criteria.
Then the evaluation of  by the c, is given in Table 2.

TABLE 2 Multicriteria decision making table

q1 q2 q3 q4 q5 q6 q7 q8 q9

c1 0.8 0.3 0.2 0.6 0.4 0.2 0.3 0.3 0.3

c2 0.1 0.5 0.1 0.3 0.4 0.3 0.3 0.4 0.2

c3 0.2 0.2 0.6 0.5 0.3 0.5 0.6 0.3 0.4
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Based on criterion c1 and using Equation (5), to compute the fuzzy preference degree of qi
i( = 1, 2, …, 9) to qj j( = 1, 2, …, 9), one can derive

q q( , )

=

0.50000 0.66667 0.70000 0.56667 0.63333 0.70000 0.66667 0.66667 0.66667
0.33333 0.50000 0.53333 0.40000 0.46667 0.53333 0.50000 0.50000 0.50000
0.30000 0.46667 0.50000 0.36667 0.43333 0.50000 0.46667 0.46667 0.46667
0.43333 0.60000 0.63333 0.50000 0.56667 0.63333 0.60000 0.60000 0.60000
0.36667 0.53333 0.56667 0.43333 0.50000 0.56667 0.53333 0.53333 0.53333
0.30000 0.46667 0.50000 0.36667 0.43333 0.50000 0.46667 0.46667 0.46667
0.33333 0.50000 0.53333 0.40000 0.46667 0.53333 0.50000 0.50000 0.50000
0.33333 0.50000 0.53333 0.40000 0.46667 0.53333 0.50000 0.50000 0.50000
0.33333 0.50000 0.53333 0.40000 0.46667 0.53333 0.50000 0.50000 0.50000

.

c i j1


⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⇑

Based on criterion c2 and using Equation (5), to compute the fuzzy preference degree of qi
i( = 1, 2, …, 9) to qj j( = 1, 2, …, 9), one can acquire

q q( , )

=

0.50000 0.31818 0.50000 0.40909 0.36364 0.40909 0.40909 0.36364 0.45455
0.68182 0.50000 0.68182 0.59091 0.54545 0.59091 0.59091 0.54545 0.63636
0.50000 0.31818 0.50000 0.40909 0.36364 0.40909 0.40909 0.36364 0.45455
0.59091 0.40909 0.59091 0.50000 0.45455 0.50000 0.50000 0.45455 0.54555
0.63636 0.45455 0.63636 0.54545 0.50000 0.54545 0.54545 0.50000 0.59091
0.59091 0.40919 0.59091 0.50000 0.45455 0.50000 0.50000 0.45455 0.54545
0.59091 0.40909 0.59091 0.50000 0.45455 0.50000 0.50000 0.45455 0.54545
0.63636 0.45455 0.63636 0.54545 0.50000 0.54545 0.54545 0.50000 0.59091
0.54545 0.36364 0.54545 0.45455 0.40909 0.45455 0.45455 0.40909 0.50000

.

c i j2


⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⇑

Based on criterion c3 and using Equation (5), to compute the fuzzy preference degree of qi
i( = 1, 2, …, 9) to qj j( = 1, 2, …, 9), one can derive

TABLE 3 Comparison of different methods when β is 0.5

Methods Ranking of alternatives

1 Ma38 No ranking

2 Yang & Hu39 No ranking

3 Proposed q q q q q q q q q8 4 9 5 7 3 6 1 2≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻

q q( , )

=

0.50000 0.50000 0.34615 0.38462 0.46154 0.38462 0.34615 0.46154 0.42308
0.50000 0.50000 0.34615 0.38462 0.46154 0.38462 0.34615 0.46154 0.42308
0.65385 0.65385 0.50000 0.53846 0.61538 0.53846 0.50000 0.61538 0.57692
0.61538 0.61538 0.46154 0.50000 0.57692 0.50000 0.46154 0.57692 0.53846
0.53846 0.53846 0.38462 0.42308 0.50000 0.42308 0.38462 0.50000 0.46154
0.61538 0.61538 0.46154 0.50000 0.57692 0.50000 0.46154 0.57692 0.53846
0.65385 0.65385 0.50000 0.53846 0.61538 0.53846 0.50000 0.61538 0.57692
0.53846 0.53846 0.38462 0.42308 0.50000 0.42308 0.38462 0.50000 0.46154
0.57692 0.57692 0.42308 0.46154 0.53846 0.46154 0.42308 0.53846 0.50000

.

c i j3


⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⇑
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The upward fuzzy preference classes i
c1 ⇑ are given by:

q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

=
0.50000

+
0.66667

+
0.70000

+
0.56667

+
0.63333

+
0.70000

+
0.66667

+
0.66667

+
0.66667

;

=
0.33333

+
0.50000

+
0.53333

+
0.40000

+
0.46667

+
0.53333

+
0.50000

+
0.50000

+
0.50000

;

=
0.30000

+
0.46667

+
0.50000

+
0.36667

+
0.43333

+
0.50000

+
0.46667

+
0.46667

+
0.46667

;

=
0.43333

+
0.60000

+
0.63333

+
0.50000

+
0.56667

+
0.63333

+
0.60000

+
0.60000

+
0.60000

;

=
0.36667

+
0.53333

+
0.56667

+
0.43333

+
0.50000

+
0.56667

+
0.53333

+
0.53333

+
0.53333

;

=
0.30000

+
0.46667

+
0.50000

+
0.36667

+
0.43333

+
0.50000

+
0.46667

+
0.46667

+
0.46667

;

=
0.33333

+
0.50000

+
0.53333

+
0.40000

+
0.46667

+
0.53333

+
0.50000

+
0.50000

+
0.50000

;

=
0.33333

+
0.50000

+
0.53333

+
0.40000

+
0.46667

+
0.53333

+
0.50000

+
0.50000

+
0.50000

;

=
0.33333

+
0.50000

+
0.53333

+
0.40000

+
0.46667

+
0.53333

+
0.50000

+
0.50000

+
0.50000

.

1
1 2 3 4 5 6

7 8 9

2
1 2 3 4 5 6

7 8 9

3
1 2 3 4 5 6

7 8 9

4
1 2 3 4 5 6

7 8 9

5
1 2 3 4 5 6

7 8 9

6
1 2 3 4 5 6

7 8 9

7
1 2 3 4 5 6

7 8 9

8
1 2 3 4 5 6

7 8 9

9
1 2 3 4 5 6

7 8 9

c

c

c

c

c

c

c

c

c

1

1

1

1

1

1

1

1

1





































⇑

⇑

⇑

⇑

⇑

⇑

⇑

⇑

⇑

We see that ( ) { }= , , , , , , , ,c 1 2 3 4 5 6 7 8 9
c c c c c c c c c

1

1 1 1 1 1 1 1 1 1                  ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ is a

fuzzy upward β‐covering of  β(0 < 0.5)≤ . The upward fuzzy preference classes i
c2 ⇑ are

given by:
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q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

=
0.50000

+
0.31818

+
0.50000

+
0.40909

+
0.36364

+
0.40909

+
0.40909

+
0.36364

+
0.45455

;

=
0.68182

+
0.50000

+
0.68182

+
0.59091

+
0.54545

+
0.59091

+
0.59091

+
0.54545

+
0.63636

;

=
0.50000

+
0.31818

+
0.50000

+
0.40909

+
0.36364

+
0.40909

+
0.40909

+
0.36364

+
0.45455

;

=
0.59091

+
0.40909

+
0.59091

+
0.50000

+
0.45455

+
0.50000

+
0.50000

+
0.45455

+
0.54555

;

=
0.63636

+
0.45455

+
0.63636

+
0.54545

+
0.50000

+
0.54545

+
0.54545

+
0.50000

+
0.59091

;

=
0.59091

+
0.40919

+
0.59091

+
0.50000

+
0.45455

+
0.50000

+
0.50000

+
0.45455

+
0.54545

;

=
0.59091

+
0.40919

+
0.59091

+
0.50000

+
0.45455

+
0.50000

+
0.50000

+
0.45455

+
0.54545

;

=
0.63636

+
0.45455

+
0.63636

+
0.54545

+
0.50000

+
0.54545

+
0.54545

+
0.50000

+
0.59091

;

=
0.54545

+
0.36364

+
0.54545

+
0.45455

+
0.40909

+
0.45455

+
0.45455

+
0.40909

+
0.50000

.
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We see that ( ) { }= , , , , , , , ,c 1 2 3 4 5 6 7 8 9
c c c c c c c c c

2

2 2 2 2 2 2 2 2 2                  ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ is a

fuzzy upward β‐covering of  β(0 < 0.5)≤ . The upward fuzzy preference classes i
c3 ⇑ are

given by:
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q q q

q q q q q q

q q q

q q q q q q

q q q

=
0.50000

+
0.50000

+
0.34615

+
0.38462

+
0.46154

+
0.38462

+
0.34615

+
0.46154

+
0.42308

;

=
0.50000

+
0.50000

+
0.34615

+
0.38462

+
0.46154

+
0.38462

+
0.34615

+
0.46154

+
0.42308

;

=
0.65385

+
0.65385

+
0.50000

+
0.53846

+
0.61538

+
0.53846

+
0.50000

+
0.61538

+
0.57692

;

=
0.61538

+
0.61538

+
0.46154

+
0.50000

+
0.57692

+
0.50000

+
0.46154

+
0.57692

+
0.53846

;

=
0.53846

+
0.53846

+
0.38462

+
0.42308

+
0.50000

+
0.42308

+
0.38462

+
0.50000

+
0.46154

;

=
0.61538

+
0.61538

+
0.46154

+
0.50000

+
0.57692

+
0.50000

+
0.46154

+
0.57692

+
0.53846

;

=
0.65385

+
0.65385

+
0.50000

+
0.53846

+
0.61538

+
0.53846

+
0.50000

+
0.61538

+
0.57692

;

=
0.53846

+
0.53846

+
0.38462

+
0.42308

+
0.50000

+
0.42308

+
0.38462

+
0.50000

+
0.46154

;

=
0.57692

+
0.57692

+
0.42308

+
0.46154

+
0.53846

+
0.46154

+
0.42308

+
0.53846

+
0.50000

.
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It follows that
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q q q q q q

q q q

q q q q q q

q q q

=
0.50000

+
0.66667

+
0.70000

+
0.56667

+
0.63333

+
0.70000

+
0.66667

+
0.66667

+
0.66667

;

=
0.33333

+
0.50000

+
0.53333

+
0.40000

+
0.46667

+
0.53333

+
0.50000

+
0.50000

+
0.50000

;

=
0.30000

+
0.46667

+
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+
0.36667

+
0.43333

+
0.50000

+
0.46667

+
0.46667

+
0.46667

;

=
0.43333

+
0.60000

+
0.63333

+
0.50000

+
0.56667

+
0.63333

+
0.60000

+
0.6000

+
0.60000

;

=
0.36667

+
0.53333

+
0.56667

+
0.43333

+
0.50000

+
0.56667

+
0.53333

+
0.53333

+
0.53333

;

=
0.30000

+
0.46667

+
0.50000

+
0.36667

+
0.43333

+
0.50000

+
0.46667

+
0.46667

+
0.46667

;

=
0.33333

+
0.50000

+
0.53333

+
0.40000

+
0.46667

+
0.53333

+
0.50000

+
0.50000

+
0.50000

;

=
0.33333

+
0.50000

+
0.53333

+
0.40000

+
0.46667

+
0.53333

+
0.50000

+
0.50000

+
0.50000

;

=
0.33333

+
0.50000

+
0.53333

+
0.40000

+
0.46667

+
0.53333

+
0.50000

+
0.50000

+
0.50000

.
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q q q

q q q q q q
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q q q q q q

q q q

q q q q q q

q q q

q q q q q q

q q q

=
0.50000

+
0.31818

+
0.50000

+
0.40909

+
0.36364

+
0.40909

+
0.40909

+
0.36364

+
0.45455

;

=
0.68182

+
0.50000

+
0.68182

+
0.59091

+
0.54545

+
0.59091

+
0.59091

+
0.54545

+
0.63636

;

=
0.50000

+
0.31818

+
0.50000

+
0.40909

+
0.36364

+
0.40909

+
0.40909

+
0.36364

+
0.45455

;

=
0.59091

+
0.40919

+
0.59091

+
0.50000

+
0.45455

+
0.50000

+
0.50000

+
0.45455

+
0.54545

;

=
0.63636

+
0.45455

+
0.63636

+
0.54545

+
0.50000

+
0.54545

+
0.54545

+
0.50000

+
0.59091

;

=
0.59091

+
0.40919

+
0.59091

+
0.50000

+
0.45455

+
0.50000

+
0.50000

+
0.45455

+
0.54545

;

=
0.59091

+
0.40919

+
0.59091

+
0.50000

+
0.45455

+
0.50000

+
0.50000

+
0.45455

+
0.54545

;

=
0.63636

+
0.45455

+
0.63636

+
0.54545

+
0.50000

+
0.54545

+
0.54545

+
0.50000

+
0.59091

;

=
0.54545

+
0.36364

+
0.54545

+
0.45455

+
0.40909

+
0.45455

+
0.45455

+
0.40909

+
0.50000

.
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=
0.50000

+
0.50000

+
0.34615

+
0.38462

+
0.46154

+
0.38462

+
0.34615

+
0.46154

+
0.42308

;

=
0.50000

+
0.50000

+
0.34615

+
0.38462

+
0.46154

+
0.38462

+
0.34615

+
0.46154

+
0.42308

;

=
0.65385

+
0.65385

+
0.50000

+
0.53846

+
0.61538

+
0.53846

+
0.50000

+
0.61538

+
0.57692

;

=
0.61538

+
0.61538

+
0.46154

+
0.50000

+
0.57692

+
0.50000

+
0.46154

+
0.57692

+
0.53846

;

=
0.53846

+
0.53846

+
0.38468

+
0.42308

+
0.50000

+
0.42308

+
0.38462

+
0.50000

+
0.46154

;

=
0.61538

+
0.61538

+
0.46154

+
0.50000

+
0.57692

+
0.50000

+
0.46154

+
0.57692

+
0.53846

;

=
0.65385

+
0.65385

+
0.50000

+
0.53846

+
0.61538

+
0.53846

+
0.50000

+
0.61538

+
0.57692

;

=
0.53846

+
0.53846

+
0.38468

+
0.42308

+
0.50000

+
0.42308

+
0.38462

+
0.50000

+
0.46154

;

=
0.61538

+
0.61538

+
0.46154

+
0.50000

+
0.57692

+
0.50000

+
0.46154

+
0.57692

+
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.
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By using the principle of fuzzy TOPSIS method to acquire the best and worst optimal fuzzy
decision making objects we have
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=
0.70000

+
0.53333

+
0.50000

+
0.63333

+
0.56667

+
0.50000

+
0.53000

+
0.53333

+
0.53333

;

=
0.50000

+
0.33333

+
0.30000

+
0.43333

+
0.36667

+
0.30000

+
0.33333

+
0.33333

+
0.33333

;

=
0.50000

+
0.68182

+
0.50000

+
0.59091

+
0.63636

+
0.59091

+
0.59091

+
0.63636

+
0.54545

;

=
0.31818

+
0.50000

+
0.36364

+
0.40909

+
0.45455

+
0.40919

+
0.40909

+
0.45455

+
0.36364

;

=
0.50000

+
0.50000

+
0.65385

+
0.61538

+
0.53846

+
0.61538

+
0.65385

+
0.53846

+
0.57692

;

=
0.34615

+
0.34615

+
0.50000

+
0.46154

+
0.38462

+
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+
0.50000

+
0.38462

+
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.
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Fix = KD  based on M and S and = M  it follows that:
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;

=
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;
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A =
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+
0.50000

+
0.50000

+
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+
0.50000

+
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+
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+
0.50000

+
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;

=
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+
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+
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+
0.54545

+
0.53846

+
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+
0.53333

+
0.53333

+
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;

A =
0.50000

+
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+
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+
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+
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+
0.50000

+
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+
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;
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;

=
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=
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.
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The weight of every attributes are as follows, respectively

ω ω ω= 0.30279, = 0.32236, = 0.37485.1 2 3

Now, we are ready to apply optimal index formula for alternative qj,

δ q( ) = + + + +

+ + + + .

j q q q q q

q q q q

0.04825 0.03037 0.05365 0.06547 0.05713

0.05240 0.05456 0.08356 0.05813

1 2 3 4 5

6 7 8 9

Finally, we can see that the ranking of the nine alternatives is

q q q q q q q q q .8 4 9 5 7 3 6 1 2≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻

This ranking shows that the medicine q8 is the most important for the treatment of the
coronavirus disease A.

9 | COMPARISON AND DISCUSSION

A comparative analysis among the methods of Ma38 and Yang and Hu39 with our proposed
method is discussed in this section. On one hand, in light of the numerical example of the previous
section, we compare the methods of Ma, Yang, and Hu, with our proposed method. On the other
hand, for the drawbacks of the above mentioned methods that cannot make a decision in some
situations for example when β = 0.5, we find that proposed method can make up for this defect.
In the study of multiple attributes decision making problems with fuzzy information, there are
many decision making methods based on a fuzzy binary relation. However, not all multiple
attributes decision making problems can be characterized by a fuzzy binary relation. For this
reason, we set methods to solve multiple attributes decision making problems with fuzzy in-
formation based on the optimistic multigranulation ( , )  ‐fuzzy upward rough set based on fuzzy
upward β‐covering. Furthermore, by comparative analysis, we find that our proposed method is
more widely used than the above mentioned methods based on a fuzzy binary relation.

9.1 | Advantages/significance and suitability

(i) The proposed transfer function is suitable for computing the fuzzy preference degree of
Pan et al.45 for the construction of upward/downward fuzzy preference relations.

(ii) Another novelty of the proposed method is that it can be applied to form fuzzy preference
relation from simple fuzzy set rather to be a preassumed one. Further the very same
method can be applied to construct a fuzzy β‐coverings called fuzzy upward β‐coverings.

(iii) The proposed method more suitable to construct the upward consistency matrices of
experts which satisfy the upward additive consistency and the upward order consistency
based on upward fuzzy preference relations.

(iv) The advantage of the proposed model is that, it can be used for ranking of the feasible
alternatives with auto adjustable weights.

(v) The present work is more technically advanced as compared with other existing techni-
ques. As stated in Definitions 7, 12, 13, and 14 other existing literature/techniques become
the particular cases of the present technique.
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10 | CONCLUSION

In this study, we have discussed a new type of rough sets called α‐upward fuzzified preference
rough sets using upward fuzzy preference relation. On the basis of α‐upward fuzzified pre-
ference rough sets, we introduced approximate precision, rough degree, approximate quality,
and their mutual relationships. Furthermore, we presented the idea of new types of fuzzy
upward β‐coverings, fuzzy upward β‐neighborhoods and fuzzy upward complement β‐
neighborhoods and some relative properties are discussed. We further proposed a new type of
upward lower and upward upper approximations by applying an upward β‐neighborhoods.
After employing an upward β‐neighborhoods based upward rough set approach. We observed
that every rough set in a universe can be approximated by only six sets, where the lower and
upper approximations of each set in the six sets are still lying among these six sets. The
relationships among these six sets are established. Subsequently, we presented the idea to
combined the fuzzy implicator and t‐norm to introduce multigranulation ( , )  ‐fuzzy upward
rough set applying fuzzy upward β‐covering and some relative properties are discussed. Finally
we presented a new technique/algorithm for the selection of medicine using multigranulation
( , )  ‐fuzzy upward rough set.
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