
RESEARCH ARTICLE Open Access

Heterogeneous dynamics, robustness/
fragility trade-offs, and the eradication of
the macroparasitic disease, lymphatic
filariasis
Edwin Michael* and Brajendra K. Singh

Abstract

Background: The current WHO-led initiative to eradicate the macroparasitic disease, lymphatic filariasis (LF), based
on single-dose annual mass drug administration (MDA) represents one of the largest health programs devised to
reduce the burden of tropical diseases. However, despite the advances made in instituting large-scale MDA
programs in affected countries, a challenge to meeting the goal of global eradication is the heterogeneous
transmission of LF across endemic regions, and the impact that such complexity may have on the effort required
to interrupt transmission in all socioecological settings.

Methods: Here, we apply a Bayesian computer simulation procedure to fit transmission models of LF to field
data assembled from 18 sites across the major LF endemic regions of Africa, Asia and Papua New Guinea,
reflecting different ecological and vector characteristics, to investigate the impacts and implications of transmission
heterogeneity and complexity on filarial infection dynamics, system robustness and control.

Results: We find firstly that LF elimination thresholds varied significantly between the 18 study communities owing to
site variations in transmission and initial ecological parameters. We highlight how this variation in thresholds lead to
the need for applying variable durations of interventions across endemic communities for achieving LF elimination;
however, a major new result is the finding that filarial population responses to interventions ultimately reflect
outcomes of interplays between dynamics and the biological architectures and processes that generate
robustness/fragility trade-offs in parasite transmission. Intervention simulations carried out in this study further
show how understanding these factors is also key to the design of options that would effectively eliminate
LF from all settings. In this regard, we find how including vector control into MDA programs may not only
offer a countermeasure that will reliably increase system fragility globally across all settings and hence provide
a control option robust to differential locality-specific transmission dynamics, but by simultaneously reducing
transmission regime variability also permit more reliable macroscopic predictions of intervention effects.

Conclusions: Our results imply that a new approach, combining adaptive modelling of parasite transmission
with the use of biological robustness as a design principle, is required if we are to both enhance understanding of
complex parasitic infections and delineate options to facilitate their elimination effectively.
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Background
While the current WHO-led global initiative advocating
the application of annual single-dose mass drug adminis-
tration (MDA) for 4–6 years to eradicate the vector-borne
macroparasitic disease, lymphatic filariasis (LF), from all
73 endemic countries represents one of the largest global
health programs devised to reduce the burden of tropical
diseases [1, 2], a critical challenge to parasite eradication is
the heterogeneous transmission of the disease across
endemic regions [3–6]. We have previously shown that
such environmental and geographic variability in parasite
transmission between communities may reflect the
impacts of significant site-specific variations in initial
ecological conditions and transmission parameters [7–9];
i.e. that observed infection patterns do not merely reflect
noise clouding an inherently non-spatial transmission
equilibrium [10], but represent significant sensitivity to
spatial and temporal variations in the key socioecological
drivers of transmission across a region [8, 11]. LF trans-
mission is further complicated by the geographic variation
observed in the diversity of the primary mosquito genera
implicated in parasite transmission, wherein in some
agro-ecological areas Culex is dominant and in others,
Anopheles or Aedes spp. [12–16], suggesting that site
variations in vector biodiversity may also constitute a
key part of the variable LF infection patterns observed
across endemic regions [17].
These findings imply that spatial and temporal vari-

ability in key environmental drivers could fundamentally
alter pattern-process relationships in LF transmission, and
consequently lead to the likely occurrence of significant
site-specific variability in parasite population response to
interventions [7, 8, 11]. From a strategic perspective, these
complexities imply that a single fixed time-limited global
intervention strategy (as exemplified by the current WHO
MDA initiative) that ignores local heterogeneities in para-
site transmission and extinction dynamics is unlikely to
achieve the successful elimination of this parasitic disease
from all endemic regions [18, 19]. Instead, overall benefits
are likely to be uneven, with re-emergence of infection
and disease inevitable in those communities where trans-
mission is not broken by the conclusion of a fixed-length
intervention applied commonly everywhere [20, 21].
This observation suggests that the essentially top-down
command and control management approach deployed
by the WHO, which is further characterized by the se-
lection and use of single elimination thresholds or
breakpoints [7, 8, 11, 18, 22, 23], may require to be
changed and made more adaptive to local transmission
settings if the goal of global LF elimination is to be
achieved. Alternatively, it indicates that a better under-
standing of how heterogeneous transmission interacts
with intervention perturbations will be crucial if counter-
measures robust to differential locality-specific control

dynamics are to be discovered and used for achieving
LF elimination reliably everywhere.
While impacts of heterogeneities in ecological and

environmental factors on the transmission dynamics of
vector-bone parasitic diseases, including malaria, filariasis,
schistosomiasis and onchocerciasis, are a topic of growing
study [5, 6, 8, 11, 22, 24], their interactions with public
health interventions by contrast is only now beginning to
be appreciated [11, 25–28]. Our previous work on LF
transmission heterogeneity, for example, has highlighted
the complex outcomes that such interactions may have for
efforts aiming to achieve the elimination of parasitic
disease [7–9, 11, 17]. An important finding in this regard
is that while heterogeneous parasite transmission dynam-
ics across a region may reflect strong system adaptations
to site-specific environmental factors, this sensitivity to
one set of localized conditions may also make a locally
robustly adapted parasite system particularly fragile to
perturbations that may significantly alter the variables
that constrain and govern the local transmission dynamics
[11]. This implies that critical trade-offs may occur between
environmentally-structured transmission robustness and
adaptability or even evolvability in these parasitic systems
[7, 8, 11, 17, 29], suggesting that a better understanding of
these “robust yet fragile” system traits, and factors that
underlie these properties, will be fundamental to the devel-
opment of the countermeasures needed for more effectively
disrupting LF transmission from all endemic settings
[7, 8, 11, 17]. Furthermore, how heterogeneous trans-
mission dynamics interact with current drug treatment
regimens to impact timelines for achieving parasite
elimination in different ecological settings has also
acute policy significance for the current LF elimination
program, namely determining if the current WHO MDA
strategy is likely to achieve the stated goal of accomplishing
the elimination of this disease both regionally and globally
by 2020 [7, 8, 11, 17].
In this study, our overarching goal is to examine how

site-specific heterogeneity in LF transmission might affect
the probability of eliminating this parasitic disease both
regionally and globally using existing disease control
strategies. The basis of our work is the use of a Bayesian
data-model assimilation (DA) framework that facilitates
both the simultaneous fitting and parameterization of
vector-specific LF transmission models to parallel cross-
sectional human infection and vector abundance data as-
sembled from community field surveys [8, 9, 11, 30, 31],
and the effective use of the resulting best-fitting model en-
sembles for undertaking numerical investigations of the ef-
fects of between-site heterogeneity on LF transmission and
extinction dynamics, and the impact that this variability
may have on infection outcomes in response to the mass
drug and vector intervention strategies currently advocated
for interrupting parasite transmission in different LF
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endemic settings. In addition, following recent advances in
investigating the parameter structure of complex dynamical
models, we also examine the parameter space and behav-
iour of the locally fitted models to develop new theoretical
understanding regarding how such characteristics may be
linked to LF transmission robustness and adaptation to
the local environment, the impact that such associations
may have on parasite response to perturbations, and on
the ability of models to make reliable macroscopic predic-
tions [32–34]. To be socially relevant to current control
efforts, we focus on the implications that transmission het-
erogeneity have for two key management questions: the
durations of control required for breaking LF transmission
across the range of transmission intensity-vector species
combinations likely to be observed in LF endemic regions;
and the possible role that adding supplemental vector
control measures can play in overcoming the between-
site response variations that may arise from applying
MDA alone.
We begin by describing our study areas and the data,

followed by descriptions of the LF model and the Bayesian
melding DA framework used to calibrate and fit the model
to parallel community-level human infection and vector
data. We then describe the modelling results focussing on
how heterogeneity in transmission, parameter structure
and biological robustness to extinction may interact with
intervention outcomes, taking particular account of effects
of variable vector species, pre-control transmission inten-
sities, intervention coverage patterns, and the impact of
supplemental vector control. We end by discussing the
significance of these findings for assessing and designing
the policy and management options that can best affect
global LF elimination in the face of the heterogeneous dy-
namics and robustness trade-offs that are likely to govern
local parasite transmission in typical endemic settings.

Methods
Data
The data used in this analysis were assembled from pub-
lished pre-control cross-sectional surveys of microfilariae
(mf) prevalence and mosquito abundance carried out in
18 geographically-distinct communities across the major
extant LF endemic regions of Africa, Asia and Papua New
Guinea. These datasets were selected on the basis that
they provide human age-mf prevalence data, including
break-ups of totals of individuals sampled and numbers of
mf-positives out of these samples, information on the
dominant prevalent vector species, and measurements of
the corresponding annual mosquito biting rates (ABR)
denoting the vector transmission intensity prevailing in
each site. Details of the data—sample sizes and % mf-
positives, along with sampling blood volumes used to
assess infection prevalence, dominant vector species and
ABRs—for each of the 18 survey sites are given in Table 1.

Information on the drug regimen used for simulating the
effects of interventions in each of these sites by MDA
without/with vector control (VC) are also given, reflecting
the current guidelines and use of drug combinations advo-
cated for these sites.

The mathematical model of LF transmission dynamics
We employed the recently developed mosquito genus-
specific transmission model of LF to carry out the mod-
eling work in this study [7, 8, 11, 35, 36]. Briefly, the
state variables of this hybrid coupled partial differential
and differential equation model vary over age (a) and/or
time (t), representing changes in the adult worm burden
per human host (W(a, t)), the mf level in the human
host modified to reflect infection detection in a 1 ml
blood sample (M(a, t)), the average number of infective
L3 larval stages per mosquito (L), and a measure of im-
munity (I(a, t)) developed by human hosts against L3
larvae. The state equations comprising this model are:

∂W
∂t

þ ∂W
∂a

¼ λ
V
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∂M
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Z

π að Þ 1−f Mð Þð Þda−σL−λψ1L

L� ¼ λκg

R
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σ þ λψ1

The above equations involve partial derivatives of
three state variables (W, worm load; M, microfilaria in-
tensity; I, immunity to acquiring new infection due to
the pre-existing worm load), whereas given the faster
timescale of infection dynamics in the vector compared
to the human host, the infective L3-stage larval density
developing in the mosquito population as a result of in-
gestion of mf from infected humans is modeled by an
ordinary differential equation, essentially reflecting the
significantly faster timescale of larval infection dynamics
in the vector hosts. This allows making the simplifying
assumption that the density of infective stage larvae in
the vector population reaches a dynamic equilibrium
(denoted by L*) rapidly [7, 8, 11, 37, 38]. The term f(M)
describes the functional form relating the mf-L3-stage
larval uptake and development in the vector population,
which is famously known to differ significantly in the
two major genera of mosquito vectors implicated in LF
transmission [39–42], and defined as [7]:
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for mosquitoes of anopheline genus, and:
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f Mð Þ ¼ 1þM
k

1− exp −
r
κ

h i� �� 	−k

for mosquitoes of culicine genus.
In the above, k[=k0 + kLinM] is the shape parameter of

the negative binomial distribution indicating that mean
L3 output is dependent on the distribution of mf, typic-
ally found to be overdispersed among hosts in a commu-
nity [37, 43], whereas r and κ are, respectively, the rate
of initial increase and the maximum level of L3 larvae
that develop in each vector population. The details of
the derivation of these two larval uptake and develop-
ment functions are given elsewhere [7]. The terms g1(I)
and g2(W) represent expressions by which acquired im-
munity to larval establishment, and host immunosup-
pression, as functions of adult worms, respectively, are
included in the model [8, 11]. This basic coupled
immigration-death model structure as well as recent ex-
tensions have been discussed [7, 8, 11, 37, 38]; see
Additional file 1: Table S1 for the description of all the
model parameters and functions.

The Bayesian melding framework
Our strategy was essentially two-pronged: first, to inte-
grate field observations on LF infection with simulation
model outputs to undertake model calibrations and to
quantify localized parasite transmission, i.e. by constrain-
ing values of transmission parameters within the bounds
of data-based estimation; and second, following this to
use the locally parameterized models to address the vari-
ables and questions of interest in this study, namely 1)
estimation of site-specific mf age-prevalences and worm
breakpoints, and 2) use of these quantities to carry out
the intervention simulations described further below.
We used the data-model assimilation methodology
founded on the Bayesian melding (BM) algorithm to ad-
dress this coupled model fitting and analyses problem
[8, 11]. The BM approach is a procedure whereby all the
available prior information about model inputs and out-
puts are “melded” together via Bayesian synthesis in
order to obtain the posterior distribution of any quantity
of interest that is a function of these inputs and/or out-
puts [31, 44]. For example, one of the priors on model
output is the set of observed data; i.e. in our case the

Table 1 Description of baseline survey data. The study sites are given with the baseline sample size and microfilariae (mf)
prevalence (%), blood volumes collected during the survey to test for mf positivity, annual biting rate (ABR) of vector mosquitoes,
dominant vector species and drug regimen used for simulating the chemotherapeutic interventions by mass drug administration
(MDA) without/with vector control (VC)

Study villages Sample size Blood volume (μl) aMf (%) bBaseline ABR Mosquito
species (genus)

cDrug regimen dDrug efficacies
(ω, ε, P)

Source

Peneng 63 1,000 66.67 8,194 An DEC + ALB (55, 95, 6) [8, 11, 78, 79]

Albulum 50 1,000 80 42,328 An DEC + ALB (55, 95, 6) [8, 11, 78, 79]

Yauatong 131 1,000 92.37 37,052 An DEC + ALB (55, 95, 6) [8, 11, 78, 79]

Nanaha 211 1,000 54.98 11,611 An DEC + ALB (55, 95, 6) [8, 11, 78, 79]

Ngahmbule 346 1,000 51.16 4,346 An DEC + ALB (55, 95, 6) [8, 11, 78, 79]

Masaika 848 100 28.61 6,184 An IVM + ALB (35, 99, 9) [80]

Tawalani 367 100 35.72 12,850 An IVM + ALB (35, 99, 9) [16]

Jaribuni 1,007 100 25.35 15,677 An IVM + ALB (35, 99, 9) [81, 82]

Tingrela 699 20 63.89 4,156 An IVM + ALB (35, 99, 9) [83]

Chiconi 245 20 58.90 10,586 An IVM + ALB (35, 99, 9) [84]

Kingwede 825 100 3.07 1,548 Cx IVM + ALB (35, 99, 9) [80]

Mao 546 100 27.8 25,439 Cx IVM + ALB (35, 99, 9) [16]

Mambrui 787 100 24.99 4,964 Cx IVM + ALB (35, 99, 9) [81, 82]

Pondicherry 1,549 20 34.74 88,500 Cx DEC + ALB (55, 95, 6) [85]

Calcutta 861 20 26.72 115,942 Cx DEC + ALB (55, 95, 6) [86, 87]

Vettavallam 7,976 20 22.83 100,375 Cx DEC + ALB (55, 95, 6) [88]

Pakistan 1,443 20 31.49 1,607 Cx DEC + ALB (55, 95, 6) [89, 90]

Jakarta 922 20 12.27 223,000 Cx DEC + ALB (55, 95, 6) [91]
aAll mf prevalence values were standardized to reflect sampling of 1 ml blood volumes using a transformation factor of 1.95 and 1.15, respectively, for values
originally estimated using 20 or 100 μl blood volumes [49]; bbaseline ABR can be used to get monthly biting rate (MBR = ABR/12); cthe combination drug
regimens are recommended by the WHO [92, 93]; dthe drug efficacy values are taken from [36]. An, Anopheles mosquitoes; Cx, Culex mosquitoes; drug efficacies
(ω, ε, P) (instantaneous kill rate (%) for adult worms, instantaneous kill rate (%) for microfilariae, drug efficacy period in months); mf (%), microfilariae prevalence in
percentages calculated from the number of mf-positive samples out of the total individuals sampled (sample size) in a study site. ALB, albendazole; DEC,
diethylcarbamazine citrate; IVM, ivermectin

Michael and Singh BMC Medicine  (2016) 14:14 Page 4 of 23



survey data on LF age-prevalence collected from each
endemic community. The other output prior is the
model-generated values of the state variables, such as W
or M. We further specify a conditional probability distri-
bution for observed data given the model outputs, and
this yields a likelihood for each model output. Thus, the
BM procedure is fundamentally a method for reconciling
several sources of prior information (related to model
parameters and outcomes, and data), in order to con-
strain the acceptable solution space of the input parame-
ters [30, 45, 46]. In the form of the method we
implemented here, we initially assigned vague or uni-
form prior distributions for each of the model input pa-
rameters (except for the mosquito biting rate, which was
fixed to the values of the monthly biting rate (MBR; see
Table 1) prevailing in each site), to reflect our initial in-
complete knowledge regarding their local values, while
for assessing adequacy of model outputs to data, a bino-
mial likelihood function was constructed to capture the
distribution of the observed mf age-prevalence data [8,
11, 38]. In practice, we run the dynamic model i times,
each time drawing random input values θi for i = 1, … l,
with the model producing as output the quantity of
interest ϕi, for example predictions of mf age-
prevalence, for each input θi. We then use the observed
data, denoted by y, to compute a weight wi for each in-
put θi: wi = L(ϕi). Specifically, here, L(ϕi) is the likelihood
of the model outputs given the observed data, L(ϕi) =
Prob(y|ϕi). We finally use the sampling importance re-
sampling (SIR) algorithm to resample, with replacement,
from the above parameter sets with the probability of ac-
ceptance of each resample θj = 1,2, … l probable to its
weight wi. A typical value of resamples l for the results
presented in this paper was around 500, and these SIR
parameter sets are then used to generate distributions of
variables of interest from the model (e.g. age-prevalence
curves, worm breakpoints), including measures of their
uncertainties [8, 11]. Note that as this procedure is
Monte Carlo-based, the method thus yields an ensemble
of good fitting local models differing only in their par-
ameter values as summarized by their posterior
distributions.

Numerical stability analysis for quantifying mf breakpoint
and vector biting thresholds
A previously developed numerical stability analysis pro-
cedure, based on varying initial values of L* to each of
the SIR-selected model parameter sets or vectors, was
used to calculate the distribution of mf prevalence
breakpoints and threshold biting rates (TBR) expected
in each study community [8, 11]. Briefly, in this proced-
ure, we begin by progressively decreasing V/H from its
original value to a threshold value below which the
model always converges to zero mf prevalence,

regardless of the values of the endemic infective larval
density L*. The product of λ and this newly found V/H
value is termed as the threshold biting rate (TBR). Once
the threshold biting rate is discovered, the model at TBR
will settle to either a zero (trivial attractor) or non-zero
mf prevalence depending on the starting value of L*.
Therefore, in the next step, while keeping all the model
parameters unchanged, including the new V/H, and by
starting with a very low value of L* and progressively in-
creasing it in very small step-sizes we estimate the mini-
mum L* below which the model predicts zero mf
prevalence and above which the system progresses to a
positive endemic infection state. The corresponding mf
prevalence at this new L* value is termed as the worm
breakpoint in this study [7].

Modeling intervention by mass drug administration
Intervention by MDA was modeled based on the as-
sumption that anti-filarial treatment with a combination
drug regimen acts, firstly, by killing certain fractions of
the populations of adult worms and mf instantly follow-
ing drug administration. These effects are incorporated
into the basic model by calculating the drug-induced re-
moval of worms and mf:

W a; t þ dtð Þ ¼ 1−ωCð ÞW ða; tÞ
M a; t þ dtð Þ ¼ 1−εCð ÞM a; tð Þg at time t ¼ TMDAi

Where dt is a short time period since the time point
TMDAi when the ith MDA was administered. The param-
eters ω and ε are drug killing efficacy rates for the two
life stages of the parasite, while the parameter C repre-
sents the MDA coverage. Apart from instantaneous kill-
ing of mf, the drug is also thought secondarily to
continue to kill the newly reproduced mf by any surviv-
ing adult worms for a period of time, P. We model this
effect as follows:

∂M a; tð Þ
∂t

þ ∂M a; tð Þ
∂a

¼ 1−εCð Þαϕ W a; tð Þ; kð ÞW a; tð Þ
−γM a; tð Þ; for TMDAi < t≤TMDAi þ P

Simulating LF MDA interventions
We simulated the effects of MDA interventions by run-
ning the model with fixed values of the three drug-
related parameters (ω, ε and P) for MDA coverage levels
ranging from 40 % to 100 %. The values of worm and
mf kill rates for the two drug regimens studied here,
namely diethylcarbamazine/albendazole (DEC + ALB)
and ivermectin/albendazole (IVM +ALB) (Table 1), were
taken from [36]. The first MDA round is implemented
in the model by applying the above equations to the
model vectors obtained from the baseline fits describing
the pre-control worm (W) and mf (M) loads in each site,
and subsequent interventions are simulated as discrete
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repeated pulse events acting on parasite loads resulting
from each sequentially applied MDA. We investigated
the impact of MDA implemented annually on the cycles
or rounds of annual treatment required to reduce mf %
prevalence from baseline to below the individual mf
breakpoint values estimated for each SIR model vector
in each site.

Modeling vector control
We model supplemental vector control (VC) (i.e. the im-
pact of long-lasting insecticidal nets (LLINs) or that of
indoor residual spray (IRS) or the impact of the two ap-
plied in some combination) by assuming that
population-level coverage of LLIN/IRS would reduce the
vector biting rate to the same degree regardless of the
mosquito genus present in a study site. Although effica-
cies of VC methods can decay over time, for example
due to wear and tear of insecticidal bed nets used in the
households [25, 47, 48], we do not consider this possibil-
ity here and assume for simplification that the advocated
replacements of nets as well as IRS re-sprays will take
place during the simulation periods examined in this
paper. A full exploration of the impacts of such decay ef-
fects will be presented elsewhere. The impact of VC in
this work will thus follow the modelling approach we
used previously [36, 38], whereby we replace V

H in the
worm equation by the term 1−CVð Þ VH , where Cv is the
VC coverage in terms of the fraction of households
using LLIN/IRS in a LF endemic setting.

Model sensitivity to local conditions and feasibility of
macroscopic predictions
In this exercise, we considered whether the microscopic
sensitivity of LF models to local conditions may none-
theless allow general predictions of the impact of inter-
ventions at the macroscopic scale. We address this here
by pooling firstly the parameter vectors from the BM fits
to baseline mf age-prevalence data from each study site
to create two superensembles of parameter sets: one set
of parameter vectors representing the transmission dy-
namics across the anopheline settings in our dataset (i.e.
combining the SIR vectors obtained from the five PNG
and five African anopheline study sites (Table 1)); and
the other for the culicine settings (containing the SIR
parameter vectors from the three African and five
Southeast Asian culicine sites). For each superensemble,
we then ran the respective vector-specific model for the
full set of ABR values (ranging from 1,500 to 230,000
bites/person/year) observed across the 18 sites, and used
the resulting mf infection curves to calculate the corre-
sponding superensemble model ABR- and TBR-
associated mf % breakpoints. Only mf breakpoint values
denoting a 95 % elimination probability were estimated

(see below), and used as target thresholds in the inter-
vention simulations carried out using these models.

Results
Model fits to baseline age-prevalence data
The fits generated by the culicine and anopheline LF
models (red curves) to the respective baseline mf preva-
lences in different age-groups (blue squares representing
the means with lines denoting the corresponding 95 %
binomial confidence intervals) from each of the 18 study
sites used in this study are shown in Fig. 1. All mf preva-
lence values were standardized to reflect sampling of 1
ml blood volumes using a transformation factor of 1.95
and 1.15, respectively, for values originally estimated
using 20 or 100 μl blood volumes [49]. Observed values,
and the transformed age-profiles of mf infection showed
significant differences between the study sites (Table 1;
binomial generalized additive model (GAM) testing for
significance of interaction between study site and mf age-
prevalence patterns [50]: χ2 = 2734, df = 165, p <0.001),
consistent with our previous findings that site-specific
socioecologic conditions govern LF transmission patterns
in the field [7, 8, 11]. The results also show that the
BM-based data-model assimilation procedure is cap-
able of reproducing the age-stratified mf prevalences
consistent with observed data in each of the study
communities (overall Monte Carlo p values >0.9 in
each case (Additional file 1: Table S2)), although as
expected the fits to mf age-prevalences are compara-
tively better for the study villages with the lowest
variability in this infection measure (Fig. 1).

Parameter values
Table 2 shows the results of a univariate Kolmogorov–
Smirnov (KS) two-sample test applied to the values of
prior and posterior distributions of each model param-
eter estimated using the Bayesian ensemble-based data-
model assimilation procedure. The results show that
while most of the LF model parameters exhibited vari-
able change from initially assigned parameter values,
only a few parameters pertaining to variables related to
the exposure (ψ1, ψ2, HLin), immunity (c, IC, SC) and
community structure (captured indirectly by the infec-
tion aggregation parameters, e.g. kLin)-related determi-
nants of parasite transmission were consistently
constrained by the site-specific data. Overall, there were
also more parameters that differed from their prior
values when compared across all study villages in the
culicine compared to the anopheline setting (Table 2).
Intriguingly, while parameters related to immunosup-
pression (IC, SC) were thus constrained in the villages
exposed to Anopheles vectors, for culicine villages, by
contrast, the immunity parameter most consistently
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constrained by site-specific data was the one associated
with the strength of acquired immunity (c).
We used classification tree analysis next to determine

which parameters differed significantly between the
study communities, and therefore might underlie the
between-study heterogeneity observed in the mf age-
prevalence data. The fitted trees stratified by vector spe-
cies are depicted in Fig. 2, and indicate that the
between-site variation in LF infection age-patterns ob-
served across the present study communities depended
only on a few “stiff” combinations of parameters, again
primarily those reflecting the differential exposure, de-
gree of community infection aggregation and worm fe-
cundity variables in both vector systems. This finding

highlights that the majority of the LF model parameters
may be deemed to be “sloppy” or insensitive to locally
varying environmental conditions, and support recent
work in systems biology suggesting that such neutral re-
gions in multiparameter space may be a ubiquitous fea-
ture of complex systems biology models [33, 51–53].

Threshold values and probability of LF extinction
We used the SIR-selected ensemble of parameter sets
to calculate the distributions of infection breakpoints
(in terms of mf %) and the vector to human transmission
thresholds (the TBR) expected in each of our study sites.
Mf breakpoints were furthermore estimated at both the
prevailing annual biting rate (ABR) in a community as

Fig. 1 Observed and fitted microfilarial age-prevalences of lymphatic filariasis (LF) for each study site. The SIR BM model fits (red lines) to observed
baseline mf prevalences in different age-groups (blue circles with binomial error-bars) from the 18 study sites investigated in this work are shown;
the filled circles display the data for the culicine communities, while the open circles denote data for the anopheline communities. The age-groups are
represented by the mid-point of the groups studied in each community. The study sites and details of survey data are described in Table 1. All mf
prevalence values were standardized to reflect sampling of 1 ml blood volumes using a transformation factor of 1.95 and 1.15, respectively, for values
originally estimated using 20 or 100 μl blood volumes [49]
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well as at the TBR value. An illustrative example, show-
ing results from the numerical stability analysis carried
out using the set of SIR parameter vectors obtained
from model fits to the Peneng dataset for estimating mf
% breakpoints at their TBR values is shown in Additional
file 1: Figure S1. The likely existence for a distribution of
system breakpoint thresholds rather than a single break-
point in a site implied by the results shown in Additional
file 1: Figure S1 also means that the probability of LF elim-
ination or extinction will vary across the range of values of
each threshold [54, 55]. Here, we use the cumulative dens-
ity function (CDF) of the estimated threshold values, in
conjunction with exceedance calculations [56], to quantify
three mf % breakpoint threshold values denoting elimin-
ation probabilities of 50 %, 75 % and 95 % in each site in
order to investigate the management trade-offs involved
in their choice as intervention targets in LF elimination
programs (see Additional file 1: Figure S2 for plots of the
CDFs and mf % cutoffs representing these elimination
probabilities in each study site).
Table 3 provides the actual numerical mf % breakpoint

values signifying these probabilities at both the ABR and
TBR vector transmission thresholds, and demonstrates

that wide variation in their values may occur between the
present study sites. Additional file 1: Table S3 presents the
results of the respective binomial generalized linear model,
or one-way ANOVA and Wilcoxon signed-rank tests ap-
plied to these data, and statistically support the impression
from Table 1 that there existed both a significant vector
species-related difference observed in the estimated values
of these thresholds, with generally higher values found in
the anopheline settings, as well as a statistical site-specific
variation in the values of these thresholds within both the
anopheline and culicine LF transmission endemic settings.
The results further show that mf breakpoint values in a
site are also highly dependent on the associated probabil-
ity of extinction they represent, with values decreasing
markedly with increasing probabilities of extinction.
Figure 3, however, indicates that while the mf breakpoint
values estimated at either TBR or baseline ABR are vari-
able between the study sites, these values nonetheless may
exhibit functional relationships with the baseline study
ABR, with the estimated mf thresholds declining on aver-
age in a power-law fashion with increasing site-specific in-
tensities of the host infection system input (ABR)
variables in both the anopheline and culicine cases.

Table 2 Posterior changes in model parameters. Parameters whose posteriors significantly differed from their priors across all the
anopheline (An) and culicine (Cx) villages are identified by the Kolmogorov–Smirnov two-sample test. The null hypothesis (H) is that
priors and posteriors have the same underlying distribution. The keys are: 1, reject the null H at the 5 % significance level; and 0, do
not reject the null H. Note that the parameters kLin, ψ1, ψ2, HLin, IC and SC differed from their priors across all ten or nine anopheline
study villages. In the remaining culicine study villages, the parameters that differed from their priors across all eight (or seven)
villages were κ, r, ψ1, ψ2, c and HLin

Study villages Spp. λ α k0 kLin κ r σ ψ1 ψ2 μ γ g c HLin V/H IC SC

Peneng An 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 1 1

Albulum An 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1

Yauatong An 0 1 0 1 0 1 0 0 0 1 1 0 1 1 0 1 0

Nanaha An 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1

Ngahmbule An 0 0 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1

Masaika An 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1

Tawalani An 1 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 1

Jaribuni An 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0 1 1

Tingrela An 0 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1

Chiconi An 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1

Sum of An sites 3 5 2 10 3 5 7 9 9 6 4 5 7 9 3 10 9

Kingwede Cx 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0

Mao Cx 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0

Mambrui Cx 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0

Pondicherry Cx 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Calcutta Cx 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1

Vettavallam Cx 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0

Pakistan Cx 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1

Jakarta Cx 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0 0

Sum of Cx sites 5 6 2 4 3 8 7 8 8 6 2 6 8 7 5 6 2
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Impact of local transmission dynamics and breakpoints
on elimination of LF
We used the locally calibrated LF models together with
their corresponding site-specific mf % breakpoints to

simulate the impact that locally variable LF transmission
dynamics may have on the expected timelines (in the
form of number of rounds of annual MDAs required)
for achieving parasite extinction in each site due to the

Fig. 2 Classification tree analysis to identify model parameters that differed significantly between the present study sites. (a) Anopheles mosquitoes
and (b) Culex mosquitoes. The fitted trees, stratified by mosquito species, indicate that local between-site variation in the LF infection age-patterns
observed between the present study sites depended only on a few “stiff” combinations of parameters. These parameters are the HLin, a threshold value
used to adjust the rate at which individuals of age a are bitten, worm establishment rate (ψ2), degree of community infection aggregation (k) and
worm fecundity rate (α) in both culicine (Cx) and anopheline (An) systems, and additionally the term, r, related to mf uptake by mosquitoes in the
anopheline system. The classification trees were fitted using the rpart package in R
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application of the two major control strategies currently
proposed for eliminating LF, namely MDA alone and
MDA supplemented with vector control. The analysis
was carried out by subjecting each of the 500 SIR-
resampled parameter sets estimated from a site to the
drug regimen (i.e. either DEC + ALB or IVM +ALB) rec-
ommended for use in that setting, and assessing the
number of annual cycles of MDA which would be required
for all the ensemble model vectors to cross below their re-
spective mf % breakpoint thresholds signifying 50 %, 75 %
and 95 % probabilities of LF elimination (EP). Mf % break-
point thresholds at ABR were used as targets when model-
ling the impact of MDA alone (Table 3), whereas
breakpoint prevalence values at TBR were used when mod-
elling the impact of including VC, as reducing the vector
population will push the system towards the TBR break-
point and hence raise mf breakpoints to their maximal
values (see Additional file 1: Figure S1 and S3).
Figure 4 shows the annual MDA cycles (the boxes in-

dicating the mean and variance in the rounds) required
to cross below the site-specific 95 % EP mf % thresholds
quantified for a selection of our anopheline and culicine
study sites (with results for the rest of the sites given in

Additional file 1: Figure S4 and S5). Results are illus-
trated for a range of drug coverages (from 40 % to 100
%) and with and without inclusion of VC. These indicate
firstly that while in general the number of years of an-
nual MDA rounds required to achieve parasite elimin-
ation will decline with increasing drug coverage, the
actual MDAs required at any given drug coverage will
vary significantly between sites (Fig. 4, Additional file 1:
Figure S4 and S5, Additional file 1: Table S4). Inclusion
of VC, however, will not only strikingly reduce the num-
bers of annual MDAs needed (in some cases from de-
cades of treatment to more feasible MDA durations (less
than 10 years in general even for a drug coverage as high
as 80 %)), but it will also, interestingly, reduce the vari-
ance in treatment rounds required compared to when
using MDA alone (Fig. 4, Additional file 1: Figure S4
and S5).
Figure 5 plots and compares the duration in years of

annual MDA alone (at 80 % coverage) versus annual
MDA plus vector (both administered at 80 % coverage)
required to eliminate LF in relation to both the mf
breakpoint value (at the 95 % EP) and the baseline mf
prevalence prevailing in the current anopheline and

Table 3 Model-estimated worm breakpoint values for achieving the successful interruption of LF transmission in each of the study
sites investigated. Breakpoints are listed in terms of % mf prevalence at three probabilities of elimination for two situations: 1) at the
prevailing vector biting rates (i.e. at the observed ABRs); and 2) at the threshold biting rate (TBR) at or below which LF transmission
process cannot sustain itself regardless of the level of the infection in human hosts (see text). The first set of the threshold values
(at study-specific ABR) is used in modeling the impact of mass drug administration (MDA) alone, while the second set (mf breakpoint
values estimated at TBR) is applied for modeling the impact when MDA is supplemented by vector control (VC)

Mf breakpoints calculated at ABR Mf breakpoints calculated at TBR

Study villages 50 % EP as % mf 75 % EP as % mf 95 % EP as % mf 50 % EP as % mf 75 % EP as % mf 95 % EP as % mf

Peneng 0.203816 0.111209 0.035429 2.54805 1.603205 0.435501

Albulum 0.041834 0.018397 0.004885 0.638664 0.268399 0.094346

Yauatong 0.025019 0.01043 0.002985 0.612255 0.271548 0.066789

Nanaha 0.383165 0.207235 0.066568 3.144555 2.278285 0.919664

Ngahmbule 0.314275 0.163155 0.058476 2.65292 1.727635 0.45293

Masaika 0.547213 0.25285 0.053393 2.973785 1.555073 0.451975

Tawalani 0.377915 0.215966 0.085207 2.86278 2.006245 1.07946

Jaribuni 0.454702 0.196513 0.077864 2.946105 2.15063 1.112716

Tingrela 0.334315 0.171191 0.042786 2.56515 1.532875 0.559656

Chiconi 0.223123 0.098382 0.033768 2.437125 1.568188 0.677308

Kingwede 0.209935 0.08889 0.022236 0.972591 0.455327 0.089295

Mao 0.189285 0.117818 0.019268 2.575155 1.828288 0.384838

Mambrui 0.49878 0.25427 0.075622 3.26316 2.33081 0.885393

Pondicherry 0.028824 0.005726 0.000476 0.536544 0.146736 0.041653

Calcutta 0.092718 0.043027 0.017295 1.46021 0.762273 0.178704

Vettavallam 0.077791 0.033227 0.002706 1.110415 0.613489 0.110904

Pakistan 0.267202 0.121281 0.034034 2.72511 1.811333 0.659793

Jakarta 0.032622 0.003889 0.000171 0.191162 0.098852 0.028576

EP, elimination probability

Michael and Singh BMC Medicine  (2016) 14:14 Page 10 of 23



culicine study sites. The results indicate that the dur-
ation of interventions needed to break LF transmission
in a site is a complex outcome of both the elimination
threshold value and baseline infection prevalence, which
may intriguingly also depend on the associated transmit-
ting vector species. Thus, while at low-moderate locality
baseline mf prevalence levels, striking between-site vari-
ation may occur in the needed durations of the two LF
interventions investigated here for achieving parasite
elimination, as baseline mf prevalence increases in a site
the durations of these interventions will increase signifi-
cantly. However, this outcome appears less well demon-
strated for the culicine compared to the anopheline sites
investigated in this study (Fig. 5). While this may reflect
an artefact of the smaller culicine study set used in this
study, it is notable that culicines in general appear to be
less efficient than anophelines in transmitting LF infec-
tion [39, 57], with lower levels of endemic mf prevalence
produced at comparable community ABR values in culi-
cine than in the case of anopheline settings (Table 1;
[57]). This constraining of endemic infection prevalence
could in turn restrict the range of breakpoint values in
culicine settings leading to a lower range in the dura-
tions of interventions estimated for our culicine study
sites compared to those obtained for anopheline sites.
On the other hand, the higher endemic infection preva-
lences produced in the anopheline sites as ABR increases

combined with the declining mf breakpoints at higher
ABR values (Fig. 3) would increase the intensity and du-
rations of interventions required to eliminate LF from
such settings.
Figure 6 tabulates these outcomes for all study sites,

and highlights the two major impacts on LF interven-
tions arising from variations in intervention coverage
and choice of EP threshold targets: 1) that durations of
LF interventions for achieving transmission elimination
in either vector setting and for each type of intervention
will decrease with increasing intervention coverage;
and 2) that they will increase significantly with the use of
breakpoints signifying higher elimination probabilities.
The latter finding illustrates the management trade-offs
connected with the choice of EPs; i.e. that choosing a
higher level of confidence for ensuring the meeting of
transmission interruption or elimination (e.g. choosing a
breakpoint value signifying a 95 % probability of elimin-
ation) will invariably lead to the need for implementing
longer durations (and hence higher cost) of control re-
gardless of MDA coverage and whether VC is included or
not, compared to choosing a threshold with lower EP
(say, 50 %). However, an important finding is that in-
cluding VC will, by reducing the duration of interven-
tions needed, drastically lower this cost of switching
from using a lower EP to a robustly higher EP in all
the current study settings (Fig. 6).

Fig. 3 Mf breakpoints as a function of baseline community annual biting rate (ABR) and microfilaria (mf) prevalence. The mf breakpoints
estimated in each site are shown as average values with 95 % CIs, calculated as the 2.5th and 97.5th percentiles of the breakpoint distribution in
each site, and are plotted against the observed ABRs in each site; filled and open circles, respectively, represent values for the culicine and
anopheline settings. The data in (a, b) and (c, d), respectively, represent the mf breakpoints estimated at the observed site-specific ABRs and the
corresponding estimated threshold biting rates (TBRs). Both types of mf breakpoints were negatively correlated with ABR, with the fitted dashed
lines indicating that overall these data follow a power-law function: f(x) = axb, with x representing the biting rate values on the x-axis, and f(x) the
mf breakpoints on the y-axis. The term a is a constant while b is the power-law exponent, with fitted values of (a, b) as follows: (a) (20.54,
−0.5112); (b) (1.335, −0.2184); (c) (54.25, −0.3498); and (d) (4.251, −0.104). All four associated p values were <0.01. The set of mf breakpoints plotted
in each graph were calculated using the best-fitting parameter vectors obtained from model fits to the baseline mf age-profile of each study site.
In the plots, individual sites are indicated by their first two letters, except for “Mao” in the culicine settings, in order to distinguish it from “Ma”
used for “Mambrui”. Inset plots are provided to clarify the variations in the breakpoint values estimated for sites with approximately the same
baseline ABR values, which were obscured in the respective main plots
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Macroscopic predictions
The results of intervention predictions for each superen-
semble model are given in Fig. 7. These highlight, firstly,
that a macroscopic vector-specific LF ensemble model
comprising of best-fit parameter vectors from all rele-
vant sites is able to capture and hence adequately predict
the number of years of MDA required to achieve local
LF elimination as a function of ABR. However, the re-
sults indicate that there is a major trade-off with this
global ability as it comes with a cost in the variability of
making the macroscopic predictions that varies dramat-
ically between the two interventions. Thus, while the
predictions are highly variable in the case of the MDA
alone intervention (Fig. 7a and c), this variability is dras-
tically reduced in the MDA plus vector control case
(Fig. 7b and d). The superensemble predictions are inter-
estingly also comparatively less variable, particularly for
the combined intervention strategy in the case of the

anopheline system compared to the culicine case (Fig. 7).
Figure 8 compares the contributions of the site-specific
parameter vectors within the global superensemble
model to the parameter vectors that best describe the
mf age-prevalence curves observed given local ABR
values in each of our study sites from either the anophel-
ine (Fig. 8a and b) or culicine (Fig. 8c and d) settings.
The dashed lines in each plot represent the 95 % upper
and lower confidence band of the mf age-prevalence
curve in each site, while the solid lines denote predic-
tions of the site-specific parameter vectors making up
the anopheline and culicine LF superensemble
models—colored according to locality (Fig. 8)—in each of
these sites. The relative contributions of the site-specific
parameter vectors comprising a superensemble to the en-
semble model fit to each dataset from a site can be dis-
cerned and calculated from the proportion of mf age curves
predicted using the site-specific parameter vectors that fall

Fig. 4 Variability in the impact of annual mass drug administration (MDA) and combined MDA plus vector control (VC) on intervention rounds in
years required to eliminate LF in different endemic communities (results shown for selected study sites). The required annual MDA rounds without and
with VC as a function of drug coverage (from 40 % to 100 %) are shown as box plots, with the solid horizontal line depicting the means. Supplemental use
of vector control (VC) was modelled at 80 % coverage. The results are shown for mf breakpoint threshold values representing a 95 % elimination
probability (see Table 3). The results for the remaining study sites are shown in Additional file 1: Figure S4 and S5. These results are from the model
simulations carried out for both LF intervention scenarios using the site-specific parameter vectors that best-fitted baseline age-prevalence infection in
each site (compare with Fig. 1)
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Fig. 5 Mean rounds of annual MDAs in years predicted for achieving LF elimination as a joint function of the community-level baseline mf prevalence
and breakpoint thresholds at 95 % EP. (a) MDA alone and (b) MDA + VC. Blue symbols, culicine sites; tan symbols, anopheline sites. EP, elimination
probability; MDA, mass drug administration; VC, vector control
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within the mf curve band within each site. This can be
seen both from the overlapping of curves predicted from
the site-specific vectors of the superensemble model to a
site’s observed age-prevalence curve (Fig. 8a and c), as
well as the summary bar charts (Fig. 8b and d) below
the age-pattern plots that show the calculated percent-
ages of site-specific vectors from the superensemble that
contributed to observed age-infection data in each site.
The H values given above each bar group depict values
of the Shannon index obtained by assessing the diversity
of site-specific parameter vectors contributing to the
superensemble predictions for a site. These formally in-
dicate that site-specific parameters may play a greater
role in superensemble model fits and hence ability to
predict local infection dynamics in the case of anophel-
ine compared to culicine filariasis (i.e. that anopheline
transmission dynamics is comparatively less constrained
by local ABR initial conditions). This comparative lesser

local parameter constraining could consequently also
underlie the lower variance observed in the superensem-
ble predictions for this system (Fig. 7). However, despite
the above results, for both vector systems, it is clear that
using annual MDA alone will not allow meeting the goal
of LF elimination using just the 6 years of annual treat-
ment recommended by the WHO; in fact in sites with
higher values of ABR, it will take up to >20 years (and dra-
matically beyond the year 2020 end date) to achieve this
goal (Fig. 7a and c). Including vector control to MDA,
however, will not only drastically reduce the number of
annual MDAs, but for sites up to a moderate ABR value,
it will also meet the goal of achieving LF elimination by
just six rounds of treatment (Fig. 7b and d).

Impact of ABR on transmission and extinction dynamics
Figure 9 shows results from a recursive partitioning ana-
lysis [58] of temporal changes in individual site-specific

Fig. 6 Mean rounds of annual MDAs in years for achieving LF elimination in each study site. The left and right heat maps are, respectively, for the
anopheline and culicine settings. Two intervention scenarios (namely, MDA alone and MDA + VC, with VC coverage at 80 %) were modeled using
three mf breakpoint threshold values at 50 %, 75 % and 95 % elimination probabilities (see Table 3). The results are shown for three MDA coverages
at 60 %, 80 % and 100 % for the MDA alone in the first three columns and for the MDA + VC strategy in the remaining three columns of
both the left- and right-panel plots. The drug regimens and their respective efficacies (i.e. adult worm and mf killing rates and efficacious
period) used in modeling these intervention scenarios are given in Table 1. The mean number of years of interventions were derived using
model runs for each of the 18 study sites based on their site-specific best-fit parameter vectors. EP, elimination probability; MDA, mass drug
administration; VC, vector control
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mf % breakpoints from baseline to a sequence of states
when ABR is progressively reduced cumulatively over
time by VC. The results underline a major outcome aris-
ing from the use of VC that may underlie the reduction
in the variability of the MDA plus vector control predic-
tions depicted in Fig. 7, namely that this could primarily
be due to a dissolution in the between-study heterogen-
eity in these breakpoints brought about as a result of
VC-induced negative changes in the prevailing abun-
dance of vectors. Indeed, the results show that (for both
LF-vector combinations) at high (50 % and 70 %) levels
of ABR reductions, initially separable between-site
breakpoint values converge until there is effectively only
a single regime of unpartitionable breakpoints that re-
main among the still infection-positive sites. This finding
supports our previous conclusion [11] that ABR may
represent the major factor bounding the local transmis-
sion and extinction dynamics of LF, and that including
VC could effectively compress such widely differing
ABR-driven locality-specific LF transmission regimes
(here as measured by site-specific mf breakpoint values)
into a single regime if it can be applied at levels that can

lead to consistently large declines in the prevailing vec-
tor populations.

Discussion
The chief contributions of this modelling study of the
dynamics of LF elimination based on detailed parasito-
logical and entomological field data are twofold. First,
we have advanced knowledge regarding the nature and
the organizational features that underlie heterogeneous
LF transmission across endemic localities, and the ef-
fects these have for infection and vector-related elimin-
ation thresholds. The key result here most immediately
relevant to global LF elimination is the finding that, as a
result of parameter adjustment to local transmission en-
vironments, significant differences in parasite population
dynamics and in the resultant transmission and infection
breakpoints occurred between the 18 endemic villages
investigated. Further, given our Monte Carlo ensemble-
based data-modelling framework that was designed to
capture local uncertainty and variability in transmission
parameters from site-specific data [8, 11, 31, 44, 59], we
show that rather than being a single estimate, both these

Fig. 7 Site-specific versus macroscopic superensemble predictions of the impact of LF interventions. The results from combining site-specific
best-fit model parameters to develop and use vector-specific superensemble models for simulating the impact of LF intervention at 80 % MDA
and VC coverages for the MDA alone and MDA + VC strategies are shown in (a, c) and (b, d), respectively. The solid curves represent the superen-
semble medians of annual MDA rounds required to reduce community-level mf prevalences below their respective infection breakpoint thresholds for
achieving a 95 % probability of elimination, and are stratified as a function of community ABR (annual biting rate) values. Note that the x-axis
is on a logarithmic scale. The dark and light grey regions, respectively, represent the 50 % (between the 25th and 75th percentiles) and 95 %
(between the 2.5th and 97.5th percentiles) credible intervals (CIs) of the number of years of interventions predicted by the ensemble model to
cross the respective 95 % elimination thresholds in each site. Circles (open, anopheline sites; filled, culicine sites) denote the median number of years
of each intervention (at 80 % coverages) predicted by the respective best-fitting site-specific models to break LF transmission. The lower dashed
line drawn at 6 years (i.e. the time period representing six annual MDA rounds) is to contrast the model-predicted MDA rounds required to achieve LF
elimination with the WHO recommendation of applying six annual MDAs to achieve elimination of LF from all endemic settings in the world. The
upper solid line drawn at 20 annual MDA cycles represents the target deadline for meeting the call for eliminating LF worldwide by
2020. The results for each site represent simulations of the impact of interventions mimicking a start year of 2000 (i.e. the year of WHO
announcement of GPELF) and maintenance of MDA and VC coverages at 80 % throughout
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Fig. 8 (See legend on next page.)
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infection-related and vector abundance thresholds can
exist as a “cloud” or distribution of values within and be-
tween village sites, with each value related to a probabil-
ity that parasite elimination will be achieved when
crossed [56]. This has significant strategic implications
as it clarifies that there is a choice in choosing a thresh-
old value from such distributions to serve as an endpoint
or breakpoint target in management programs, and as
can be seen from Table 3, given that these threshold
values can range from as high as 3 % mf prevalence (for
worm or infection breakpoints) to as low as 0.0002 %,
such a choice ultimately revolves on how risk of pro-
gram failure is (implicitly or explicitly) perceived and ac-
cepted by the relevant policy makers; i.e. whether
management or the decision maker is risk averse (and
hence opts for high confidence (e.g. 95 % probability) of
achieving elimination) or risk tolerant (and so is tolerant
of using values signifying lower confidences of achieving
elimination). It is instructive to note, in this regard, that
the WHO currently promotes the use of a 1 % mf preva-
lence threshold to serve as the elimination target for
MDA programs globally [60]; our results on mf preva-
lence breakpoint values (Table 3) indicate that such a
target is likely to afford at best only a moderate level of
confidence (up to at best 80 % probability of elimination)
that LF transmission will be interrupted when this value
is used globally or invariantly as a metric to signify
program success.
The present work has provided intriguing new insights

concerning the factors that may underlie LF transmis-
sion adaptation and response to both local environmen-
tal conditions and intervention-induced perturbations.
An important finding is that local transmission adapta-
tion appears to be governed by only a few biological pa-
rameters, with the majority of these parameters poorly
constrained by local data. This feature, previously pri-
marily thought of as being an outcome of either poor or
lack of parameter identifiability [33, 61], has recently
been shown instead to be an intrinsic feature of complex

multiparameter biological systems [34, 53, 62]; i.e. that
often it is not possible to identify or estimate values for
many parameters of these systems even with the avail-
ability of detailed data [63]. This phenomenon, which
has been termed as “parameter sloppiness”, is attributed
to the existence of a highly anisotropic structure in the
parameter space, wherein the behaviour of these systems
is insensitive to perturbations in the majority of its de-
fining parameters while varying due to changes on only
a few “stiff” combinations of model parameters [34, 62].
Our results in this study indicate that this system char-
acteristic may also apply to the transmission dynamics
of parasitic infections; however, they also highlight that
while such “sloppy” parameter behaviour has the poten-
tial to make global LF transmission invariant or robust
to many local permutations or changes in environmental
conditions, including as we have shown previously to
temporally varying follow-up infection data in response
to interventions in a setting [11], this sloppiness may
have evolved at the local level to withstand variations
across a relatively narrow range or thresholds of envir-
onmental shocks (i.e. the LF system may be robust to
changes in initial conditions within only a set of local
constraint values [64]), with the local system commen-
surately susceptible or fragile to shocks outside these
thresholds (but see below).
This behaviour of the LF system, particularly the ro-

bust (i.e. maintenance of transmission despite external
and internal perturbations [32]) yet fragile (extreme sen-
sitivity leading to transmission disruption following per-
turbations) duality of transmission/extinction dynamics
in relation to environmental variability in vector abun-
dance, suggests that LF transmission may be an example
of a highly optimized tolerance (HOT) system [65–67],
the structure and operation of which have been the basis
of new lines of enquiry and thinking regarding mecha-
nisms that may govern the robustness and persistence of
complex systems [32, 68–70]. Such work on HOT archi-
tectures across various biological systems has shown that

(See figure on previous page.)
Fig. 8 Contribution of site-specific parameter vectors to predictions of the superensemble model. The simulation of mf age-prevalence curves at
endemic equilibrium by the vector-specific LF regional superensemble model (see text) given the baseline ABR of each study site are portrayed
for each of five PNG anopheline (a, b) and five Southeast Asian culicine (c, d) study settings. The curves represent the sets of mf age-prevalence
curves, individually color-coded, generated by the resultant S (=5) site-specific parameter vectors comprising the respective regional model in
each site. In each site, we count the number ni of the best-fit parameter vectors (belonging to the ith site-specific set of the superensemble) that
are able to reproduce the observed mf age-prevalence in each site (i.e. fall within the 2.5th and 97.5th percentiles (shown by the dashed curves)
of the site-specific mf age-prevalence data), in order to quantify the proportional contributions (i.e. niN where N = ∑ni) of individual members, S, of

the global model to each site-specific prediction. The Shannon index, H ¼ −
XS

i¼1

ni
N

ln
ni
N

� �
was used to measure the diversity in the superensemble

parameter vectors as a result of the relative contributions of these S members to each regional prediction, with a higher diversity index denoting a
greater contribution of site-specific parameter vectors arising from different study settings to the regional prediction of infection in a site. The bars in
the grouped-bar plots in (b, d) depict the percentage contribution (i.e. niN � 100 of each S site-specific parameter member to the regional ensemble
model predictions of age-infection in each of the anopheline (b) and culicine (d) settings, with the values of the corresponding Shannon index (H)
displayed overhead
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a key mechanism that generates robustness is increasing
complexity in the internal structure of a system, wherein
many variables and feedback loops have been tuned to
favor or accommodate small losses in system function/
productivity in response to common events at the ex-
pense of large losses when subject to unexpected pertur-
bations [66–68]. We show in Fig. 3 the likely operation
of this mechanism in the case of LF transmission,
whereby decreases in worm breakpoint values as a func-
tion of mosquito abundance follow power-law functions,
rather than the comparatively faster decreases that
would be expected if exponential relationships were to
occur between these states [71]. This result implies that
the cost of maintaining the complex internal structure
required to accommodate common disturbances in the
LF system is the occurrence of relatively high worm
breakpoint values; it also suggests that ABR values in a
locality may govern the structural configuration of LF
transmission to local conditions, and that inducing
changes in ABR values outside the normal range experi-
enced locally would provide an effective mechanism to
significantly increase transmission fragility, and hence
affect reliable disruption of infection.
The assessments carried out in the second half of this

study in relation to evaluating the impact that site-
specific heterogeneity in transmission dynamics may
have on the prospects for eliminating LF has provided
important first insights as to how such mechanisms op-
erate and may impact current options to interrupt LF
transmission. Our chief finding in this regard is that this
interplay between LF transmission organization and dy-
namics at the local level will significantly influence the
durations of control required to break parasite transmis-
sion in a setting. We show specifically that control dura-
tions will vary from site to site as a result of complex
interactions between local transmission intensity, effi-
ciency, breakpoints, and robustness to environmental
changes or perturbations, but also with respect to the
type of interventions being applied as well as the trans-
mitting vector genus. Thus, we found that while dura-
tions of interventions will significantly vary between our
study sites, these durations will generally be longer and
much more variable when using the MDA alone strategy
(with years of interventions varying between 6 and 20

years at 80 % drug coverage) compared to the MDA plus
vector control strategy (with the years of interventions
ranging between 2 and 13 at the same 80 % drug and
vector control coverages (Fig. 6)). As we show in Fig. 9,
this difference between the two interventions is largely a
function of the transmission regime homogenization or
convergence brought about by vector control, which by
reducing the robustness of LF transmission to change in
the local dynamics constraining variables and facilitating
the switching of transmission dynamics into a more nar-
rowed and more fragile regime (in terms of increasing
infection breakpoint values), can lead to a decrease in
the extent and variance in the intervention durations re-
quired to disrupt parasite transmission. By contrast, the
results imply that the higher variability and longer dura-
tions of interventions required when applying the annual
MDA strategy alone are likely to be a function of the
strong density-dependent negative feedback loops, such
as those fostered by the limitation, acquired immunity
and worm mating functions [7, 72], that govern LF
transmission in endemic areas compensating variably for
the worm killing effects of drug treatments. These find-
ings clearly indicate that gaining a better understanding
of the interactions between system structures that gener-
ate robustness and the specific perturbations being ap-
plied to a system will be crucial to identifying the
informed locally adaptive strategies required for achiev-
ing the reliable disruption of parasite transmission from
all endemic settings [70]. From this perspective, it is
clear that reducing vector abundance in addition to kill-
ing worms using MDA, by significantly increasing the
fragility of transmission, may be a better option than ap-
plying MDA alone for effectively eliminating LF
transmission.
Another significant and unexpected, but intriguing

finding from the intervention simulations carried out
here relates to the fact that despite the lower estimates
of infection breakpoints in the culicine study sites, the
durations of interventions for these sites, irrespective of
type, are calculated to be within the range predicted for
the anopheline settings for similar low to medium pre-
control community vector biting rates; i.e. between 5 to
15 years in general (Fig. 5). Given that the generally
lower mf breakpoint values estimated for the culicine

(See figure on previous page.)
Fig. 9 The impact of reducing ABR by VC on LF transmission regimes. The recursive partitioning of LF elimination regimes was obtained by
carrying out a classification analysis using the kalR package in R on mf breakpoint values obtained at different ABR values changing from baseline
due to reductions brought about by VC. The left-side panel of plots (a to d) portray the results for the anopheline (An) superensemble whereas
the right-side panel (e to h) show results for the culicine (Cx) global model. Mf breakpoints depicted in each panel plot were calculated at the
observed baseline ABR values (a(Obs) and e(Obs)) and at reduced ABR values per site as follows: 30 % reduction (b, f); 50 % (c, g); and 70 % (d, h). As the
baseline ABR values in each site are reduced from 0 % (no reduction) to 30 %, different regimes of breakpoints signifying initially separable or partitionable
site-specific values as indicated by the vertical lines begin to shrink in terms of their ranges. Further reductions (of 50 % and 70 %) in the baseline ABRs lead
to a collapse of these different regimes into a single regime at the 70 % reduction stage
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study sites (Table 3) would have indicated the need for
longer durations of interventions in these sites in com-
parison with the anopheline case, this finding thus sug-
gests that factors other than breakpoint values may also
play a role in governing the LF system response to inter-
ventions. Our results show that one factor underlying
this paradox may relate to the robustness-performance
trade-offs that govern the two LF systems. Thus, we
show firstly that although transmission breakpoints are
lower in the case of culicine LF, the performance or pro-
duction efficiency of this system in terms of the overall
mf prevalence produced for the same ABR is lower than
that of the anopheline system [57]. This would result in
a smaller distance or basins of attraction between en-
demic infection levels relative to elimination thresholds
in the culicine compared to the anopheline system [7],
an outcome that could clearly overcome the impact that
lower breakpoint values estimated for this system
(Table 3) may have on lengthening intervention dura-
tions. Note that as different assemblages of density-
dependent mechanisms govern the differential levels of
infection and breakpoints values generated in each sys-
tem [7], wherein in one case (culicine), strong negative
density-dependent factors, such as the L3 limitation
function and host acquired immunity, lowers the en-
demic mf levels reached but also slows the approach to
crossing the lower extinction thresholds (hence enhan-
cing the stability of the endemic state) and in the anoph-
eline case, strong positive density-dependent functions,
such as the L3 facilitation and host immunosuppression
functions, lead to higher endemic mf prevalences but
faster approaches to higher extinction thresholds over
the same ABR ranges, our finding of a strong vector spe-
cificity in the response of the parasite population to
different LF control interventions further supports our
overall contention from this study that it is the complex
interplay between dynamics and the internal
organization structure underlying LF transmission—in
terms of resource use, productivity and robustness—that
will ultimately underlie the dynamics of LF elimination
in an endemic setting [32, 68, 70, 73, 74].
The evaluations carried out in this study with regards

to examining the feasibility of developing and using
superensemble models of LF transmission, based on
pooling site-specific parameter vectors, to facilitate pre-
dictions of the impact of interventions at the macro-
scopic scale was predicated on the hypothesis that
sloppiness in parameter values would indicate a weak
dependence on microscopic details and thus allow ef-
fective macroscopic predictions. It was also based on
growing work on multiparameter models from a range
of fields, including physics and biology, that has under-
scored how such sloppiness in parameter values may be
the key factor underlying the ability of mathematical

models in predicting complex phenomena at larger scales
despite considerable microscopic uncertainty [34, 62].
We show here for the first time that indeed such
macroscopic superensemble models would be able to
predict the number of years of LF interventions re-
quired to achieve LF elimination in different sites
varying in baseline mf prevalence and ABR values.
However, a major finding is that the ability of these
global models to make reliable predictions is critically
dependent on both the type of LF interventions being
modelled and on the vector species mediating trans-
mission in a locality (Fig. 7). Thus, while the results
indicate how comparatively more reliable (lower vari-
ance) predictions of the effects of combined MDA
and vector control are possible owing to the pushing
of the LF system into common dynamical regimes as
a result of ABR reductions (discussed above), an unex-
pected finding was that intervention predictions using the
constructed superensemble models were also more reli-
able for anopheline compared to culicine LF. We suggest
that this is largely due to the greater constraining of culi-
cine dynamics to local settings; i.e. culicine model parame-
ters may be relatively less sloppy than in the case of the
anopheline parameters (Fig. 8). This implies that the ro-
bustness of the culicine system may be restricted to
changes of initial conditions within a fixed local boundary
of ABR values, whereas anopheline LF could also be ro-
bust to changes in these constraining values between sites.
This difference in the type of robustness clearly makes it
possible to undertake a more reliable macroscopic model-
ling of anopheline LF transmission dynamics and control
using the present superensemble modelling approach, and
highlights how apart from affecting the outcomes of inter-
ventions, biological organizational architectures that gov-
ern transmission robustness may also govern the practical
ability of models to make reliable macroscopic predictions
of the effect of specific interventions. However, note a
trade-off is that such robustness may also reduce the cap-
acity of anopheline LF for evolutionary and environmental
adaptation relative to culicine LF [33, 70]. This is an im-
portant finding because if times to genetic rescue become
favourable in relation to those that would bring about
population extinction as a result of LF interventions [36],
then we predict that culicine systems would be more likely
to evolve drug resistance, say, as a specific example of a
mutational response to MDA, compared to anopheline
LF. The practical conclusion of this finding is clear,
namely that if drug resistance to LF MDA emerges this
will occur first in culicine areas and thus that management
options, for example combined MDA plus vector control
[36, 75], to prevent such an eventuality, as well as surveil-
lance for detecting mutational changes reflective of devel-
oping resistance, should also be targeted in the first
instance to these areas.
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Conclusions
We have shown in this study for the first time how the
multiple aspects that characterize biological robustness
to a set of perturbations and its expression in terms of
system resource demands, productivity and structure,
will not only lead to a better understanding of heteroge-
neous LF transmission dynamics and persistence but
also to delineating and identifying the set of external
conditions and perturbations that would reliably increase
system fragility and hence lead to a more predictable
disruption of LF transmission. This is an important re-
sult and indicates how understanding the complex ecol-
ogy of parasite transmission and persistence, rather than
merely basing decisions on empirical field or clinical trial
results, is central to the development of effective control
or elimination strategies. We show in this regard, for ex-
ample, how including vector control to MDA may not
only reliably increase system fragility and hence reduce
the number of years of interventions required to inter-
rupt LF transmission significantly—in many cases to
within the WHO recommended 6 years of interven-
tion—but by also additionally reducing transmission re-
gime variability permit the making of more reliable
global predictions of control requirements. These find-
ings imply that a change in thinking is now required
concerning how parasite elimination programs are to be
designed if we are to identify and apply better ap-
proaches to disrupting transmission. More specifically,
they suggest that the use of robustness, including fea-
tures of HOT mechanisms, as a design principle to in-
vestigate the nature of, and response to, assemblages of
intervention options, could provide a more effective
framework and tool for uncovering options that would
reliably and sustainably eliminate LF, and indeed other
parasitic diseases, from all settings in the face of extant
environmental heterogeneity and uncertainty, and pos-
sibly even problems previously unencountered (e.g. evo-
lution of drug resistance by LF parasites). We suggest
that adaptive modelling methods, such as the coupled
data-modelling approach developed here, that will allow
the construction of robustness profiles of parasitic systems
in response to environmental variations may provide a
first step in this process [74, 76, 77]. We also echo in this
regard increasing calls for the assembly and release of LF
intervention data from the many countries collecting
these data as part of their LF program monitoring and
evaluation activities to modellers so that predictions made
in the present study could be verified and tested rigor-
ously. Given the current pressing policy needs of the glo-
bal LF elimination program, and indeed other growing
neglected tropical disease control programs, we indicate
that this work be urgently initiated in order that the goal
of eliminating these major diseases of the global poor is
more robustly supported.
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