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Abstract

The genetic and environmental homogeneity in agricultural ecosystems is thought

to impose strong and uniform selection pressures. However, the impact of this

selection on plant pathogen genomes remains largely unknown. We aimed to iden-

tify the proportion of the genome and the specific gene functions under positive

selection in populations of the fungal wheat pathogen Zymoseptoria tritici. First, we

performed genome scans in four field populations that were sampled from different

continents and on distinct wheat cultivars to test which genomic regions are under

recent selection. Based on extended haplotype homozygosity and composite likeli-

hood ratio tests, we identified 384 and 81 selective sweeps affecting 4% and 0.5%

of the 35 Mb core genome, respectively. We found differences both in the number

and the position of selective sweeps across the genome between populations. Using

a XtX-based outlier detection approach, we identified 51 extremely divergent geno-

mic regions between the allopatric populations, suggesting that divergent selection

led to locally adapted pathogen populations. We performed an outlier detection

analysis between two sympatric populations infecting two different wheat cultivars

to identify evidence for host-driven selection. Selective sweep regions harboured

genes that are likely to play a role in successfully establishing host infections. We

also identified secondary metabolite gene clusters and an enrichment in genes

encoding transporter and protein localization functions. The latter gene functions

mediate responses to environmental stress, including interactions with the host. The

distinct gene functions under selection indicate that both local host genotypes and

abiotic factors contributed to local adaptation.
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1 | INTRODUCTION

Agricultural plant pathogens are responsible for widespread epi-

demics and can quickly overcome control methods (McDonald &

Stukenbrock, 2016). In particular, the breakdown of genetic

resistance by pathogens can lead to significant yield losses and

impact food security (Singh et al., 2011). Resistance to fungicides

arises frequently, with significant economic costs for farmers (Hahn,

2014). These rapid evolutionary responses are largely due to the

high environmental and genetic uniformity found in agricultural

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2018 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

Received: 24 August 2017 | Revised: 5 April 2018 | Accepted: 17 April 2018

DOI: 10.1111/mec.14711

Molecular Ecology. 2018;27:2725–2741. wileyonlinelibrary.com/journal/mec | 2725

http://orcid.org/0000-0002-9365-4008
http://orcid.org/0000-0002-9365-4008
http://orcid.org/0000-0002-9365-4008
http://orcid.org/0000-0002-5332-2172
http://orcid.org/0000-0002-5332-2172
http://orcid.org/0000-0002-5332-2172
http://orcid.org/0000-0002-2072-380X
http://orcid.org/0000-0002-2072-380X
http://orcid.org/0000-0002-2072-380X
http://creativecommons.org/licenses/by/4.0/
http://www.wileyonlinelibrary.com/journal/MEC


fields, which imposes strong directional selection that leads to the

evolution of more virulent and drug-resistant pathogen populations

(Stukenbrock & McDonald, 2008). Despite abundant evidence for

rapid evolution of pathogens in agricultural ecosystems, the loci

involved in adaptive evolution remain largely unknown. Identifying

loci under recent positive selection in populations can provide key

insights into the mechanisms of adaptation (Weigel & Nordborg,

2015).

Signatures of positive selection were found in key loci function-

ally shown to play a role in the evolution of virulence, that is effec-

tor genes, and fungicide resistance in pathogen populations

(Aguileta, Refr�egier, Yockteng, Fournier, & Giraud, 2009). During the

co-evolution of hosts and pathogens, the host evolves defence

mechanisms that target specific pathogen genotypes. In turn, the

pathogen evolves strategies to escape recognition by the host and

infect the host tissues (Jones & Dangl, 2006). Pathogen effector

genes should be under particularly strong positive selection because

expressing these genes can be highly detrimental or beneficial for

the pathogen (de Jonge, Bolton, & Thomma, 2011; Presti et al.,

2015). Strong directional selection was found to affect polymor-

phism in a small number of well-characterized effector genes. These

genes mostly encode small secreted proteins that are under selec-

tion to avoid recognition by the prevalent host genotypes (Dai, Jia,

Correll, Wang, & Wang, 2010; Van de Wouw et al., 2010). A few

genes encoding cell wall degrading enzymes and host-specific toxins

were also under positive selection in pathogen populations (Brunner,

Torriani, Croll, Stukenbrock, & McDonald, 2013; McDonald, Oliver,

Friesen, Brunner, & McDonald, 2013). The fixation of adaptive

mutations in the mitochondrial cytochrome b gene and the CYP51

gene contributed to strobilurin and azole fungicide resistance,

respectively (Brunner, Stefanato, & Mcdonald, 2008; Brunner, Ste-

fansson, Fountaine, Richina, & McDonald, 2015; Delmas et al.,

2017; Estep et al., 2015; Pereira, McDonald, & Brunner, 2017; Tor-

riani, Brunner, McDonald, & Sierotzki, 2009). Despite these exam-

ples, the proportion of the genome under positive selection and the

functions of the loci in these selected regions remain largely

unknown.

In contrast to the environmental and genetic uniformity present

at the field scale, agricultural landscapes may be highly heteroge-

neous at the continental scale. Environmental heterogeneity in agri-

cultural landscapes may also be created on a temporal scale through

crop rotations. These spatial and temporal differences in environ-

mental heterogeneity are likely to impose selection on the corre-

sponding pathogen populations. Earlier analysis of global genotypic

and phenotypic diversity in allopatric fungal populations indicated

that divergent selection likely contributed to local adaptation

(McDonald et al., 2013; Stefansson, McDonald, & Willi, 2013; Zhan

& McDonald, 2011; Zhan, Stefanato, & McDonald, 2006; Zhan et al.,

2005). Divergent selection can also be detected at a very local scale,

with host genotypes or fungicide treatments selecting for adapted

pathogen populations even within single fields (Cowger, Hoffer, &

Mundt, 2000; Walker et al., 2017). Because similar agricultural prac-

tices can lead to similar environments (e.g., by planting genetically

identical crops, applying the same fertilizers and spraying the same

fungicides) for pathogen populations on different continents, there

are opportunities for parallel adaptation affecting the same pathogen

traits. However, it remains largely unknown whether the same loci

will be affected in the same way by similar selection pressures

applied in different regions (Croll & McDonald, 2016).

Genome-wide signatures of recent selection can be detected

using genome scans. Selective sweeps are detected based on

changes in genetic diversity along chromosomes, with the power to

detect sweeps resting largely on hitchhiking effects between an

adaptive locus and proximal polymorphisms. Scans for divergence

screen for extreme population differentiation at a small subset of

the loci (Nielsen, 2005; Vitti, Grossman, & Sabeti, 2013). Genome

scans were successfully applied to fungal populations found in natu-

ral ecosystems. Selective sweeps were found to affect between 1%

and 17% of the genome in two sister species of the anther smut

fungus, Microbotryum lychnidis-dioicae and M. silenes-dioicae (Badouin

et al., 2017). The sweep regions contained several genes with

pathogenicity-related functions. A dominant force of selection was

proposed to be adaptation to the host (Badouin et al., 2017). In

other plant-associated fungi, genome-wide scans for divergent selec-

tion identified several outlier regions for population divergence along

a gradient of abiotic environments that included salinity and temper-

ature (Branco et al., 2015, 2017; Ellison et al., 2011). The genomes

of fungal pathogens in agricultural ecosystems are likely to be simi-

larly affected by selection due to a combination of biotic and abiotic

factors, but there was no empirical evidence for this until now.

The fungus Zymoseptoria tritici is the most damaging wheat

pathogen in Europe (Fones & Gurr, 2015). The fungus establishes

itself first as an apparent biotroph on wheat leaves, then switches to

necrotrophy after killing the host cells and finally lives as a sapro-

troph on the dead plant material. The fungus undergoes several

cycles of sexual and asexual reproduction annually (Eyal, 1999). High

levels of gene flow through airborne ascospore dispersal and fre-

quent sexual reproduction maintain large effective population sizes,

leading to a rapid decay in linkage disequilibrium (Croll, Lendenmann,

Stewart, & McDonald, 2015; Zhan et al., 2005). Given these proper-

ties, we expect that Z. tritici populations should respond rapidly to

selection pressures during the cropping season. Studies of field pop-

ulations showed that the pathogen rapidly evolved resistance to

fungicides and gained the ability to infect previously resistant hosts

(Cowger et al., 2000; O’Driscoll, Kildea, Doohan, Spink, & Mullins,

2014). Recent studies based on quantitative trait loci (QTL) mapping

identified candidate loci for fungicide resistance, melanization, tem-

perature sensitivity and virulence (Lendenmann, Croll, & McDonald,

2015; Lendenmann, Croll, Palma-Guerrero, Stewart, & McDonald,

2016; Lendenmann, Croll, Stewart, & McDonald, 2014; Mirzadi

Gohari et al., 2015; Stewart et al., 2018). Genome-wide association

mapping showed that the pathogen overcame host resistance by

mutations in genes encoding small secreted proteins (Hartmann,

S�anchez-Vallet, McDonald, & Croll, 2017; Zhong et al., 2017). Tran-

scriptomic studies showed waves of expression of genes encoding

secreted proteins (i.e., effectors, peptidases, peroxidases and cell wall
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degrading enzymes) and secondary metabolite production pathways

during infection (Palma-Guerrero et al., 2017; Rudd et al., 2015). In

addition, analyses of synonymous versus nonsynonymous substitu-

tions among Z. tritici and its wild relatives identified 27 positively

selected genes (Stukenbrock et al., 2011). Three of these genes had

an experimentally validated impact on virulence and reproduction

during infection (Poppe, Dorsheimer, Happel, & Stukenbrock, 2015).

A study using a similar strategy identified diversifying selection in six

of 48 genes encoding plant cell wall degrading enzymes (Brunner

et al., 2013). Although targeted analyses of loci segregating variation

within the species and genes under positive selection among lin-

eages identified candidate genes involved in adaptation, the genomic

regions and corresponding genes under recent selection in popula-

tions of Z. tritici are unknown.

In this study, we aimed to identify the proportion of the genome

and the specific gene functions under recent positive selection in

populations of Z. tritici. We analysed whole-genome data of 123 iso-

lates from four field populations located on three continents and

planted to different wheat cultivars. In Oregon (USA), isolates were

from two sympatric populations collected on the same day from two

different wheat cultivars planted in the same field (Croll, Zala, &

McDonald, 2013; Hartmann & Croll, 2017; Hartmann et al., 2017;

Torriani, Stukenbrock, Brunner, McDonald, & Croll, 2011; Zhan et al.,

2005). Population structure was found to be consistent with the

geographic origin of the isolate, with distinct environments likely

leading to locally adapted pathogen populations based on selection

for fungicide resistance, temperature sensitivity and virulence (Zhan

et al., 2005, 2006). Individual populations harboured substantial

genetic variation based on genome-wide analyses of single nucleo-

tide polymorphism (SNP) and gene content (Hartmann & Croll, 2017;

Hartmann et al., 2017). Linkage disequilibrium decayed within 10 kb

for all populations and within much less distance in the most poly-

morphic populations (Hartmann et al., 2017). First, we performed

genome scans in the four allopatric populations to identify which

genomic regions are under recent positive selection in field popula-

tions and to analyse whether the same or distinct genomic regions

are under selection among populations. To determine what propor-

tion of the genome was under selection, we first sought evidence

for selective sweeps in the four allopatric field populations individu-

ally. Individual fields likely experienced a homogeneous biotic and

abiotic environment. We used extended haplotype homozygosity

(EHH) and composite likelihood ratio (CLR) tests. These are comple-

mentary methods that are designed to detect different types of

selection signatures. The CLR test allows detection of hard sweeps,

whereas iHS is more powerful for detecting incomplete sweeps (Pav-

lidis & Alachiotis 2017; Vitti et al., 2013). To identify the most likely

gene functions under selection, we analysed the gene content of

each selective sweep region. To identify whether some loci show

evidence of divergent selection, we then analysed loci showing

extreme population divergence based on the XtX-based outlier

detection method that incorporates both the population co-ancestry

and demography history. At last, we investigated host-driven selec-

tion by analysing divergent selection in the pair of sympatric

populations in Oregon. We found that about 5% of the Z. tritici gen-

ome showed signatures of positive selection. Selective sweep

regions differed strongly between the allopatric populations and we

identified several genomic regions showing extreme population

divergence, providing evidence for divergent selection. The gene

functions found in the selected regions indicate that both local host

genotypes and abiotic factors contributed to local adaptation. The

analyses of the two sympatric populations revealed genes likely to

be involved in host adaptation.

2 | MATERIALS AND METHODS

2.1 | Fungal isolate collection and whole-genome
sequences

We analysed a total of 123 isolates of Z. tritici that were collected

from naturally infected wheat fields between 1990 and 2001: Aus-

tralia (n = 26), Israel (n = 24), Switzerland (n = 27) and Oregon, USA

(n = 46). In each location, all isolates were collected from a single

field and cultivar, except for the Oregon isolates that were collected

from two different wheat cultivars, Madsen and Stephens, growing

in the same field (Zhan et al., 2005). Whole-genome sequencing data

were generated for all 123 isolates (Croll et al., 2013; Hartmann &

Croll, 2017; Hartmann et al., 2017; Torriani et al., 2011). In brief,

high-quality genomic DNA was extracted from liquid cultures and

Illumina paired-end sequencing of 100-bp read length, and an insert

size of ca. 500 bp was performed to generate 0.7–2.5 Gb sequence

data per isolate. All Illumina sequence data are accessible from the

NCBI Short Read Archive (for Accession nos, see Supporting infor-

mation: Table S1).

2.2 | Read mapping and variant calling procedure

Raw Illumina reads were trimmed for adapter contamination and

sequencing quality. For trimming, the software TRIMMOMATIC v0.32

(Bolger, Lohse, & Usadel, 2014) was used with the following settings:

illuminaclip = TruSeq3-PE.fa:2:30:10, leading = 10, trailing = 10, slid-

ingwindow = 5:10, minlen = 50. Trimmed Illumina reads were

aligned to the reference genome IPO323 using the short read aligner

BOWTIE 2 version 2.2.3 (Langmead, Trapnell, Pop, & Salzberg, 2009)

with the following settings: –very-sensitive-local –phred33 –X 1,000.

We used the reference genome assembly version 2 (Goodwin et al.,

2011) from EnsemblFungi (Flicek et al., 2014). The MarkDuplicates

module of Picard tools version 1.118 (http://broadinstitute.github.io/

picard) was used to mark PCR duplicates in the alignment (bam) files.

Average coverage ranged from 89 to 299 for all 123 isolates and

no evidence of chromosomal aneuploidy was found (Hartmann &

Croll, 2017).

Single nucleotide polymorphism (SNP) calling and variant filtra-

tion were performed using the Genome Analysis Toolkit (GATK) ver-

sion 3.3-0 (McKenna et al., 2010). First, we performed SNP calling

for all 123 Z. tritici isolates independently using HaplotypeCaller

with the following options: –emitRefConfidence GVCF; –
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variant_index_type LINEAR; –variant_index_parameter 128000; –

sample_ploidy 1. Then, we used GenotypeGVCFs to perform joint

variant calls on a merged gvcf variant file with the option –

maxAltAlleles 2. We kept only SNPs from the joint variant call file.

We used the GATK VariantFiltration and SelectVariants tools to

perform hard filtering of SNPs based on quality cut-offs following

the GATK Best Practices recommendations (DePristo et al., 2011;

Van der Auwera et al., 2002). We used the following cut-offs:

QUAL < 250; QD < 20.0; MQ < 30.0; –2 > BaseQRankSum > 2; –

2 > MQRankSum > 2; –2 > ReadPosRankSum > 2; FS > 0.1. After

filtration for genotyping rate (>90%), a set of 1,527,909 SNPs was

retained. To further validate the identified SNPs, we used the inde-

pendent SNP caller FREEBAYES v.0.9 (Garrison & Marth, 2012). We set

FREEBAYES to ignore poorly mapped reads and poor base quality using

the following stringent parameters: –min-mapping-quality 30; –min-

base-quality 20; –use-best-n-alleles 2; –min-alternate-count 1;

–ploidy 1; –use-mapping-quality; –no-indels; –no-mnps; –no-complex.

SNPs were filtered for quality using the GATK VariantFiltration and

SelectVariants tools (QUAL < 250). We retained 1,678,238 SNPs

with a genotyping rate >90% from FREEBAYES. To identify the most

stringently called SNPs, we retained only SNPs called using Haplo-

typeCaller and FREEBAYES using the option –diff-site of VCFTOOLS ver-

sion 0.1.13 (Danecek et al., 2011). The overlap contained 1,456,070

SNPs (i.e., 83.2% of all HaplotypeCaller SNPs; Supporting informa-

tion: Figure S1A). The SNP quality (QUAL) and the alternative allele

frequency were highly correlated (Supporting information: Fig-

ure S1B–S1D). Pearson’s product-moment correlation tests were

performed using the open source software R. We excluded SNPs

located on accessory chromosomes and tri-allelic SNPs. After these

additional filtering steps, we retained a total of 1,375,999 SNPs for

all further analyses. We annotated and predicted the effect of SNPs

using SnpEff 4.3i (Cingolani, Platts et al., 2012) and SnpSift

(Cingolani, Patel et al. et al., 2012).

2.3 | Assignment of ancestral and derived SNP
alleles

To identify ancestral alleles at SNPs, we analysed whole-genome

sequencing data of the two closest known sister species of Z. tritici.

We used raw Illumina reads of four Z. pseudotritici isolates

(STIR04_2.2.1, STIR04_3.11.1, STIR04_5.3 and STIR04_5.9.1) and

four Z. ardabiliae isolates (STIR04_1.1.1, STIR04_1.1.2, STIR04_3.13.1

and STIR04_3.3.2; Stukenbrock, Banke, Javan-Nikkhah, & McDonald,

2007; Stukenbrock, Christiansen, Hansen, Dutheil, & Schierup,

2012). Procedures for read mapping and SNP calling were similar to

those described above for Z. tritici. We modified the following TRIM-

MOMATIC settings to account for the older sequencing technology:

leading=8 and trailing=8. Read alignment rates ranged from 44% to

49% for Z. ardabiliae and from 52% to 72% for Z. pseudotritici. We

first performed SNP calling using the HaplotypeCaller of the Gen-

ome Analysis Toolkit (GATK) version 3.3-0. Then, we repeated the

SNP calling to include all Z. tritici, Z. pseudotritici and Z. ardabiliae

isolates. SNPs were filtered for quality as described above. For each

of the two Z. tritici sister species, we retained SNPs with a genotyp-

ing rate >50% and no intraspecific polymorphism. We assigned

ancestral alleles for any Z. tritici SNPs if an identical allele was

retained in both sister species. We were able to assign ancestral alle-

les for 584,327 SNPs (42% of the total number of Z. tritici SNPs).

2.4 | Analyses of population structure

We analysed the population structure of all 123 Zymoseptoria tritici

isolates using three methods. We performed a principal component

analysis (PCA) based on all SNPs using the software TASSEL version

5.2.14 (Bradbury et al., 2007). We estimated population differentia-

tion by calculating all pairwise FST fixation indices among populations

(Wright, 1951). FST was calculated using the R package {hierfstats}

(Goudet, 2005) that implements Yang’s algorithm (Yang, 1998). Fur-

thermore, we used the Bayesian unsupervised genetic clustering

algorithm implemented in the software STRUCTURE version 2.3.4

(Pritchard, Stephens, & Donnelly, 2000). We used an admixture

model with correlated frequencies and no prior information about

the population demography. The K parameter was tested for values

ranging from 1 to 8 with 10 repetitions for each tested K value. We

used 50,000 samples as a burn-in period and 100,000 samples per

run for the Monte Carlo Markov Chain (MCMC) replicates. Parame-

ter convergence was inspected visually. Cluster assignment probabili-

ties were computed using the CLUMPP program (Jakobsson &

Rosenberg, 2007) and prepared for visualization using the DISTRUCT

program (Rosenberg, 2004). For FST calculations and Bayesian

genetic clustering, we selected a set of 2,047 genome-wide equidis-

tant SNPs at intervals of 15 kb along the chromosomes. This set of

genome-wide SNPs was assumed to be in linkage equilibrium based

on previous estimates of linkage disequilibrium decay in Z. tritici

populations (Croll et al., 2015; Hartmann et al., 2017).

2.5 | Detection of selective sweeps

We detected selective sweeps using an extended haplotype homozy-

gosity (EHH) and a composite likelihood ratio (CLR) tests. We per-

formed each test for the four allopatric populations separately and

included only SNPs with known ancestral states. For both tests, we

used conservative percentile thresholds of the test statistics distribu-

tion to identify the strongest selective sweep regions. For the EHH

test, we computed the integrated haplotype score (iHS) measure as

implemented in the R package REHH (Gautier & Vitalis, 2012). The

EHH corresponds to the decay of haplotype identity as a function of

distance (Sabeti et al., 2007). Alleles favoured by positive selection

are expected to be found on long haplotypes. The iHS statistic aims

to detect abnormally long haplotype blocks by comparing the inte-

grated EHH of the ancestral allele and the integrated EHH of the

derived allele at each SNP. The method controls for heterogeneous

recombination rates across the genome (Voight, Kudaravalli, Wen, &

Pritchard, 2006). The 99.9th percentile of the distribution of abso-

lute iHS values was used as a threshold for the detection of outlier

SNPs. We clustered outlier SNPs in a set of selective sweep regions

2728 | HARTMANN ET AL.



based on EHH variation around significant SNPs. Similar to Park

et al. (2012), we computed windows around each core SNP based

on a EHH decay threshold (Park et al., 2012). To be conservative,

we computed windows around each core SNP where EHH decayed

to 0.4 and grouped SNPs with windows overlapping on length

>50%. Selective sweep region coordinates were based on the coordi-

nates of the largest overlaps. As a second method, we performed

the CLR test implemented in the software SWEED v3.3.2 (Pavlidis,
�Zivkovi�c, Stamatakis, & Alachiotis, 2013). SWEED analyses the varia-

tion in the site-frequency spectrum along the chromosome and

implements the composite likelihood ratios (CLRs) test of SweepFin-

der (Nielsen, 2005). The CLR statistic computes the ratio of the like-

lihood of a selective sweep at a given position (referred to as grid

point) to the likelihood of a null model without a selective sweep.

The CLR statistic is robust to demographic events such as population

expansions because the null model relies on the variation of the

site-frequency spectrum along the sequence of the whole genome

or a full contig rather than the standard neutral model (Nielsen,

2005; Pavlidis et al., 2013). We calculated the CLR within each pop-

ulation and for each chromosome separately at grid points for every

1 kb. As low SNP density can lead to misleading CLR scores, we

computed SNPs density in 50 kb nonoverlapping windows along

chromosomes at the genome-wide level. We retained only CLR val-

ues of grid points contained in 50 kb windows of at least 100 SNPs.

The 99.5th percentile of the distribution of CLR scores was used as

a threshold for the detection of outlier values. We selected distinct

percentile values as significance threshold for CLR scores than iHS

values because the two tests statistics showed different genome-

wide distributions. To define selective sweep regions in the Swiss,

Israel and Oregon populations, we grouped adjacent grid points

showing outlier CLR values into a single selective sweep region.

Chromosome-wide estimations of linkage disequilibrium decay were

previously estimated to range from 0.6 to 2.2 kb in these three pop-

ulations (Hartmann et al., 2017). Based on these estimations, we

maintained separate sweep regions if the distance between grid

points with outlier CLR scores was at least 5 kb. For each identified

selective sweep region, we extended the region containing outlier

CLR scores by adding 2.2 kb to each end to account for potential

blocks of high linkage disequilibrium. As the Australian population

showed slower linkage disequilibrium decay (decay to r2 < 0.2 within

10.2 kb; Hartmann et al., 2017), we grouped grid points with outlier

CLR scores if the grid points were <20 kb and extended selective

sweep regions by adding 10 kb to each end. We considered selec-

tive sweep regions to be shared among populations and identified

by both methods if the selective sweep regions overlapped by >50%

in length. At last, we calculated the nucleotide diversity per site (p) and

the Tajima’s D (Tajima, 1989) statistic per gene using the POPGENOME R

package (Pfeifer, Wittelsb€urger, Ramos-Onsins, & Lercher, 2014). We

performed the analyses in the four Z. tritici populations separately

using the entire SNP data set for each population. We calculated

statistics only for genes containing at least 10 SNPs (i.e., 4,865,

9,299, 9,025 and 8,096 genes in the populations from Australia,

Switzerland, Israel and Oregon, respectively).

2.6 | Divergence tests and detection of outlier loci

To detect SNPs harbouring signatures of population divergence, we

calculated the XtX statistic implemented in the program BAYPASS (for-

merly BAYENV) using the software default parameters (Gautier, 2015).

We used all SNPs detected among the 123 isolates with a minor

allele frequency of at least 0.05 (732,840 SNPs in total). A covari-

ance matrix of allele frequencies was generated for all SNPs and

used in the inference model to incorporate information on the

shared demographic history of the populations (Coop, Witonsky,

Rienzo, & Pritchard, 2010; G€unther & Coop, 2013). To determine a

significance threshold for loci under selection, we used the R func-

tion simulate.baypass() provided by BAYPASS to generate a pseudoob-

served data set of 1,000 SNPs following the specified inference

model. We then computed the XtX statistics for this pseudoob-

served data set. In addition, we extracted the XtX values for a set of

1,457 synonymous SNPs separated by at least 20 kb (Supporting

information: Figure S5). As a conservative significance threshold, we

used the maximum XtX value obtained for both data sets. In addi-

tion, we computed pairwise FST values in 1,000-bp nonoverlapping

windows for the entire set of SNP loci (Nei, 1973; Wright, 1951).

We used the R package {hierfstat} (Goudet, 2005) that implements

Yang’s algorithm (Yang, 1998) to calculate FST values for each SNP

locus. Average FST values per 1 kb nonoverlapping windows were

calculated for windows that contained at least 10 SNPs. We used a

99.5-percentile threshold to detect windows with high FST values.

To investigate the presence of regions under positive selection in

the two Oregon sympatric populations, we computed the XtX statis-

tic as described above on a set of 571,265 polymorphic SNPs with

minor allele frequency >0.05. We performed the cross-population

extended haplotype homozygosity (XP-EHH) test (Sabeti et al.,

2007) using the R package REHH. We used as an outlier detection

threshold the 99.9th percentile of the distribution of absolute XP-

EHH values. For divergence scans, we clustered significant SNPs in

separate genomic regions with high population differentiation if the

distance between significant SNPs was at least 5 kb. This distance

corresponds to the average distance of linkage disequilibrium decay

(r2 < 0.2) across the four populations.

2.7 | Analysis of loci in candidate regions

Selective sweep regions identified by genome scans were analysed

for their gene content using the updated gene models produced for

the reference genome (Grandaubert, Bhattacharyya, & Stukenbrock,

2015). We used an in-house pipeline to functionally annotate all

genes. Protein family (PFAM) domain and gene ontology (GO) terms

were assigned using INTERPROSCAN v.5.16-55.0 using default settings

(Jones et al., 2014). Protein secretion signals were predicted using a

combination of SIGNALP v.4.1 (Petersen, Brunak, von Heijne, &

Nielsen, 2011), PHOBIUS v.1.01 (K€all, Krogh, & Sonnhammer, 2007) and

TMHMM v.2.0 (Krogh, Larsson, von Heijne, & Sonnhammer, 2001). The

locations of transposable elements were retrieved from Grandaubert

et al. (2015). The transcriptional profiles of individual genes were
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based on RNAseq data obtained from analyses of wheat seedling

infections (Rudd et al., 2015). Rudd et al. (2015) measured gene

transcript expression at five key stages of the wheat infection cycle

(i.e., 1, 4, 9, 14 and 21 days postinfection). Expression level changes

(X-fold) were calculated as the ratio of the maximum value versus

minimum value of reads per kilobase of transcript per million

mapped reads (RPKM) during host infection.

We performed GO enrichment analyses for the genes located in

selective sweep regions detected using the site-frequency-spectrum-

based method (SWEED software) and the iHS based method (REHH

software). We used the R packages {GSEABase} and {GOstats} (Fal-

con & Gentleman, 2007). The significance of enrichments was

assessed using hypergeometric tests with a false discovery rate

threshold of 0.05. We included only GO terms that were assigned to

at least five different genes in the genome.

2.8 | Linkage disequilibrium analyses

We analysed the linkage disequilibrium block structure in the selec-

tive sweep region affecting the polyketide synthase (PKS) 3 gene

cluster on chromosome 5. For this, we used all SNPs with a minor

allele frequency >0.1 in the Swiss, Israel and Oregon populations.

We calculated the linkage disequilibrium r2 between all marker pairs

using the option –hap-r2 in VCFTOOLS version 0.1.13 (Danecek et al.,

2011). We produced a heatmap of pairwise linkage disequilibrium

estimates using the function LDHEATMAP in the R package {LDheat-

map} (Shin, Blay, Graham, & McNeney, 2006).

3 | RESULTS

3.1 | Widespread and narrow selective sweep
regions in pathogen populations

We performed genome scans using whole-genome sequence data

generated for 123 Z. tritici isolates sampled from single wheat fields

in Australia, Switzerland, Israel and Oregon, USA (Figure 1a). We

detected a total of 1,375,999 high-confidence, bi-allelic SNP loci that

were confirmed by two independent SNP callers. All analyses were

restricted to SNPs on core chromosomes (i.e., chromosomes shared

among all isolates; Supporting information: Figure S1). Population

structure was consistent with the geographic origin of the isolates,

and no field population showed evidence of intrapopulation genetic

substructure (Figure 1b,c; Supporting information: Figure S2, Sup-

porting information: Note S1). Overall, genetic diversity decreased

with the distance from the pathogen centre of origin in the Fertile

Crescent and the number of bottlenecks, consistent with previous

studies (Figure 1a; Supporting information: Table S2; Supporting

information: Figure S3; Zhan et al., 2005; Stukenbrock et al., 2007).

To detect the proportion of the genome that experienced recent

positive selection in Z. tritici, we first screened for signatures of

selective sweeps in individual populations. For this, we restricted the

analyses to SNPs with known ancestral state. Using whole-genome

sequence data of four and five strains from the two closely related

sister species Z. ardabiliae and Z. pseudotritici, respectively, we were

able to assign ancestral alleles for 584,327 SNPs (42.5%; Figure 1a;

Supporting information: Table S2). Genome scans potentially pro-

duce high numbers of false positives as the demographic history of

the population (i.e., population size variation and bottlenecks) can

cause signatures resembling selective sweeps (Nielsen, 2005; Vitti

et al., 2013). To limit the rate of false positives, we chose methods

that incorporate genome-wide patterns of genetic variation, used

stringent percentile-based thresholds for selective sweep detections

and accurate linkage disequilibrium estimations to delimit sweep

regions. We used two methods that are designed to detect different

types of selective sweep signatures (Pavlidis & Alachiotis 2017).

First, we performed an extended haplotype homozygosity (EHH)

test. We computed the integrated haplotype score (iHS) statistic

(Voight et al., 2006) using the algorithm implemented in the R pack-

age REHH (Table 1, Figure 2; Gautier & Vitalis, 2012). After clustering

significant SNPs in regions of high extended haplotype homozygosity

using conservative thresholds (EHH; |iHSSwitzerland| > 4.29; |

iHSIsrael| > 4.04; |iHSOregon| > 3.77), we identified a total of 90, 126

and 114 selective sweep regions in the Swiss, Israel and Oregon

populations, respectively. Detected sweep regions were found on all

13 core chromosomes (Supporting information: Tables S4–S6). In the

Australian population, we identified 54 selective sweep regions on

chromosomes 1, 2, 3, 5, 6, 7, 8, 9, 10, 11 and 12 (|iHSAustralia| > 3.71;

Supporting information: Table S3). Sweep regions detected using the

iHS statistic were on average 1.2 kb in length and covered a total of

4% of the core genome (Table 1). As a complementary method, we

performed the composite likelihood ratio (CLR) test implemented in

the software SWEED. The software screens for local variation in the

site-frequency spectrum and calculates composite likelihood ratio

(CLR) scores (Pavlidis et al., 2013; Table 1, Figure 2). Based on a

conservative 99.5% outlier threshold (CLRAustralia > 389, CLRSwitzerland

> 89.2; CLRIsrael > 82.8; CLROregon > 120), we detected 6, 15, 29

and 31 regions affected by selective sweeps in the Australian, Ore-

gon, Swiss and Israel populations, respectively (Supporting informa-

tion: Tables S3–S6). Selective sweeps identified by SWEED covered an

average of 0.75% of the core genome in the four populations with

individual regions ranging from 4.4 to 35.4 kb in length. Nucleotide

diversity per site (p) and Tajima’s D values were significantly lower

for genes contained in selective sweeps identified by the CLR test

than for genes not contained in selective sweeps (Supporting infor-

mation: Figure S4). This is consistent with expectations for signa-

tures produced by selective sweeps. However, we found no overall

significant differences in diversity statistics for genes contained in

selective sweeps identified by the EHH test, which may be due to

the fact that EHH tests have higher sensitivities to detect incom-

plete sweeps.

3.2 | Evidence of divergent selection among
allopatric pathogen populations

To investigate whether the same loci were under selection between

populations, we compared the location of selective sweep regions
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among the four allopatric populations. We considered selective

sweep regions to be shared between populations if the selective

sweep regions overlapped by >50% in length. Overall, selective

sweep regions only weakly overlapped among populations using

either of the two types of selection scans. Of 384 individual selec-

tive sweep regions detected in EHH tests, we found 140 regions

(36.4%) to be shared among multiple populations. The majority of

shared selective sweep regions were between two populations (86%

of all overlapping regions). Selective sweep regions were shared

among three populations on chromosomes 4 (2,556–2,557 kb), 9

(986–987 kb) and 10 (1,488–1,489 kb; Figure 2). Among the 81

selective sweep regions detected by CLR tests, only 11 regions over-

lapped among populations (13.6% of detected sweep regions). The

strongest selective sweep region detected in the Oregon population

was in the subtelomeric region of chromosome 6 (65–101 kb) and

overlapped with selective sweep regions in the Israel (83–90 kb) and
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TABLE 1 Summary statistics of the selective sweep regions identified in the four Zymoseptoria tritici populations using the haplotype-based
scan and the site-frequency-spectrum-based scan

Sweep detection scan Population

Number of
sweep
regions

Median length
of sweep
regions (kb)

Maximum length
of sweep
regions (kb)

Total length of regions affected by sweep
Number of
genes in all
sweep regions(kb)

(% core
genome)

Haplotype-based scan Australia 54 1 92.1 777.6 2.2 333

Switzerland 90 1.4 105.9 759.3 2.2 295

Israel 126 0.6 709.8 3201.4 9.1 1,172

Oregon 114 1.7 84 1101.9 3.1 474

Site-frequency-

spectrum-based scan

Australia 6 32 78 253 0.7 87

Switzerland 29 8.4 29.4 300.7 0.9 138

Israel 31 6.4 32.4 294.5 0.8 138

Oregon 15 11.4 35.4 206.1 0.6 57
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Swiss populations (82–101 kb). A total of eight selective sweep

regions detected in the Swiss and Israel populations overlapped on

chromosomes 3, 4 and 6. We found no overlap for any of the selec-

tive sweeps detected by the CLR test in the Australian population

(Figure 2).

Given that populations showed predominantly population-speci-

fic signatures of selection, we next analysed evidence for divergent

selection among populations. For this, we calculated the XtX statistic

implemented in the software BAYPASS that incorporates both the pop-

ulation co-ancestry and demography history (Gautier, 2015; Coop

et al., 2010; G€unther & Coop, 2013). The XtX statistic accounts for

population structure by calculating a kinship matrix for a subsample

of genome-wide SNPs. We used all detected SNPs filtered for minor

allele frequency of 5% (732,840 SNPs). We identified 390 SNPs that

were outliers for population differentiation based on simulations and

synonymous SNPs (XtX > 16.7; Supporting information: Figure S5).

Highly differentiated SNPs clustered into 51 genomic regions dis-

tributed over all 13 core chromosomes (Figure 3; Supporting infor-

mation: Table S7). As expected from the XtX statistics, outlier

regions showed high FST values (the 99.5% outlier threshold was

FST Switzerland vs Israel > 0.42, FST Switzerland vs Oregon > 0.38, FST Israel vs

Oregon > 0.57) in at least one pairwise population comparison

(Figure 3).

Overall, loci identified by different methods to detect positive

selection showed little overlap (Figure 4). A total of 28 selective

sweep regions overlapped among EHH and CLR tests. Among these

overlapping regions, 12 selective sweep regions overlapped within

populations, whereas an additional 16 selective sweeps detected by

EHH in one population overlapped with sweep regions detected

by CLR in another population. A total of 5 sweep regions detected

by the EHH and CLR methods overlapped with regions with high dif-

ferentiation between populations detected using the XtX statistic.

Remarkably, the highly differentiated region located at 921.5–

925.0 kb on chromosome 11 (XtX mean value = 17.2) overlapped

with the selective sweep regions detected in the Israel population

(918.0–923.4 kb) and the Oregon population (892.4–936.3 kb) using

the CLR and EHH methods, respectively.

3.3 | Gene content analyses of selective sweep
regions

To identify the gene functions that were the target of recent selec-

tion, we analysed the function of genes within selective sweep

regions. Detected selective sweep regions encompassed on average

337 genes per population and per scan (Table 1). The average num-

ber of genes within a selective sweep region was six genes. A total
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of 35.0% of genes in selective sweep regions did not encode a con-

served protein family (PFAM) domain. We performed gene ontology

(GO) enrichment analyses and tested for overrepresented GO terms

compared to the genomic background for the genes with a PFAM

domain. We found that GO terms for protein transport and localiza-

tion functions were significantly overrepresented in selective sweep

regions (p-values = 0.005–0.04; Supporting information: Table S9).

Selective sweep regions encoded 52 major facilitator superfamily

(MFS) transporters. We found 54 additional genes with membrane

transporter functions in selective sweep regions, including ATP-bind-

ing cassette (ABC) transporters, sugar transporters and several metal

and ion transporters.

Although not significantly enriched in function, selective sweep

regions comprised 180 genes that encode secreted proteins includ-

ing six plant cell wall degrading enzymes (CWDEs), 10 peptidases,

five peroxidases and 23 small secreted proteins (SSPs) lacking con-

served domains (Supporting information: Table S10). These gene cat-

egories were shown to be major virulence factors in plant pathogens

including Z. tritici (de Jonge et al. 2012; Zhong et al., 2017; Hart-

mann et al., 2017). Genes encoding CWDEs included two cutinases

(CEs family), two cellulases of the glycosyl hydrolase family GH5 and

GH61 and two hemicellulases (GH43 and GH62 families). Three of

the 23 genes encoding a SSP were highly upregulated during the

infection (Rudd et al., 2015). The SSP-encoding genes 3_00158,

5_00818 and 6_00224 had expression level changes during the

infection equal to 375X, 859X and 114X, respectively. Three genes

encoding SSPs and three genes encoding CWDEs were found in

sweep regions that were shared among populations. Other genes

encoding SSPs and CWDEs were found in population-specific sweep

regions. Among the genes in selective sweep regions that do not

encode secreted proteins were four secondary metabolite gene clus-

ters (SMGCs), including the polyketide synthase (PKS) genes PKS10

(1_01966), PKS3 (5_00021) and PKS2 (9_00441), and the nonriboso-

mal peptide synthetase (NRPS) gene NRPS1 (2_00117; Ohm et al.,

2012). The entire PKS10 SMGC was encompassed in a single selec-

tive sweep region. All SMGC genes were found in population-speci-

fic sweep regions. Selective sweep regions also contained gene

functions linked to general metabolism and regulation of transcrip-

tion, including 109 genes encoding enzymes with dehydrogenase,

hydrolase and oxidoreductase functions, and 35 genes encoding

transcription factors.

Over half of the SNPs (53%) identified through the divergence

scan among the four populations were located in intergenic regions.

The remaining SNPs were distributed across 36 different genes (Sup-

porting information: Table S11). Eleven genes encoded a secreted

protein, including four genes encoding SSPs that were highly upregu-

lated during infection. The genes 2_00572, 3_0231, 3_00467 and

7_00040 encoded SSPs that had expression level changes equal to

18X, 741X, 4777X and 160X, respectively, during infection (Rudd

et al., 2015). Remarkably, one outlier SNP was located in the major
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avirulence effector gene AvrStb6 located on chromosome 5 at

69,206 bp (Zhong et al., 2017). Outlier SNPs were also found in

three genes of the PKS3 gene cluster on chromosome 5, including

the polyketide synthase (5_00021) and a MFS transporter gene

(5_00006; Figure 5). A strong XtX outlier region was located on

chromosome 5 (Figure 5c). This region showed also high FST values

(>0.75) in the pairwise comparisons of Israel–Oregon and Israel–

Switzerland (Figure 5b). A selective sweep of the PKS gene

(5_00021) was also detected by the CLR test in the Swiss population

(123.3–127.8 kb; Figure 5a). This region was also characterized by

high levels of linkage disequilibrium (r2 > 0.5) for pairs of SNPs at

>10 kb distance in the Swiss, Israel and Oregon populations

(Figure 5e), whereas linkage disequilibrium decayed generally within

~1–2.2 kb (Hartmann et al., 2017). The high levels of linkage disequi-

librium are consistent with a recent selective sweep.

3.4 | Evidence for host-driven selection in
sympatric pathogen populations

As the two sympatric Oregon populations were sampled on the

same day from two different wheat cultivars, Madsen and Stephens

(Zhan et al., 2005), growing in the same field, we investigated

whether genotypes showed signatures of positive selection accord-

ing to their cultivar of origin. We performed divergence scans using

the XtX statistic but found no evidence for highly differentiated loci

between populations (Supporting information: Figure S6). Using the

cross-population extended haplotype homozygosity (XP-EHH) test

(Sabeti et al., 2007) with a 99.9% outlier threshold, we identified

221 SNPs that were under positive selection only in one cultivar-

associated population but not the other. Outlier SNPs clustered in

12 genomic regions on chromosomes 1, 2, 6, 9 and 12 (Supporting

information: Figure S7; Supporting information: Table S8). A total of

170 of 221 outlier SNPs were located in 16 distinct genes. These

genes encoded proteins with either no conserved domain or func-

tions linked to general metabolism and transcriptional regulation.

The gene 9_00014 encoded a cysteine-rich extracellular membrane

protein with a CFEM domain (Supporting information: Table S12).

4 | DISCUSSION

4.1 | Complex signatures of divergent selection
among populations

Using EHH and CLR tests in four allopatric populations of the major

fungal wheat pathogen Z. tritici, we determined that about 5%

(around 1 Mb) of the genome experienced recent positive selection.

Selective sweep regions were narrow but widespread across the

genome in all analysed populations. We chose very stringent thresh-

olds for selective sweep detection to identify the strongest selective

sweep regions. The number of detected selective sweeps would

likely be higher by including all acceptable sweep regions based on

demographic modelling. The extent of signatures of positive selec-

tion was consistent with studies in other fungi based on the same

CLR tests. Genome scans in European populations of the anther

smut fungus Microbotryum, a plant pathogen found in natural ecosys-

tems, revealed that 1%–17% of the pathogen genome was affected

by selective sweeps (Badouin et al., 2017). Branco et al. (2017) iden-

tified several hundred selective sweep regions in S. brevipes popula-

tions sampled across an environmental gradient in North America.

Our and previous studies suggest that the number of selective

sweeps detected in sexually reproducing fungal pathogen popula-

tions is higher than found in populations of mammals or plants

(Evans et al., 2014; Qanbari et al. 2014; Bonhomme et al., 2015).

These differences might be due to intrinsic population genetic prop-

erties of sexually reproducing fungal pathogens, such as high recom-

bination rates and large population sizes that can accelerate the

response to selection. Fungal populations with lower recombination

rates will likely show less prevalent signatures of positive selection.

The observed differences might also be due to the genetic architec-

ture of pathogenicity traits and the strength of selection imposed on

plant pathogens. In agroecosystems, the introduction of new host

cultivars with different resistance mechanisms can rapidly alter selec-

tion pressures on pathogen populations. In addition, abiotic factors

such as the application of fungicides, and fluctuations in temperature

and humidity can alter selection pressures during the life cycle of a

pathogen. Our findings were consistent with numerous soft sweeps

caused by a variety of environmental factors. Largely due to their

high effective population sizes, soft sweeps are thought to be domi-

nant in rapidly evolving microorganisms, including plant pathogens

(Delmas et al., 2017; Messer & Petrov, 2013).

We found little overlap between selective sweep regions detected

by CLR and EHH tests. Some degree of discordance is expected

because the methods are designed to detect different types of selec-

tion signatures (i.e., shifts in allele frequency spectra versus large hap-

lotype block size). The CLR test allows detection of hard sweeps,

whereas iHS is more powerful for detecting incomplete sweeps (Pav-

lidis & Alachiotis 2017; Vitti et al., 2013). Little overlap between geno-

mic regions identified with these selection scan methods is common

(Evans et al., 2014; Pavlidis & Alachiotis 2017). We identified selective

sweep regions using both approaches because of their complementary

nature. However, we chose very stringent percentile thresholds to
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detect selective sweeps and conservative estimates of linkage disequi-

librium to delimit sweep regions. Due to the inherent limitations of

inferring past selection through genome scans, understanding how

genetic variation in individual genes contributes to adaptive trait varia-

tion ultimately requires experimental validation.

We found fewer selective sweeps in the less genetically diverse

populations from Australia and Oregon (Hartmann et al., 2017; Zhan

et al., 2005). Smaller population sizes and a slower decay in linkage

disequilibrium are expected to make selection less efficient because

beneficial mutations are more likely to be in linkage disequilibrium

with slightly deleterious mutations. This is consistent with the smal-

ler number of selective sweeps detected in populations with smaller

effective population sizes. In addition to true differences in numbers

of selective sweeps, the ability to detect selective sweeps can be

affected by differences in the number of sampled individuals, levels

of genetic diversity and the decay of linkage disequilibrium (Crisci,

Poh, Mahajan, & Jensen, 2013). Although our study was based on

genome scans that are robust to demographic histories of individual

populations, some differences in selection signatures among popula-

tions may represent false positives.

We found differences in the number and position of selective

sweeps across the Z. tritici genome among the four allopatric popu-

lations. Differences in power and demographic history may partly

explain this pattern, although it is unlikely the only explanation

given the extent of the observed heterogeneity. The identification

of genomic regions with high population differentiation using the

XtX test confirms that selection pressures were heterogeneous

among these populations and favoured different alleles in different

populations. We previously identified signatures of divergent selec-

tion at loci affected by copy number variation among these four

populations (Hartmann & Croll, 2017). Such divergent selection is

likely as the populations experienced differences in fungicide usage,

annual mean temperatures and deployed host cultivars (Zhan &

McDonald, 2011; Zhan et al., 2005, 2006). In natural ecosystems,

fungal populations collected across ecological gradients also showed

differences in the number and identity of loci under positive

selection, which is strongly indicative of divergent selection (Branco

et al., 2015, 2017; Ellison et al., 2011). Given sufficiently low levels

of gene flow, divergent selection leads to locally adapted

populations.
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windows of pairwise FST for SNPs shared between the Swiss and Israel populations (red), the Swiss and Oregon populations (green), and the
Israel and Oregon populations (blue). (c) XtX statistics calculated at each SNP locus. The horizontal dashed line shows the maximum XtX
statistics value obtained for a set of genome-wide distributed synonymous SNPs. (d) Gene model of the PKS3 gene cluster in the 115–140 kb
region. (e) Heatmap of pairwise linkage disequilibrium r2 for SNPs with a minor allele frequency >0.1 in the Swiss, Israel and Oregon
populations. Correspondence between SNPs location in the genomic region (kb) and on the heatmap is represented by black segments [Colour
figure can be viewed at wileyonlinelibrary.com]
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Evidence for local adaptation in plant-colonizing fungi has mostly

been found at the phenotypic level for adaptation to temperature

and hosts (Branco et al., 2017), but the loci underlying local adapta-

tion remain largely unknown (Croll & McDonald, 2016). Alternatives

to local adaptation that can also lead to highly differentiated geno-

mic regions include environment-independent factors such as genetic

incompatibilities due to prezygotic or postzygotic isolation, epistasis

or underdominance. These factors often spatially coincide with eco-

logical factors, leading to high differentiation among spatially struc-

tured populations (Bierne, Welch, Loire, Bonhomme, & David, 2011).

As our system is haploid, allelic incompatibilities due to hybrid infer-

tility, selection against hybrids, or underdominance cannot occur.

However, epistasis among loci under selection may indeed exist and

could interfere with the power to detect loci under positive selec-

tion. The fact that we analysed complete genomes instead of a

reduced set of candidate loci provided significant power to identify

novel adaptive loci. Analyses of putative functions showed that

many loci in the selected regions were likely to encode functions

linked to host and abiotic adaptation. In the end, analysing the con-

tribution of individual loci to phenotypic traits will enable a clear dis-

tinction between loci underlying local adaptation and endogenous

barriers (Hoban et al., 2016).

The two different hosts cultivated in sympatry in Oregon may

have generated divergent selection pressures that favoured host

specialization. It is interesting that the two sympatric populations

were shown to differ in levels of fungicide resistance and aggressive-

ness on two other wheat cultivars, suggesting that the cultivars

planted in Oregon indeed acted as an agent of divergent selection

(Yang, Gao, Shang, Zhan, & McDonald, 2013; Zhan et al., 2005).

However, the physical proximity of the two cultivars in the field and

the ability of Z. tritici to disperse likely constrained the opportunity

for local adaptation to either of the two host populations. We identi-

fied a set of genes in regions under positive selection in either of

the sympatric populations. However, the functions of the identified

genes are largely unknown.

4.2 | Genes in recent selective sweeps are linked to
adaptation to the host and to the abiotic
environment

We identified a broad range of gene functions in selective sweep

regions. The multitude of functions suggests that the fungal popula-

tions recently adapted both to local host genotypes and to abiotic

factors. Selective sweep regions were not enriched in pathogenicity-

related functions. Nevertheless, we found genes that encode

secreted proteins with functions in the degradation of the host cell

wall or manipulation of host defences. Analyses of expression

showed that many of these genes were strongly upregulated upon

host infection. In Z. tritici, association mapping showed that muta-

tions in two genes encoding SSPs (8_609 and AvrStb6) were associ-

ated with host-specific virulence (Hartmann et al., 2017; Zhong

et al., 2017). These two genes were not found in selective sweep

regions, which suggests that these populations were not

experiencing recent positive selection by the host genotypes specifi-

cally associated with 8_609 and AvrStb6. Remarkably, AvrStb6 was

an outlier for divergent selection among populations in the XtX scan,

which suggests that in at least one population selection on the

AvrStb6 locus may have been significant. AvrStb6 encodes a protein

recognized by the product of the host resistance gene Stb6 and

drastically reduces pathogen fitness on hosts carrying Stb6 (Zhong

et al., 2017). Several codons of the AvrStb6 gene were shown to be

under positive diversifying selection (Brunner & McDonald, 2018).

We found no evidence for selective sweeps in the proximity of the

second known host-specific virulence gene 8_609. The 8_609 locus

is characterized by large chromosomal rearrangements that led to

the adaptive deletion of the virulence gene (Hartmann et al., 2017).

The structural variation at this locus may have had an impact on the

power to detect evidence for positive selection. No other genes in

regions under recent positive selection have yet been shown to play

role in virulence. We found little overlap with genes identified to be

under positive selection based on dN/dS ratios in the Z. tritici lineage

compared to its sister species (Brunner et al., 2013; Stukenbrock

et al., 2011), but two of six genes encoding plant cell wall degrading

enzymes that were previously shown to be under diversifying selec-

tion (2_00980 and 2_01151; Brunner et al., 2013) were identified in

the selected regions. As the genome scans in our study were

designed to detect more recent selection than selection identified by

amino acid substitution tests, the weak overlap among these differ-

ent studies is not surprising (Vitti et al., 2013). For example, genes

involved in the specialization of the pathogen on wheat are likely to

be largely distinct from genes under more recent selection to adapt

to individual wheat genotypes. Genome scans in populations of the

Microbotryum plant pathogenic fungi also identified genes with puta-

tive roles in host adaptation, including genes upregulated during

infection and encoding glycoside hydrolases, pectin lyases and extra-

cellular membrane proteins with a cysteine-rich CFEM domain

(Badouin et al., 2017). Such gene functions form the pathogenesis

toolkit of most plant pathogens (de Jonge et al., 2011; Presti et al.,

2015; Rep, 2005). Combining evidence obtained from natural and

agricultural ecosystems, host adaptation involving a wide range of

gene functions appears to be a major driver of selection in popula-

tions of fungal plant pathogens.

Environmental factors are also likely to impose significant selec-

tion pressure (Stukenbrock & McDonald, 2009). Plant pathogens

must cope with fluctuating temperatures and humidity, the host

microbiota, variability in nutrients obtained from the host and agri-

cultural practices (e.g., fertilizer and fungicide applications). This is

reflected by the selective sweep regions that encompass genes with

diverse functions that are most likely unrelated to host adaptation.

In particular, we found an enrichment in transmembrane transport

functions. Transmembrane transporters are involved in a wide range

of cellular processes including obtaining nutrients during the infec-

tion (Chen et al., 2010), efflux of toxic compounds and fungicides

(Del Sorbo, Schoonbeek, & De Waard, 2000), virulence (Wahl, Wip-

pel, Goos, K€amper, & Sauer, 2010), environment sensing and stress

responses (Bahn et al., 2007). Genome scans of populations of the
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root symbiont S. brevipes showed that adaptation to cold, salinity

and water stress was most likely mediated by a series of transmem-

brane transporters (Branco et al., 2015, 2017). However, none of

the transporter genes in the identified selective sweeps have yet

been experimentally shown to affect adaptation in Z. tritici. Regions

affected by selective sweeps also encoded proteins playing a role in

regulatory pathways (e.g., transcription factors) and secondary

metabolite production. The roles of secondary metabolites produced

by Z. tritici remain poorly understood, but the clusters are likely to

play roles in host adaptation, competition with microbes and envi-

ronmental stress (Howlett, 2006). The PKS1 cluster is involved in

melanin production in Z. tritici (Butler & Day, 1998; Lendenmann

et al., 2014), but compounds produced by the four secondary

metabolite clusters found in selective sweep regions remain

unknown. These four clusters are upregulated at different stages of

the infection process, suggesting distinctive roles in host colonization

(Palma-Guerrero et al., 2017). In addition to evidence for selection,

the PKS9 cluster is affected by a large-scale deletion polymorphism

affecting the entire cluster (Hartmann & Croll, 2017). The polyketide

synthase gene of the PKS3 cluster was an outlier for population dif-

ferentiation and was affected by a selective sweep. This gene had a

peak of expression during the early establishment of the infection

and may be involved in the production of a toxin targeting the host

(Palma-Guerrero et al., 2017). Exposure to azole fungicides led to

high levels of resistance in the Swiss population, but not in any

other analysed population (Zhan et al., 2005). Therefore, sweeps due

to selection for azole resistance should be restricted to the Swiss

population. The CYP51 gene encoding the target of azoles is indeed

highly polymorphic in the Swiss population, with a large number of

amino acid substitutions contributing to resistance (Brunner et al.,

2008; Cools & Fraaije, 2013; Lendenmann et al., 2015). Although we

found no direct evidence of positive selection in the CYP51 locus,

multiple SNPs had high XtX population differentiation values (>10).

EHH and CLR tests may be unsuitable to detect the very rapid

diversification into dozens of haplotypes that are typically observed

at the CYP51 locus.

Heterogeneity in both biotic and abiotic stresses creates the

opportunity for local adaptation in plant pathogens (Croll & McDon-

ald, 2016; Mboup et al., 2012). We found evidence for divergent

selection among four allopatric populations with selection likely due

to both abiotic factors and host resistance mechanisms. We also

found evidence that different host genotypes in sympatry caused

divergent selection pressure on the pathogen. The widespread evi-

dence for selection across the genome suggests that the high effec-

tive population sizes of the pathogen strongly favoured rapid

responses to divergent selection pressures. Loci under divergent

selection among populations may ultimately constitute the genetic

basis for local adaptation, but may also reveal constraints in the evo-

lution of the pathogen. For example, selection for fungicide resis-

tance is known to lead to correlated responses that negatively affect

growth rates (Mohd-Assaad, McDonald, & Croll, 2016) or virulence

(Hagerty & Mundt, 2016). Using genome scans to identify genes

under recent selection in pathogens will fill important gaps in our

understanding of host–pathogen interactions and their evolutionary

trajectory (Hall, Bento, & Ebert, 2017).
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