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ABSTRACT Patients with nasogastric (NG) tubes require careful monitoring due to the potential impact of
the tube on their ability to swallow safely. This study aimed to investigate the utility of high-resolution cervical
auscultation (HRCA) signals in assessing swallowing functionality of patients using feeding tubes. HRCA,
capturing swallowing vibratory and acoustic signals, has been explored as a surrogate for videofluoroscopy
image analysis in previous research. In this study, we analyzed HRCA signals recorded from patients
with NG tubes to identify swallowing kinematic events within this group of subjects. Machine learning
architectures from prior research endeavors, originally designed for participants without NG tubes, were
fine-tuned to accomplish three tasks in the target population: estimating the duration of upper esophageal
sphincter opening, estimating the duration of laryngeal vestibule closure, and tracking the hyoid bone. The
convolutional recurrent neural network proposed for the first task predicted the onset of upper esophageal
sphincter opening and closure for 67.61% and 82.95% of patients, respectively, with an error margin of
fewer than three frames. The hybrid model employed for the second task successfully predicted the onset of
laryngeal vestibule closure and reopening for 79.62% and 75.80% of patients, respectively, with the same
error margin. The stacked recurrent neural network identified hyoid bone position in test frames, achieving
a 41.27% overlap with ground-truth outputs. By applying established algorithms to an unseen population,
we demonstrated the utility of HRCA signals for swallowing assessment in individuals with NG tubes and
showcased the generalizability of algorithms developed in our previous studies. Clinical impact: This study
highlights the promise of HRCA signals for assessing swallowing in patients with NG tubes, potentially
improving diagnosis, management, and care integration in both clinical and home healthcare settings.

INDEX TERMS High-resolution cervical auscultation signals, hyoid bone tracking, laryngeal vestibule
closures, upper esophageal opening, videofluoroscopic swallowing study.

I. INTRODUCTION

A NASOGASTRIC (NG) tube is a medical device used
to deliver essential nutrition, medication, or fluids to

individuals who are unable to consume them orally. These
tubes are inserted through the nose and passed down through
the esophagus into the stomach, providing a lifeline for
patients with various medical conditions [1], [2]. However,

the introduction of an NG tube into the aerodigestive tract
can significantly affect the patient’s ability to swallow safely
and efficiently. The altered anatomy and sensation due to
the tube’s presence can lead to difficulties in coordinating
the complex process of swallowing. This disruption to the
swallowing mechanism can increase the risk of aspiration,
in which ingested material enters the airway instead of the
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stomach, potentially causing pneumonia and other complica-
tions [3]. As a result, patients with NG tubes require vigilant
monitoring of their swallowing function to detect any signs of
dysphagia or aspiration, ensuring their well-being and overall
quality of life [4].

Speech-language pathologists primarily rely on vide-
ofluoroscopy swallowing studies (VFSS) to evaluate the
swallowing process, identify deficits, trial interventions, and
formulate treatment plans. VFSS involves capturing continu-
ous X-ray images of the neck area while participants ingest
barium, providing a real-time X-ray video that offers com-
prehensive insights into both spatial and temporal aspects
of swallowing function. Numerous research studies have
explored the efficacy of this method and have shown that
trained clinicians and automated computer systems can
extract valuable clinical information from VFSS videos,
in adult and pediatric populations [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16].

Unfortunately, VFSS has inherent limitations for patients
and clinical staff including radiation exposure, limited avail-
ability, high costs, and subjectivity in interpretation. Patients
with complicated swallowing, such as those with NG tubes,
often require multiple VFSS. There has been a growing
demand for an alternative approach to swallowing assess-
ment that offers greater accessibility, cost-effectiveness, and
minimum health risks [17], [18], [19], [20]. In recent years,
processing HRCA signals has emerged as an encouraging
method that aligns with these desirable attributes. HRCA
signals represent swallowing sounds and vibrations, and their
non-invasive nature involves the placement of a sensitive
microphone and a triaxial accelerometer on the anterior neck.
The resulting processed signals offer insight into swallowing
anatomy and physiology without the need for VFSS. As of
today, this test has established itself as a sought-after tech-
nique for swallowing analysis, as evidenced by a collection
of studies [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35]. The outcomes reported
in these studies generally correspond with the results of
the human manual kinematic analysis in videofluoroscopic
images, thereby reinforcing the premise that HRCA holds the
potential to serve as a viable alternative for X-ray images and
other established methods in the field of swallowing research.

While HRCA signals have shown promise in swallowing
studies across various patient populations (e.g., stroke, lung
transplant) and healthy individuals, further exploration is
needed to establish this approach in patients with altered
swallowing anatomy and physiology (e.g., those with laryn-
gectomies), before incorporating it into clinical practice. This
study aimed to explore the utility of HRCA signals for evalu-
ating swallowing in patients with NG tubes given the altered
anatomy and physiology resulting from the introduction of a
tube into the aerodigestive tract. The goal was to contribute
further evidence supporting the validity, reliability, and clin-
ical applicability of HRCA in healthcare settings. To this
end, we investigated several kinematic events in swallowing,
including detection of upper esophageal sphincter opening

duration, detection of laryngeal vestibule closure duration,
and hyoid bone tracking. These kinematics were selected for
their critical role in ensuring safe and efficient swallowing,
as well as their susceptibility to restricted movement caused
by the presence of the NG tube.

Recent years have witnessed a transformative influence
of machine learning methodologies across the domains of
medicine and healthcare. These advanced techniques have
also found applications in the diagnosis of swallowing and
neck-related disorders, offering encouraging avenues for
enhanced healthcare outcomes. A notable study conducted
by a group of oral surgeons and oncologists [36] reviewed a
diverse set of clinical studies employing artificial intelligence
for neck cancer detection. They demonstrated that invest-
ing in machine learning modeling is a worthwhile endeavor
in this field. Another pioneering investigation explored the
diagnosis of cervical spondylosis using deep learning tech-
niques [37]. Various models, including convolutional neural
networks, K-nearest neighbors, and real-time object detection
algorithms, were used to analyze swallowing videos. Among
these architectures, the convolutional network emerged as the
top performer, achieving an impressive 88% accuracy and
92% precision. It is worth noting that some of our previous
studies have also focused on image-based analyses, includ-
ing bolus detection through mask-RCNN object detection
method [5], as well as the estimation of cervical vertebrae
length and angle [6].

Research in the field of HRCA signal analysis andmachine
learning has revealed connections between swallowing vibra-
tory and acoustic signals and key swallowing events, such as
upper esophageal sphincter opening, laryngeal vestibule clo-
sure, and hyoid bone tracking [38], [39], [40]. These research
endeavors have introduced novel neural network architec-
tures to analyze swallowing patterns in patients without NG
tubes and healthy participants. To gain insights into HRCA
signals recorded from NG tube patients, we fine-tuned deep
learning models developed in previous research efforts. This
deliberate choice sought to explore the generalizability of
these architectures to an unseen data category encompassing
patients with altered anatomy and physiology due to the use
of the tube.

To date, there has been no research investigating how
effective HRCA signals are for assessing swallowing in
individuals using feeding tubes. This study filled this gap,
providing a foundation for future exploration and potential
advancements in patient care. We present possibilities in
facilitating early diagnosis of swallowing impairments in this
population, contributing to significant enhancements in their
overall quality of life [41].

II. METHODOLOGY
A. PARTICIPANTS, STUDY PROCEDURES, AND
EQUIPMENT
We employed machine learning architectures proposed
in [38], [39], and [40] to investigate upper esophageal
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TABLE 1. Demographic data of participants included in the target swallowing kinematic analyses.

sphincter opening duration, laryngeal vestibule closure dura-
tion, and hyoid bone tracking in patients using NG tubes.
In essence, our objective was to assess the performance
of these established structures on a different category of
swallowing data. This exploration becomes crucial because,
in real-world applications, we may encounter new categories
of participants that were not part of the initial training dataset.
Given the practical constraints of allocating resources for
frequent model retraining, we aim to understand the extent
to which our model can generalize to unseen data and eval-
uate its performance in handling variations that may arise in
different patient categories. This investigation is pivotal for
determining the robustness and applicability of our model in
diverse clinical scenarios.

To achieve this aim, samples from participants without
NG tubes were considered for the training, and the trained
models were then applied to samples collected from people
with NG tubes. Protocols of these studies were duly reviewed
and approved by the Institutional Review Board of the Uni-
versity of Pittsburgh (IRB number [12080498]), ensuring
compliance with ethical standards. Additionally, all partic-
ipants provided informed consent before taking part in the
data collection process including the concurrent collection of
their HRCA data during the VFSS procedure, as illustrated in
Figure 1. Further details on the demographic information of
participants can be found in Table 1.

Participants who were referred for advanced examina-
tion due to swallowing concerns underwent VFSS in the
lateral plane. During the test, they swallowed Varibar thin
liquid (Bracco Diagnostics Inc., Monroe Township, NJ) in the
course of routine clinical care. Videos were captured using
an Ultimax system (Toshiba, Tustin, CA) with a pulse rate
of 30 pulses per second and a frame resolution of H1008 *
W792. VFSS output stream was captured via an AccuStream
Express HD video card (Foresight Imaging, Chelmsford,
MA) and digitizedwith a sampling rate higher than or equal to
60 frames per second [21], then down-sampled to 30 frames
per second to remove duplicate frames. The digital video
stream was saved to a hard disk using LabView’s Signal

Express (National Instruments, Austin, Texas). Additionally,
participants consented to the concurrent collection of their
HRCA data during the VFSS procedure, as illustrated in
Figure 1.

Ensuring the robustness and generalization of our HRCA
system is crucial for demonstrating its performance across
a range of challenging clinical scenarios, including those
involving variations in data quality, noise, and missing data.
In environments where VFSS may face challenges such as
poor video signal quality, HRCA’s ability to capture essential
physiological swallowing signals proves invaluable. HRCA
leverages signal-based technology that detects muscle activ-
ity and swallowing sounds, which are less susceptible to
visual obstructions such as poor lighting or rapid patient
movements that commonly impair VFSS.

The strategic placement of HRCA sensors ensures accurate
capture of critical physiological signals related to swallow-
ing. These sensors are not only sensitive to physiological
parameters but also equipped with advanced signal process-
ing techniques like filtering and noise cancellation. This
setup minimizes the impact of extraneous noise, such as
patient movement or coughing, which are prevalent during
assessments and can obscure important data in video-based
systems.

Tomitigate the impact of missing data, we capture multiple
swallows from each participant. This redundancy ensures that
even if data from one or two swallows are missing, we can
reliably assess the participant’s health status using the infor-
mation gathered from the remaining swallows. Consequently,
this method allows us to overlook the incomplete swallows
without compromising the overall assessment, thereby pre-
serving the integrity and utility of our dataset. This strategy
enhances the robustness and reliability of our findings, ensur-
ing that our conclusions about each participant’s health are
well-supported by a comprehensive collection of data points.

For HRCA data collection, a contact microphone (model
C411L, AKG, Vienna, Austria) and a triaxial accelerome-
ter (ADXL 327, Analog Devices, Norwood, Massachusetts)
were positioned on the anterior aspect of the larynx, ensuring
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FIGURE 1. The concurrent collection of videofluoroscopic images and HRCA signals from study participants, along with the proposed pipeline for
kinematic analysis on swallowing signals.

optimal alignment with the participant’s neck. This posi-
tioning was carefully chosen to capture unobstructed videos
and high-quality signals, as validated in prior studies [21].
The accelerometer effectively recorded vibratory signals at a
frequency of 20 KHz across three accelerometry directions:
anterior-posterior, superior-inferior, and medial-lateral.

To predict the duration of upper esophageal sphincter open-
ing, 188 thin liquid swallows from 18 participants using NG
tubes were considered as the test set. Each patient with an
NG tube contributed an average of 10.44 swallows (± 3.33),
ranging from 5 to 18. The training data for this study encom-
passed 1,340 swallows from 144 subjects without anNG tube.
Transitioning to the prediction of laryngeal vestibule closure
duration, we used a test dataset consisting of 159 thin liquid
swallows from 20 patients with NG tubes. Each patient with
an NG tube contributed an average of 7.95 swallows (± 4.25),
with a range from 1 to 18. The training dataset consisted
of 588 swallows collected from 102 participants without an
NG tube. For the hyoid bone tracking study, the training
dataset included 1,168 swallows collected from 157 subjects
without an NG tube. For this study, we analyzed 83 thin
liquid swallows from 21 patients using NG tubes as the test
data. On average, each patient contributed approximately
3.95 swallows (± 2.92), with counts ranging from 1 to 9. The
differences among the training datasets, as well as among the
test datasets for these three tasks, stem from various factors
such as head movement, technical limitations, and subjective
judgment. These factors contribute to human error during
the annotation of kinematic events, leading to variability and
discrepancies within each set of data across the tasks.

B. SWALLOW KINEMATIC ANALYSIS
Videofluoroscopic image analysis was conducted by trained
raters specialized in swallowing kinematic analysis, fol-
lowing established standards and protocols [42]. Intra and

inter-rater reliability was achieved a priori with intraclass
correlation coefficients exceeding .9 and percent exact agree-
ment rates surpassing 80%, demonstrating the consistency
and accuracy of the measurements. Inter and intra-rater reli-
ability was maintained throughout the swallowing kinematic
event annotation process on 10% of the swallows, with ICCs
over .9, indicating a high level of agreement. While conduct-
ing swallowing kinematic measurements, each of the three
trained raters randomly selected one swallow every 10 for
another rater to reevaluate. This process aimed to ensure
consistent inter-rater reliability within an acceptable margin
of human error (3-frame tolerance) and achieve an intraclass
correlation coefficient of 1.00 for each event. Additionally,
each rater re-rated a random sample of 10% of the swallows
they had already labeled, maintaining an intraclass corre-
lation coefficient of 1 to establish inter-rater reliability for
swallowing kinematic measurements.

To identify the kinematic events of interest, raters pin-
pointed the following events for each swallow:

• The initial event for hyoid tracking is the first noticeable
superior and/or anterior motion of the hyoid bone at the
start of the swallow. During the data annotation phase,
raters marked two specified landmarks on the hyoid
bone in each frame of the swallow.

• Upper esophageal sphincter opening is denoted by the
moment in which the upper esophageal sphincter ini-
tially opens. The opening can be detected just before the
bolus enters, indicated by white airspace, or when the
bolus of barium contrast pushes the anterior and poster
walls of the upper esophageal sphincter apart and enters
the space.

• Upper esophageal sphincter closing is denoted by the
initial frame in which there is no visible column of air or
barium contrast between the posterior and anterior walls
of the upper esophageal sphincter, signifying its closure.
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• Laryngeal vestibule closure is defined as the moment in
which the laryngeal vestibule is initially sealed, charac-
terized by the absence of barium or airspace within the
laryngeal inlet.

• Laryngeal vestibule reopening corresponds to the initial
frame in which the laryngeal vestibule reopens, and
airspace becomes detectable as the epiglottis returns to
its resting position [43].

C. PREPROCESSING OF HRCA SIGNALS
HRCA signals captured by the microphone and the triaxial
accelerometer were susceptible to environmental and patient-
related noises, potentially causing distortions. To ensure
the reliability of these signals as inputs for machine learn-
ing systems, it was essential to eliminate unwanted effects.
This process began by applying a bandpass filter to atten-
uate both low-frequency and high-frequency noise compo-
nents, followed by signal amplification (model P55, Grass
Technologies, Warwick, Rhode Island). Signals were then
digitized using a data acquisition device (National Instru-
ments 6210 DAQ) facilitated by the SignalExpress program
in LabVIEW (Signal Express, National Instruments, Austin,
Texas), operating at a sampling rate of 20 kHz. Subsequently,
data was down-sampled from its original rate of 20 kHz to
4 kHz, a strategic adjustment aimed at mitigating transient
noise components.

In the following step, we modeled the baseline output
generated by the attached sensors using an autoregressive
process. Sensor-specific finite impulse response filters were
developed to target and remove this noise from both acous-
tic and vibratory inputs. Addressing motion artifacts, that
could arise due to voluntary or involuntary participant move-
ment during data collection and contribute to low-frequency
noise, a fourth-order least squares spline approximation was
applied. As a final step in the preprocessing pipeline, wavelet
denoising was employed to further enhance the overall qual-
ity of the signals, resulting in a refined dataset ready for
subsequent analysis. To segment continuous swallowing sig-
nals into individual swallows, we then used an automatic
segmentation algorithm introduced in [23]. This algorithm
operates directly on the raw swallowing signals in an online
fashion.

D. ESTIMATION OF UPPER ESOPHAGEAL SPHINCTER
OPENING DURATION
Employing the model presented in [38], we estimated the
upper esophageal sphincter opening duration in HRCA sig-
nals collected from patients with NG tubes. The model,
trained on HRCA signals from patients without NG tubes
and healthy participants, was applied to evaluate its perfor-
mance on the test data. The output was encoded into binary
sequences, where ‘‘1’’ represented the upper esophageal
sphincter’s open status, and ‘‘0’’ represented its closed status.
The desired output, representing the duration of the upper

esophageal sphincter opening, was calculated considering the
period during which the output was ‘‘1’’.

Swallowing events occur sequentially, with temporal
dependencies evident in swallowing data [44]. Given our
objective to identify temporal features within each single
swallow, the design of the proposed neural network should be
tailored to handle time-series data. Recurrent neural networks
are state-of-the-art for sequential data analysis, although they
have some complications. These networks can be compu-
tationally slow and challenging to train when dealing with
long sequences. Given the typical duration of a single swal-
low (1-2 seconds) and the high sampling frequency for data
recording, each swallow generated more than 4000 sampling
points, making it a lengthy sequence for recurrent neural
networks. Training a network with such long sequences can
be computationally expensive. To address this, one potential
solution was to extract important features from the input
data to reduce sequence length and then feed these short-
ened sequences to the network. However, to date, there has
been no study focusing on feature importance identification
within HRCA signals for predicting kinematic events. Instead
of manual feature extraction, convolutional neural networks
were employed for this purpose. Convolutional neural net-
works are considered a popular choice for feature extraction
in both signal and image data. A schematic diagram illustrat-
ing the different components of the proposed model is shown
in Figure 2.

E. ESTIMATION OF LARYNGEAL VESTIBULE CLOSURE
DURATION
The convolutional recurrent neural network introduced
in [39] was fine-tuned to estimate laryngeal vestibule clo-
sure duration in HRCA signals collected from patients using
feeding tubes. The model was trained on HRCA signals from
cases without NG tubes to assess its performance on NG tube
swallows.

In estimating the duration of laryngeal vestibule closure,
HRCA signals served as the model’s input. The output data
were encoded into binary sequences, where an open and
closed laryngeal vestibule were represented as ‘‘0’’ and ‘‘1’’,
respectively. The duration of laryngeal vestibule closure was
calculated according to the window in which the output was
‘‘1’’. The proposed model comprised a hybrid neural network
consisting of a 2-layer convolutional neural network as its
first component, followed by a 2-layer bidirectional gated
recurrent unit to access both past and future data in each time
step. Fully connected layers served as the last component of
this hybrid model. The dense layers predicted the laryngeal
vestibule closure duration by determining its status in each
data frame.

While processing swallowing signals using the imple-
mented model, a window slid through each sample, and the
outputs from the windows were aggregated to make sequen-
tial predictions. Each window had a duration of 0.33 seconds
and could either overlap with the next window or not.
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FIGURE 2. Structure of the convolutional recurrent neural network designed for predicting upper esophageal sphincter opening duration.

Overlapping windows had an overlap ratio greater than 0,
while non-overlapping windows had an overlap ratio of 0.
To determine the optimal approach, the overlap ratio was
varied from 0 to 50%, and the model’s performance was
evaluated in each scenario. Once the model learned the com-
mon patterns associated with laryngeal vestibule closure and
reopening frames, its performance was assessed using signals
recorded from patients with NG tubes.

F. HYOID BONE TRACKING
For hyoid bone tracking, we employed the stacked recurrent
neural network proposed in [40]. This network consisted of
four hidden layers, each containing 64 neurons. The model’s
input comprised feature vectors extracted from sensor sig-
nals, and its output indicated the position of the hyoid bone
at time t . To prepare input data, each swallowing signal
was segmented into slices, with the mean and variance cal-
culated for each slice. The corresponding input vector of
each swallow was defined based on sensor movements and
extracted features. The ground truth outputs of the network
were generated according to the videofluoroscopic images.
This process included determining the hyoid bone position
marked on the image frames using the C2-C4 axis.

The performance of the model in hyoid bone tracking was
evaluated using a metric called relative overlapped percent-
age. This metric allows a comparison between the model
and human rater annotation. A higher value for relative over-
lapped percentage is more desirable, with 100% indicating
that the model’s tracking output matches that of the human
rater. Figure 4 illustrates both human-labeled and predicted
hyoid body positions for various overlapping percentages.

III. RESULTS
A. PREDICTION OF UPPER ESOPHAGEAL SPHINCTER
STATUS
The proposed model underwent training using 1,340 non-
NG tube swallows for over 100 epochs and was subsequently
tested on 188 previously unseen NG tube signals. Table 2
presents details on the model’s performance in predicting
upper esophageal sphincter opening duration for both training
and test datasets.

TABLE 2. Evaluation of the proposed convolutional recurrent neural
network for upper esophageal sphincter status prediction.

Figure 5 illustrates the frame error distribution for the
upper esophageal sphincter opening and closure. The model
predicted the onsets of upper esophageal sphincter opening
and closure in 67.61% and 82.95% of NG tube swallows,
respectively, falling within an acceptable range of human
error in the analysis of swallowing kinematics (3-frame tol-
erance).

B. PREDICTION OF LARYNGEAL VESTIBULE STATUS
The model underwent training using 588 non-NG swal-
lows for over 100 epochs and was subsequently evaluated
on 159 unseen NG swallows. The model’s performance is
reflected in Table 3 for varying overlapping ratios ranging
from 0% to 50%.

Variation in the overlap ratio proved beneficial in model
performance evaluation, allowing for the selection of the
optimal value for this hyperparameter. When the overlap
ratio was configured at 50%, all evaluation metrics for both
training and test datasets exceeded 80%.With an overlapping
ratio set at 50%, Figure 6 illustrates the distribution of frame
errors in predicting the onset of laryngeal vestibule closure
and its reopening. The model succeeded in predicting the
onset of laryngeal vestibule closure and its reopening within
a tolerable range of human error in swallowing kinematic
analysis for 79.62% and 75.80% of NG tube swallows.

C. EVALUATION OF HYOID BONE TRACKING ALGORITHM
The model suggested for hyoid bone tracking underwent
training on 1,168 HRCA signals collected from patients
without NG tubes and healthy participants for 106 epochs
and was subsequently tested on 83 unseen NG tube signals.
For each sample in the test set, we computed the relative
overlapped percentage as the evaluation metric. The average
relative overlapped percentage achieved by the model was
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FIGURE 3. Structure of the proposed convolutional recurrent neural network for predicting laryngeal vestibule closure duration.

FIGURE 4. An illustration depicting the hyoid body as labeled by humans and predicted by the model at relative overlap
percentages of 0%, 50%, and 100%.

TABLE 3. Evaluation of the proposed convolutional recurrent neural
network for laryngeal vestibule status prediction.

41.27%, indicating that the stacked recurrent neural network
detected at least 41.27% of the hyoid bone’s body in the test
frames. When comparing this performance to the average
relative overlapped percentage reported in [40], which stood
at 51.61%, it is important to note that this study employed

swallowing data from distinct groups of participants with
different health conditions for the training and evaluation
processes. Despite this complexity, the model’s relative over-
lapped percentage of 41.27% represents a promising and
noteworthy achievement in this study.

IV. DISCUSSION
In the realm of modern healthcare, the significance of
machine learning in processing medical data is undeniable.
Expanding upon established neural network models from
previous research on patients without NG tubes and healthy
individuals, our study focused on analyzing swallowing kine-
matics using HRCA signals from patients with NG tubes.
This approach accounts for the significant alterations in swal-
lowing anatomy and physiology caused by the presence of
the tube. This endeavor sought to assess the applicability of
existing architectures to an uncharted data category within
this domain, thereby demonstrating the potential for this tech-
nology to be extended to patients with NG tubes. By training
models on HRCA signals from individuals without NG tubes
and subsequently evaluating them on NG tube samples,
we achieved notable outcomes. Our predictions for key swal-
lowing events, such as upper esophageal sphincter opening
and closure, demonstrated accuracy of 67.61% and 82.95%,
respectively, within a 3-frame error tolerance. Similarly,
laryngeal vestibule closure and reopening were identified in
79.62% and 75.80% of the test samples, respectively, while
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FIGURE 5. The frame error distribution for prediction of upper
esophageal sphincter opening duration in the test set is illustrated in
(a) and (b), showcasing the error distribution for predicting the onset of
upper esophageal sphincter opening and its closure. The blue bars
correspond to errors of no more than 3 frames.

hyoid bone tracking yielded a relative overlapped percentage
of 41.27% in the target population.

Our previous work has shown that HRCA is feasible for
a diverse range of patient populations. The results from this
study are a promising step toward using HRCA signals for
swallowing kinematic analysis in patients with NG tubes.
The potential to use HRCA signals instead of VFSS in the
future offers patient with varied anatomy and comorbidi-
ties an accessible, non-invasive, cost-effective, and objective
method for assessing swallowing. By extending the applica-
tion of machine learning to the novel cohort of patients with
NG tubes, we not only facilitate wider access to dysphagia
assessment but also advocate for a paradigmatic reevaluation
of diagnostic methodologies. Although our findings propel us
closer to adopting HRCA signal analysis in clinical settings,
further investigations are needed. Larger sample sizes and a
broader range of patient populations are warranted to fully
comprehend the complexities of swallowing mechanics, and
wemust address interpretability challenges posed bymachine
learning models before HRCA can be widely adopted.

FIGURE 6. The frame error distribution for prediction of laryngeal
vestibule closure duration in the test set is illustrated in (a) and (b),
showcasing the error distribution for predicting the onset of laryngeal
vestibule closure and its reopening. The blue bars correspond to errors of
no more than 3 frames.

Future research endeavors should prioritize extending
HRCA signal analysis to include larger, diverse patient
cohorts, thereby improving the applicability of findings
across a wide range of health conditions associated with
dysphagia. While our research team has already explored
various groups, including patients with neurodegenerative
diseases, stroke survivors, and individuals with lung trans-
plants, we have yet to investigate populations with anatomical
differences, such as those who have undergone radiation for
head and neck cancer, patients with laryngectomies, or indi-
viduals with tracheostomies.

There is also a compelling need to advance research
to encompass a wider range of swallowing events. While
the opening and closing of the upper esophageal sphinc-
ter and laryngeal vestibule, and hyoid tracking are crucial
components of swallowing, many significant swallowing
kinematics remain unexplored and require further training
of HRCA. The development of multitask models capable of
predicting multiple kinematic events within a unified frame-
work represents another intriguing and necessary avenue
for exploration. Since clinicians evaluate multiple kinematic
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events simultaneously during a VFSS, a multitask model
would better replicate real-world conditions, enhancing both
resource efficiency and practical implementation. Further-
more, to build trust among medical professionals in the
effectiveness of the HRCA system, it is essential to con-
duct extensive clinical trials. These trials should compare
the HRCA’s performance directly with human assessments,
demonstrating its reliability and accuracy. Addressing these
challenges holds the promise of enhancing the utility of
HRCA signal analysis in the realm of swallowing assessment,
thereby marking a significant stride toward more inclusive
and efficient clinical practices.

V. CONCLUSION
This study underscored the potential of HRCA signal analysis
as a practical tool for swallowing assessment and dysphagia
diagnosis, offering a viable alternative to VFSS and other
well-established swallowing tests. By demonstrating the fea-
sibility of using HRCA signals for swallowing kinematic
analysis in patients with an NG tube, we have opened up a
new avenue for comprehensive practices in this field. More-
over, fine-tuning of machine learning architectures from prior
research illustrated how HRCA data analysis for swallowing
evaluation can extend to various cases with different health
conditions, paving the way for more robust and adaptable
diagnostic tools. We hope our exploration in this study and
the call for further investigations into the interpretability of
HRCA signals can signify promising directions for future
research, reflecting a progressive evolution in dysphagia
assessment methodologies.
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