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Abstract

Summary: Many biochemical processes in living organisms take place inside compartments that can interact
with each other and remodel over time. In a recent work, we have shown how the stochastic dynamics of a compart-
mentalized biochemical system can be effectively studied using moment equations. With this technique, the time
evolution of a compartment population is summarized using a finite number of ordinary differential equations,
which can be analyzed very efficiently. However, the derivation of moment equations by hand can become time-
consuming for systems comprising multiple reactants and interactions. Here we present Compartor, a toolbox that
automatically generates the moment equations associated with a user-defined compartmentalized system. Through
the moment equation method, Compartor renders the analysis of stochastic population models accessible to a
broader scientific community.

Availability and implementation: Compartor is provided as a Python package and is available at https:/pypi.org/pro
ject/compartor/. Source code and usage tutorials for Compartor are available at https:/github.com/zechnerlab/

Compartor.
Contact: zechner@mpi-cbg.de

1 Introduction

Moment-based approaches provide an effective means to study
the dynamics of noisy biochemical networks (Ruess and Lygeros,
2015; Schnoerr et al., 2017; Singh and Hespanha, 2006). These
approaches are based on systems of ordinary differential equations
(ODEs), which capture the statistical properties of the reaction net-
work such as average concentrations and their variability. However,
the derivation of moment equations by hand can become exceeding-
ly tedious, especially for systems comprising multiple chemical
species and reactions. To address this problem, toolboxes have been
developed to generate moment equations directly from the stoichio-
metric specification of a network, which greatly boosts the applic-
ability of these approaches (Fan et al., 2016; Hespanha, 2007;
Kazeroonian et al., 2016).

Existing moment generators apply to well-mixed reaction
environments or compartmentalized systems with fixed spatial
arrangement. However, many biological processes are organized
within compartments that can remodel and interact dynamically.
Examples include cell growth and division dynamics in cell com-
munities or the fusion and fission events of sub-cellular transport
vesicles. In our recent theoretical work (Duso and Zechner, 2020),
we have shown how the method of moments can be extended to
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such situations. In this framework, we consider a population of
reaction compartments where both the molecular contents and the
compartments themselves can stochastically interact and change
over time. Manually deriving moment equations for such models is
even more tedious than for standard reaction systems, because add-
itional higher-order statistics arise.

In this work we present Compartor, an automatic moment equa-
tion generator for stochastic compartment populations. Compartor
starts from a set of provided interaction rules and derives the associ-
ated moment equations. In its current version, equations can be
exported as LaTeX, Python or Julia code. In the following, we
explain Compartor and illustrate it for an examplary model (see
Fig. 1). A short tutorial on the usage of Compartor is provided
in dedicated Jupyter notebooks at https://github.com/zechnerlab/
Compartor.

2 Materials and methods

Compartor is based on the formalism introduced by Duso and
Zechner (2020). A compartment population consists of a time-
varying number N(¢) of compartments, each associated with a
D-dimensional molecular content x € X C N(L)). The state of the
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A Definition of the model
Intake

Fusion

transitions = [ Intake, Fusion, Conversion, Degrada‘cion]
display_transition_classes(transitions)
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C Automated derivation of moment equations

desired moments = [Moment(0,0), Moment(0,1), Moment (0,1)**2]

equations = automated moment_equations(2,transitions,desired moments)
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Conversion = TransitionClass( [x] -to> [x + (-1,1)], ’k.c’, x[0], name=’c’ )
Degradation = TransitionClass( [x] -to> [x + (0,-1)], ’k.d’, x[1], name=’d’ )
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Fig. 1. Usage example of Compartor. (A) Definition of the transition classes for the considered exemplary model. (B) Illustration of the transition classes for the considered
model. The white-filled ovals represent compartments, while the green and orange circles denote two different molecular species. The intake process generates new compart-
ments containing a Poisson-distributed amount of green molecules with mean parameter /. (C) One-step derivation of a closed system of moment equations for a set of desired
moments. Here, Compartor recognized automatically the need of including additional moment dynamics and applied a third-order Gamma closure. (D,E) Plot of the expected

number of compartments (N), and the total molecular amounts (M19) and (M(

01), surrounded above and below by one standard deviation. Full lines and shaded

areas show the result of moment equations (ODEs), while dots and error bars correspond to the average of 10* stochastic simulations (SSA) (Gillespie, 2007). The standard

deviation for (N) is obtained from the moment equations as y/(N?2)
(ki kg ke, kg, 7) =

population at time ¢ is fully characterized by knowing the number
n(x,t) of compartments for each possible content x € X. A popula-
tion moment is generally defined as the sum M’ (¢) = >« X'n(x, 1),
D-1
where x7 = dHo x’{ and y is a vector of non-negative integer
exponents. In particular, M?(¢) = > n(x,t) = N(t) corresponds
to the number of compartments at time ¢. Note that any population
moment is an integer random variable that evolves stochastically.
We denote the expectation of a moment M’ (¢) by (M’(¢)). Our goal
is to derive equations that describe the expected evolution of a cer-
tain set of moments or functions thereof. Compartor allows the user
to specify the dynamical rules—which we refer to as transition
classes—that govern the compartment population and generates the
corresponding system of moment equations.

2.1 Defining the model

In Compartor, the user defines a transition class through a
stoichiometric-like equation where the reactant compartments on
the left-hand side are converted into the product compartments on
the right-hand side (see Fig. 1A). The tool supports transition classes
up to order two, meaning that at most two compartments can react
with one another during an event. Similarly, biochemical reactions
inside a single compartment are restricted to at most two reactant
molecules.

—(N)?, and analogously for the other moments. The rate constants were set to

(1,5-1073,0.1,0.05, 10). The initial condition is given by one compartment with 20 green molecules and zero orange molecules

The definition of a transition class requires a propensity function
that determines the transition rate in dependency of the involved
compartment contents. Note that propensity functions must be
polynomials in x for the moment method to be applicable. The
specification of the transition propensities occurs together with the
definition of the associated transition classes, as shown in the script
of Figure 1A. An illustration of the four transition classes defining
this example is provided in Figure 1B. For further information about
the definition of transition classes, the reader may refer to Duso and
Zechner (2020).

2.2 Moment equation generation

For the specified population model, the user provides Compartor
with a set of moments for which equations should be derived.
Compartor then carries out the necessary symbolic computations
and returns the corresponding moment equations. Note that the
derived system of moment equations is often not closed, meaning
that it may involve other moments for which equations have not yet
been generated. In these cases, the tool detects the presence of
additional moments for which the governing equations are missing.
The user can then opt to generate further equations for these
moments or, alternatively, ask Compartor to apply a moment clos-
ure to approximate them by functions of the available ones.
Currently, Compartor supports mean-field and third-order Gamma
closures (Lakatos et al., 2015).



2784

T.Pietzsch et al.

As shown in Figure 1C, the tool offers a one-step feature to
automatically handle the process of moment identification, equation
generation and moment closure. This is accomplished by iteratively
expanding the system of equations until it closes by itself, or until
the highest-order moments reach order three, at which point
the proposed Gamma and/or mean-field closures are applied.
When the user does not specify any initial set of desired moments,
Compartor returns the minimal system of moment equations
sufficient to describe the expected dynamics of compartment num-
ber and total mass for each chemical species. In Figure 1D and E,
we show the solution of the system of moment equations for the
given example. The obtained moment trajectories are in agreement
with the Monte Carlo averages obtained by exact stochastic
simulations.

2.3 Code export

At any time, the user can decide to export the equations generated
by Compartor as LaTeX source, or as Python or Julia code compat-
ible with standard ODE solvers in the respective language.

3 Discussion

Compartor is a code generator that enables efficient analysis of
stochastic compartment population models through the moment
equation method. The tool can be applied to arbitrary models com-
prising compartment interactions and biochemistry up to second
order. Additionally, the propensity functions must satisfy a polyno-
mial form for the moment equation method to be applicable.
Compartor is equipped with mean-field and third-order multivariate
Gamma closures to approximate systems whose moment dynamics
is not closed. We emphasize that the accuracy of any moment clos-
ure is model dependent (Schnoerr et al., 2014) and, consequently,
the obtained system of equations needs to be validated case by case.
Future releases may extend Compartor to account for additional
closure schemes and kinetic laws.
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