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SUMMARY 28 
How the human brain generates conscious phenomenal experience is a fundamental problem. In 29 
particular, it is unknown how variable and dynamic changes in subjective affect are driven by interactions 30 
with objective phenomena. We hypothesize a neurocomputational mechanism that generates valence-31 
specific learning signals associated with ‘what it is like’ to be rewarded or punished. Our hypothesized 32 
model maintains a partition between appetitive and aversive information while generating independent 33 
and parallel reward and punishment learning signals. This valence-partitioned reinforcement learning 34 
(VPRL) model and its associated learning signals are shown to predict dynamic changes in 1) human 35 
choice behavior, 2) phenomenal subjective experience, and 3) BOLD-imaging responses that implicate 36 
a network of regions that process appetitive and aversive information that converge on the ventral 37 
striatum and ventromedial prefrontal cortex during moments of introspection. Our results demonstrate 38 
the utility of valence-partitioned reinforcement learning as a neurocomputational basis for investigating 39 
mechanisms that may drive conscious experience. 40 
 41 
KEYWORDS: consciousness, subjective experience, decision-making, reinforcement learning, reward 42 
prediction errors, punishment prediction errors, valence, affect  43 
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INTRODUCTION  44 
 45 

The mechanisms by which the human brain generates the subjective phenomenal experiences 46 
that allow us to answer introspective questions like, “What is it like to be [me]?” (or “a bat”; Nagel, 1974) 47 
remain a fundamental mystery that has occupied artists, philosophers, and neuroscientists for centuries 48 
(Faherty, 2016). However, this problem represents more than just an old philosophical quandary: brain 49 
states underlying subjective suffering and challenges to the ability to control one’s behavior are at the 50 
core of nearly all psychiatric and neurological conditions (Kishida et al., 2010; Montague et al., 2012; 51 
Kishida, 2012; Redish and Gordon, 2016; Huys et al., 2016; Taschereau-Dumouchel et al., 2022). The 52 
inherently subjective nature of conscious experience has led philosophers to deem an understanding of 53 
the mechanisms supporting it fundamentally ‘hard’ or even impossible (Nagel, 1974; Chalmers, 1995). 54 
On the other hand, empirical investigation has turned previously seemingly impossible problems (e.g., 55 
an understanding of electromagnetic phenomena; Forbes and Mahon, 2014) into well-defined scientific 56 
fields of inquiry. Here, “we get on with the task” of empirically investigating simple conscious experiences 57 
through the lens of behavioral and neurobiological measurements (Churchland PM, 1984, 2014; 58 
Churchland PS, 1996) that may be better understood within a neurocomputational framework 59 
(Churchland and Sejnowski, 1994; Kishida, 2012). One of the major challenges facing a science of 60 
consciousness lies in the fact that the phenomena to be investigated – e.g., variations in how one feels 61 
– are subjective and only indirectly accessible through self-report behavior. Nonetheless, subjective 62 
experiences are associated with reproducible behaviors and changes in neurophysiology that can be 63 
studied within behavioral, cognitive, and computational neuroscience methods.  64 

 65 
A leading neurocomputational approach to investigating adaptive human choice behaviors and 66 

subjective experiences has been the use of temporal difference (TD) reinforcement learning (RL) theory 67 
(Sutton, 1988; Sutton and Barto, 1998) to provide a framework for probing how dopamine neurons 68 
encode ‘teaching signals’ in the form of TD reward prediction errors (RPEs; Montague et al.,1996; Schultz 69 
et al., 1997; Bayer and Glimcher, 2005; Bayer et al., 2007; Zaghloul et al., 2009; Glimcher, 2011;  Hart 70 
et al., 2014; Eshel et al., 2015; Kishida et al., 2016; Watanabe-Uchida et al., 2017; Moran et al., 2018). 71 
In the dopamine TD-RPE hypothesis (Montague et al., 1996; Schultz et al., 1997), phasic bursts and 72 
pauses in dopamine neuron firing activity signal ‘better-than-expected’ or ‘worse-than-expected’ 73 
prediction errors, respectively, which provides a computationally-optimal method for learning – directly 74 
from experience – value associations between rewards and the stimuli and actions that predict them 75 
(Sutton and Barto, 1998). This mechanistic insight has since led to specific hypotheses about the 76 
neurochemical basis of computations underlying human choice behaviors and a variety of mental health 77 
disorders (Redish and Gordon, 2016), in part due to support from human fMRI studies demonstrating 78 
that BOLD activity in brain regions rich in dopaminergic terminals parametrically tracks reward prediction 79 
errors during classical and instrumental conditioning (O’Doherty et al., 2003; McClure et al., 2003; 80 
Pessiglione et al., 2006; Garrison et al., 2013). Furthermore, empirical studies have begun to associate 81 
neurocomputational processes underlying RPE encoding with the immediate subjective experience of 82 
pleasure as well as associated dynamic changes in mood that occur over longer timescales (Delgado et 83 
al., 2006; Xiang et al., 2013; Rutledge et al., 2014; Eldar et al., 2016). This work has also provided a 84 
basis for investigating the neural and behavioral correlates of changes associated with various psychiatric 85 
conditions and mood disorders (Redish and Gordon, 2016; Redish, 2004; Montague et al., 2012; Kishida 86 
et al., 2010; Huys et al., 2016; Rutledge et al., 2017; Brown et al., 2021). 87 

 88 
 Despite its overwhelming utility, RL theory does not explicitly describe how biological organisms 89 
learn optimally from aversive experiences (i.e., punishments) concurrently or independently from 90 
experienced rewards (Sutton, 1988; Sutton and Barto, 1998; Dayan and Niv, 2008; Pessiglione and 91 
Delgado, 2015; Kishida and Sands, 2021). Aversive stimuli (e.g. those that cause tissue damage or 92 
threaten to do so) are evolutionarily conserved drivers of defensive and other adaptive behaviors (Cisek, 93 
2021) and negative aspects of human subjective experience (Seymour et al., 2007b; Kishida and Sands, 94 
2021). Typically, TDRL theory treats aversive experiences (e.g., punishments or costs) as ‘negative 95 
rewards’ and thus colinear with rewards along a single valence dimension: TDRL treats punishing (i.e., 96 
aversive) outcomes only in relation to appetitive or rewarding experiences. This is counter to biological 97 
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experience where appetitive and aversive experiences may largely be derived from statistically 98 
independent sources or derived from a similar source with varying degrees of statistical dependence. For 99 
example, individual people may be collaborative or fiercely competitive; potential sources of food (e.g., 100 
plants) may be nutritious or toxic. Further, computationally, using a single valence dimension ordains a 101 
‘zero-sum rule’ for how to represent co-occurring positive and negative outcomes (or mixed-valence 102 
experiences) – only a resultant single scalar ‘reward’ term is used in TDRL (Sutton and Barto, 1998) – 103 
and thereby also does not allow for dissociating the individual effects of co-occurring rewards and 104 
punishments on agent behavior and subjective experiences. Indeed, this traditional reliance on a 105 
unidimensional, colinear valence representation belies the independent influences of rewards and 106 
punishments (or otherwise appetitive and aversive events) on human choices and emotional responses 107 
(Konorski, 1967; Dickinson and Dearing, 1979; Cacioppo et al., 1999; Folkman and Moskowitz, 2000; 108 
Larsen et al., 2009; Larsen and McGraw, 2011; Kishida and Sands, 2021).  109 

 110 
Fundamentally, there remains a gap in the literature regarding traditional TDRL accounts of 111 

reward and punishment learning and comparisons to alternative models that directly address how 112 
punishing stimuli may be processed in a comparably optimal manner. Human fMRI investigations of 113 
aversive valence-processing suggest that adaptive learning from punishments (e.g., pain) is consistent 114 
with a hypothetical punishment-based (i.e., reward-opponent) RL system (Palminteri and Pessiglione, 115 
2017; Seymour et al., 2004, 2005, 2007a, 2012; Delgado, et al. 2008, 2009). Theoretical descriptions of 116 
a system ‘opponent’ to dopaminergic reward processing have been hypothesized (Daw et al., 2002) and 117 
are supported by indirect evidence (Palminteri and Pessiglione, 2017; Seymour et al., 2005, 2007a, 118 
2007b; Delgado, et al. 2008, 2009) and recent direct simultaneous measurements of serotonin and 119 
dopamine in human striatum (Kishida et al., 2016; Moran et al., 2018). However, these prior investigations 120 
generally used a unidimensional representation of valence. To begin to explicitly compare alternatives to 121 
unidimensional TDRL-based depictions of reward and punishment learning, we hypothesized valence-122 
partitioned reinforcement learning (VPRL; Kishida and Sands, 2021), which proposes that separate 123 
neural systems implement TD learning over appetitive and aversive experiences in parallel and thereby 124 
independently update representations of positive and negative expected state-action values, 125 
respectively. VPRL-encoded signals can then be operated on (e.g., integrated) or processed 126 
independently as necessary for guiding behavior, including when introspecting or reporting about one’s 127 
subjective feelings (Kishida and Sands, 2021).  128 

 129 
Here, we test the hypothesis that VPRL is a better model than traditional TDRL for investigating 130 

(1) human learning and decision-making behavior, (2) associated neural activity, and (3) dynamic 131 
moment-to-moment changes in subjective experience in humans. We combine data from two 132 
experiments involving human participants (N=47 total) scanned with fMRI while performing a probabilistic 133 
reward and punishment (PRP) task that uses monetary gains and losses as reinforcement (Figure 1A; 134 
Methods). We show that VPRL better explains participant choice behavior compared to traditional TDRL 135 
and that VPRL model parameters fit to participant choices are consistent with humans learning from 136 
rewards and punishments independently and asymmetrically (Figure 2). Further, we investigate the 137 
connection between VPRL learning signals and participants’ self-reported subjective feelings about 138 
received outcomes throughout the PRP task, demonstrating that the expected value of a chosen action 139 
and prediction errors over action-contingent rewards and punishments all uniquely influence – and 140 
together predict – subjective feelings about experienced outcomes (Figure 3). Model-based fMRI 141 
analyses reveal blood-oxygen-level-dependent (BOLD) signals that parametrically track VPRL learning 142 
signals and associated subjective feelings within a distributed network of striatal, cingulate, insular, and 143 
prefrontal regions (Figure 4,5). Our results support the notion of valence partitioning as a mechanism in 144 
the human brain for processing appetitive and aversive stimuli via independent and parallel TDRL 145 
mechanisms, which together provide more robust representations of independent appetitive and aversive 146 
value estimates in uncertain contexts. Further, our results demonstrate and we discuss the implications 147 
of VPRL as a valid neurocomputational framework for investigating the neural mechanisms underlying 148 
the dynamics of subjective phenomenal experience and associated behaviors in humans.  149 

 150 
 151 
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 152 
 153 
RESULTS 154 
 155 
VPRL best explains choice behaviors and reveals asymmetrical processing of rewards and 156 
punishments  157 
 158 
 Forty-seven participants completed the PRP task which required them to intermittently (randomly 159 
on one-third of all trials) rate how they felt about recent outcomes (Figure 1A). Participants learned to 160 
choose the option with the highest expected value on each trial more often than expected by chance 161 
(Figure1B; two-sample t-test, t(92)=8.8, p<0.001), chose the option with the highest expected value 162 

 
Figure 1 – Human performance on a probabilistic reward and punishment (PRP) task. (A, top) Schematic 
of a trial from the PRP task and subjective rating prompt. On each trial, a participant chooses one of two options 
and is reinforced probabilistically with either a monetary gain, nothing, or a monetary loss. Randomly after a third 
of trials, participants submit ratings of their subjective feelings about experienced outcomes. Offset: reward-
associated options result in either monetary gains or nothing, and punishment-associated options result in 
monetary losses or nothing. (A, bottom) Depiction of the ‘ground-truth’ expected value for each option (expected 
value = probability(outcome)*outcome) and how the options’ expected values change throughout the three 
phases of the PRP task (demarcated by vertical black lines). In phase 1 you choose between two of 3 possible 
gain/no-gain options. For phase 2, there’s an equal number of trials with two gain/no-gain options and two loss/no-
loss. In phase 3, participants choose between any two of the six options at random, and the expected value for 
each option changes. Icon to outcome mappings are randomized for each participant.  (B, top) The overall 
percent of trials where participants correctly chose the option with the highest (most positive) expected 
value, and (B, bottom) the evolution of the percent of correct choice trials throughout the PRP task. (C) 
The distributions of response times for all trials, trials on which a reward-associated option was chosen 
(reward trials), and trials on which a punishment-associated option was chosen (punish trials). For (B) 
and (C), *** = p<0.001. 
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increasingly over time (two-way ANOVA (group, time), F(1,149)=2416.8), and were quicker to select 163 
rewarding options than punishing options (Figure 1C; two-sample t-test, t(7023)=-14.5, p<0.001).  164 
 165 
 To test whether participants might learn differently from rewards and punishments, we fit a 166 
standard TDRL model and a VPRL model (Kishida and Sands, 2021) to participant choice behavior using 167 
hierarchical Bayesian inference and compared estimates of the model evidence (i.e., marginal likelihood) 168 
and the posterior predictive accuracy (density) for both models. For both cohorts individually, and for an 169 
'internal meta-analysis' combined cohort, VPRL demonstrated both greater model evidence and greater 170 
posterior predictive accuracy relative to TDRL (Table 1), indicating that VPRL is a better explanation of 171 
behavior on the PRP task and better predicts unobserved PRP task choice behavior data. 172 
 173 
 174 

 fMRI Cohort 1 (n=20)  fMRI Cohort 2 (n=27)  Combined (N=47) 

 Model 
evidence 

Predictive 
density  Model 

evidence 
Predictive 

density  Model 
evidence 

Predictive 
density 

TDRL -1577.3 
(0.05) 

-1564.9 
(56.8)  -2400.2 

(0.20) 
-2378.5 
(61.7)  -3979.3 

(0.33) 
-3945.8 
(89.9) 

VPRL -1499.2 
(0.24) 

-1476.8 
(63.3)  -2321.8 

(0.48) 
-2295.4 
(71.0)  -3815.2 

(2.45) 
-3769.0 
(101.9) 

Difference -78.1 
(0.25) 

-88.2 
(28.9)  -78.4 

(0.35) 
-83.0 
(22.3)  -164.1 

(2.25) 
-1767.7 
(37.7) 

Table 1 – TDRL and VPRL model comparison results for two neuroimaging cohorts. Computed 
estimates of the Bayesian model evidence (i.e., marginal likelihood) and model predictive density (i.e., 
cross-validated error) for TDRL and VPRL models. VPRL demonstrated the maximum (least negative) 
model evidence and expected predictive density (bold values) compared to TDRL. Reported values 
are the median estimate value (log scale), with values in parentheses indicating either the interquartile 
range (of model evidence estimations) or the Monte Carlo sampling error (for the predictive density). 
Given the similarity of TDRL and VPRL model comparison results for both fMRI cohorts separately and 
the improved model evidence and predictive density for VPRL when combining both fMRI cohorts, we 
elected to combine the data from both fMRI cohorts to improve the power of both the main behavioral 
and model-based fMRI analyses.  

 175 
Given that participant choice behavior on the PRP task is better explained by VPRL compared to 176 

TDRL, we next investigated differences in the (posterior) parameter distributions and the time series of 177 
learned state-action values (Q-values) derived from each model (Figure 2). The group-level TDRL model 178 
parameters are (Figure 2A): learning rate (𝛼): median = 0.16 (95% credible (highest density) interval (CI) 179 
= [0.13 0.21]); temporal discount factor (𝛾): median = 0.65 [0.46 0.98]; and choice temperature (𝜏): median 180 
= 0.09 [0.05 0.20]. The group-level VPRL model parameters are (Figure 2B): Positive valence (i.e., 181 
reward) system learning rate (𝛼!): median = 0.20 [0.16 0.24]; Negative valence (i.e., punishment) system 182 
learning rate (𝛼"): median = 0.66 [0.17 0.91]; Positive system temporal discount factor (𝛾!): median = 183 
0.71 [0.54 0.99]; Negative system temporal discount factor (𝛾"): median = 0.15 [0.03 0.29]; and choice 184 
temperature (𝜏): median = 0.07 [0.05 0.14]. To investigate the nature of the differential learning of rewards 185 
relative to punishments in the VPRL framework, we assessed the difference between the Positive and 186 
Negative systems’ learning rates and temporal discount parameters (Figure 2C). We found that the 187 
learning rate for punishments is generally greater than the learning rate for rewards (𝛼! − 𝛼" median 188 
difference = -0.47 [-0.71 0.04]), and that temporal discounting for punishments was greater than temporal 189 
discounting for rewards (𝛾! − 𝛾" median difference = 0.56 [0.35 0.86]). Lastly, the time series of learned 190 
expected values for TDRL (Figure 2A, bottom) and VPRL (Figure 2B, bottom) models demonstrate that 191 
participants learned option values that recapitulate the correct ranking (i.e., from most negative to most 192 
positive value) and are appropriately adaptive to the changes in outcome magnitudes beginning in Phase 193 
3. Of note, VPRL produced more accurate estimates of the true state-action values of aversive options 194 



(i.e., associated with monetary losses) over time compared to TDRL (Figure S1; two-way ANOVA (time, 195 
model): F(time,149) = 8.7, p = 3.1e-83; F(model,1) = 66.2, p = 2.4e-15), whereas rewarding options are 196 
learned with equivalent accuracy (F(time,149) = 2.38, p = 1.9e-13; F(model,1) = 0.02, p = 0.66); 197 
differences between learned option values for TDRL and VPRL models were specific to the most 198 
negatively valued options.  199 

 200 

 201 
 202 

 203 
VPRL prediction errors over rewards and punishments differentially affect subjective feelings  204 
 205 
 Given the evidence that VPRL best explains participant behavior on the PRP task, we sought to 206 
characterize how VPRL model-derived reward prediction errors (VP-RPE), punishment prediction errors 207 
(VP-PPE), and expected action values influence moment-to-moment changes in participants’ self-208 
reported subjective feelings about experienced outcomes. We fit a cross-validated (leave-one-209 
participant-out) Bayesian linear regression model to predict subjective feeling reports (Figure 1) using 210 
as predictor variables the learned state-action values (VP-Q-value) of each option presented on a rated 211 
trial and positive and negative VP-RPEs (from the VPRL Positive system) and VP-PPEs (from the VPRL 212 
Negative system) in response to the outcome of each rated trial (Figure 3A). Positive and negative VP-213 
RPEs contribute positively and negatively to participants’ self-reported subjective feelings, respectively 214 
(positive VP-RPE: median = 0.92 [0.70 1.1]; negative VP-RPE: median = -0.33 [-0.64 -0.01]). Conversely, 215 
positive and negative VP-PPEs contribute negatively and positively to subjective feelings, respectively 216 
(positive VP-PPE: median = -1.4 [-1.8 -1.1]; negative punishment VP-PPE: median = 0.13 [0.02 0.21]). 217 

 
Figure 2 – TDRL and VPRL computational modeling results. VPRL model best explains choice behavior on 
PRP task and leads to asymmetric learning. Distributions of (A) TDRL and (B) VPRL model parameter values 
across all participants. Horizontal bars mark the median of each distribution, and vertical bars indicate 95% 
credible interval (CI) of individual-level distribution. Dots indicate individual participant parameter values (mean 
of posterior parameter distributions); within-subject VPRL model parameters values are linked by grey lines. For 
both (A) and (B), bottom panels show time series of learned expected state-action values (Q-values) across 
participants for each option on the PRP task as predicated by the (A) TDRL and (B) VPRL models and shown 
relative to each option’s true expected value (grey dashed lines). Shaded ribbons indicate +/- one standard error 
of the mean (SEM), and different hues of shaded ribbons indicate different outcome probability groups. (C) Group- 
and individual-level differences in VPRL model learning rates (light blue distribution and histogram) and temporal 
discount parameters (dark blue distribution and histogram). Vertical dashed line indicates equivalence between 
parameter values; horizontal light and dark blue bars indicate 95% CI for the group-level distribution.  
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The expected value of the chosen option on rated trials contributes positively to subjective ratings 218 
(Expected Value (VP-EV) of Chosen: median = 1.4 [1.1 1.6]), whereas the expected value of the 219 
unchosen option on rated trials shows no effect (VP-EV of Unchosen: median = -0.05 [-0.18 0.09]). 220 
 221 

To assess the posterior predictive performance of the cross-validated Bayesian regression model 222 
on held-out participant ratings, we computed r-squared values and Pearson correlation coefficients (rho 223 
value) between the held-out participant’s ratings and the model-predicted ratings (Figure 3B). This 224 
analysis revealed a median within-participant correlation measure of 0.65 (SD = 0.16; median p-value = 225 
4.3e-7) and r-squared value of 0.42 (SD = 0.18), indicating that the cross-validated regression model 226 
generalizes moderately well to out-of-sample participant data (Figure 3C).  227 
 228 

 229 
 230 
Further analyses comparing the coefficient values of VP-RPEs and VP-PPEs revealed that the 231 

magnitude (absolute value) of positive VP-RPE coefficients is generally larger than the magnitude of 232 
negative VP-RPE coefficients (median difference = 0.15 [-0.08 0.37]). Similarly, we found that positive 233 
VP-PPEs have a consistently larger contribution to subjective ratings than negative VP-PPEs (median 234 

 
Figure 3 – Dynamic changes in self-reported subjective feelings predicted by VPRL learning signals. 
Cross-validated Bayesian regression analysis reveals influence of VPRL learning signals on ratings of subjective 
feelings about experienced outcomes. (A) Distribution of regression coefficient weights on positive (+) and 
negative (-) VP-RPEs and VP-PPEs and learned state-action values (VP-Q-values) of the chosen and unchosen 
options (VP-Q(Chosen) and VP-Q(~Chosen), respectively) on each trial. Horizontal bars indicate the median of 
each distribution; vertical bars indicate 95% CI of distribution; dots indicate mean individual parameter values. 
(B) Scatter plot demonstrating the linear relationship between model-derived and held-out participant ratings. 
Dark brown lines indicate within-participant linear correlations; black line indicates median linear relationship 
across all participant ratings; dashed brown lines represent 95% CI around individual-level linear correlation 
values. (C) Representative participant time series (rho=0.77, p = 7.9e-11; r-squared=0.59) of normalized 
subjective ratings (black line) and the cross-validated, model-predicted subjective ratings. Dark brown line 
represents the mean model-predicted ratings, and the shaded region represents ± 1 standard deviation around 
mean model predictions.  

A

B C



difference = 0.89 [0.63 1.1]). Lastly, negative VP-PPEs consistently had a more positive contribution to 235 
subjective ratings than negative VP-RPEs (median = 0.27 [-0.003 0.55]). As a whole, comparing the 236 
effects of positive and negative VP-RPEs and VP-PPEs on subjective ratings revealed a consistent 237 
ordering of the contributions of VPRL prediction errors to subjective feelings, with positive VP-RPE > 238 
negative VP-PPE (median difference = 0.98 [0.74 1.2]), negative VP-PPE > negative VP-RPE, and 239 
negative VP-RPE > positive VP-PPE (median difference = 0.62 [0.40 0.84).  240 
 241 
 242 
Striatal-insular-prefrontal network activity tracks ‘reward’ and ‘punishment’ prediction errors 243 
 244 

Based on related prior work, we hypothesized that VPRL reward prediction errors (VP-RPEs), 245 
punishment prediction errors (VP-PPEs), and the respective positive and negative system expected 246 
values would be tracked by regions of dorsal and ventral striatum, cingulate cortex, and insula (O’Doherty 247 
et al., 2003; McClure et al., 2003; Pessiglione et al., 2006; Palminteri and Pessiglione, 2017; Seymour et 248 
al., 2004, 2005, 2007a, 2012; Delgado et al., 2008, 2009; Garrison et al., 2013). Using a model-based 249 
approach, we tested for regional activity that correlated with VP-RPEs and VP-PPEs by computing 250 
contrasts for positive effects of VP-RPEs or VP-PPEs (Figure 4). Regions that show hemodynamic 251 
signatures of VP-RPEs include the anterior cingulate cortex (ACC), anterior insula, and ventral striatum 252 
(Figure 4A); regions that correlate with VP-PPEs included the ACC, anterior insula, and dorsal striatum 253 
(Figure 4B). Additionally, we found that regional activity in the ventromedial prefrontal cortex (vmPFC) 254 
tracked VPRL-derived learned action values (VP-Q-values) of both the chosen and unchosen option on 255 
each trial (Figure S2).  256 

 257 
 258 

 
Figure 4 – Meso-cortico-limbic regional activity represents the set of VPRL prediction error signals. 
Whole-brain model-based analysis of VPRL learning signals indicate that regions of human striatum, insula 
cortex, and anterior cingulate cortex parametrically encode (A) VP-RPEs or (B) VP-PPEs. Colored voxels and 
associated p-values indicate statistical thresholding used for primary analyses. All panels are sliced at MNI 
coordinates x=6, y=2, z=-2. FWE = family-wise error. 
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Ventral striatum and ventromedial prefrontal cortex track participants’ subjective experience 259 
 260 

Prior reports demonstrate that subjective feelings associated with prediction error and expected 261 
value signals are tracked by medial prefrontal cortex (Xiang et al., 2013) and ventral striatum (Rutledge 262 
et al., 2014). We hypothesized that the neural responses to signals derived from the VPRL model would 263 
drive brain responses associated with subjective feelings on every trial. Thus, we used the fitted model 264 
coefficients from the cross-validated subjective rating regression analysis to impute the subjective feeling 265 
on each trial conditioned on the trial’s prediction errors and expected value signals. We found that 266 
regional activity in ventral striatum and ventromedial prefrontal cortex (vmPFC) parametrically tracked 267 
the imputed subjective rating on each trial throughout the PRP task (Figure 5).   268 

 269 
 270 
 271 
 272 

273 

 
Figure 5 – Medial prefrontal and ventral striatal activity correlates of trial-to-trial subjective human 
feelings. Whole-brain model-based analysis of self-reported subjective feelings as predicted by VPRL expected 
values and prediction errors indicate that medial prefrontal cortex and ventral striatum parametrically track the 
imputed subjective feeling on each trial. Colored voxels and associated p-value indicates statistical thresholding 
used for primary analyses; x=-10, y=-10, z=6. FWE = family-wise error. 

p < 1e-4 p < 1e-5 p < 0.05 (FWE)



DISCUSSION   274 
 275 

Here, we investigated how the human brain learns from independent appetitive and aversive 276 
experiences to adapt choice behaviors and how this dynamic process impacts subjective experience. We 277 
hypothesized VPRL (Kishida and Sands, 2021) as a framework for studying how neural systems may 278 
process rewards statistically independently from punishments. We demonstrate that VPRL consistently 279 
explains human choice behavior better on a probabilistic reward and punishment task compared to 280 
traditional TDRL. Furthermore, we show that VPRL-derived expected action values and prediction errors 281 
predict participants’ self-reported ratings of subjective feelings to rewards and punishments trial-to-trial. 282 
Moreover, we demonstrated that these VPRL-derived learning signals are parametrically tracked by 283 
BOLD activity in dorsal and ventral striatum, cingulate cortex, anterior insula, and prefrontal cortex brain 284 
regions, and that BOLD signals in the ventral striatum and ventromedial prefrontal cortex track the 285 
expected rating of participants’ subjective experience on each trial. Together, our results provide insight 286 
into (1) the type of learning mechanisms in humans responsible for ascribing valence information to 287 
stimuli and actions based on experience, and (2) how distributed neural activity implementing such 288 
mechanisms may support the composition of subjective phenomenal experience.  289 

 290 
Central to the VPRL hypothesis is the idea that there are parallel neural systems that process 291 

positive and negative experiences separately using TD learning before respective learning signals or 292 
valent value representations are available for further processing (Montague et al., 2016; Kishida and 293 
Sands, 2021). In this way, VPRL provides a novel computational framework for investigating a variety of 294 
neurophysiological, behavioral, and psychological phenomena. From an evolutionary perspective, early 295 
vertebrates likely developed neural circuits for detecting and escaping threatening (i.e., aversive) stimuli 296 
alongside, but separate from, (putatively) dopaminergic neural circuits for initial forms of associative 297 
reward learning (Cisek, 2021). This evolutionary theory is consistent with the idea that mammalian choice 298 
behavior may be driven by the activities of – and interaction between – separate positive and negative 299 
valence-processing systems, an idea with a venerable history in psychological theories of emotions 300 
(Cacioppo et al., 1999; Folkman and Moskowitz, 2000; Larsen et al., 2009; Larsen and McGraw, 2011) 301 
and motivated behaviors (Konorski, 1967; Dickinson and Dearing, 1979; Seymour et al., 2007b; Boureau 302 
and Dayan, 2013). Here, the VPRL framework can be viewed as an explicit generative account for the 303 
wide repertoire of ‘approach-avoid’ motivated behaviors (Dickinson and Dearing, 1979) and valence-304 
specific affective responses (Cacioppo et al., 1999; Folkman and Moskowitz, 2000), while also providing 305 
a theoretical framework for considering the mechanisms of interaction between opponent systems that 306 
may lead to ‘freezing’, non-action responses (Boureau and Dayan, 2013), or the subjective phenomenal 307 
experience of ‘mixed’ or ‘conflicting’ emotions (Larsen and McGraw, 2011).  308 

 309 
In line with these evolutionary and psychological theories, we hypothesize a VPRL model that 310 

accounts for the premise that costs and benefits are always intertwined for biological creatures 311 
constrained by metabolic, survival, and reproductive goals and demands (Montague and King-Casas, 312 
2007; Botvinik et al., 2015). Importantly, VPRL specifies a different perspective on how valence, within 313 
the context of RL, is processed: aversive stimuli that are immediately (or predicted to be) costly are 314 
learned directly and independently from potential rewarding stimuli. This is distinct from the more 315 
common representations that requires aversive stimuli to be compared to ‘expectations’ and requires 316 
prediction error encoding according to the valence of the TD-RPE (i.e., differential learning from positive 317 
or negative RPEs).  318 

 319 
 Our present results using a simple probabilistic reward and punishment learning task indicate 320 

that independently processing rewards and punishments via VPRL reveals an increased sensitivity to 321 
immediate punishments compared to rewards and increased temporal discounting of future punishments 322 
compared to future rewards (Figures 2,3), which is consistent with prior behavioral observations 323 
(Kahneman and Tversky, 1979; Tom et al., 2007). This differential learning from gains versus losses 324 
within the VPRL framework reveals that participants learn expected values of reward at a similar rate to 325 
that expected via traditional unidimensional TDRL, though they learn expected values of losses at a much 326 
faster rate and with improved accuracy and precision (Figure S1). This observation suggests that VPRL 327 



signals may also independently and asymmetrically influence subjective feelings. Our results suggest 328 
that omitted or ‘smaller-than-expected’ rewards (i.e., negative VP-RPEs) do not contribute to what it ‘feels 329 
like’ in the same manner as ‘larger-than-expected’ punishments (positive VP-PPEs), nor do ‘smaller-than-330 
expected’ punishments (negative VP-PPE)  contribute to what it ‘feels like’ in the same manner as ‘larger-331 
than-expected’ rewards (positive VP-RPEs). Such distinctions cannot be parsed within a unidimensional 332 
representation of valence as in the traditional TDRL framework. The presence of positive VP-RPEs had 333 
a significantly greater positive influence on subjective ratings than negative VP-PPEs; the opposite was 334 
also true: negative VP-RPEs had a consistently smaller negative influence on subjective ratings than 335 
positive VP-PPEs. Such relationships might reflect a relative scaling principle for positive and negative 336 
prediction errors over rewards and punishments in generating momentary affective subjective feelings, 337 
an effect that may be dependent on ventral striatal and ventromedial prefrontal neural activity (Figure 5). 338 
Regardless of the mechanisms to be discovered, our results demonstrate that VPRL is a valid 339 
neurocomputational framework for empirically investigating how complex interactions of reward and 340 
punishment may lead to self-reports about subjective phenomenal experience in humans.  341 

 342 
Numerous investigations into the neural basis of prediction error signaling in humans, using a 343 

variety of computational models and experimental designs, implicate a distributed network of brain 344 
regions in tracking prediction errors (Garrison et al., 2013). Our model-based event-related fMRI results 345 
indicate that VPRL prediction errors over rewards and punishments are represented by partially 346 
overlapping regional activation patterns and along a ventral-dorsal axis within the striatum (Figures 4,5), 347 
which is consistent with prior work (Seymour et al., 2007a). We hypothesize that striatal, insular, 348 
cingulate, and prefrontal cortex functional interactions – driven by an underlying neural architecture that 349 
broadcasts VPRL learning signals throughout the brain – can be viewed collectively as part of a dynamic 350 
affective core that regulates behavioral control and is a core component underlying subjective 351 
phenomenal experience (Kishida and Sands, 2021). Indeed, ascending neuromodulatory systems that 352 
project throughout both subcortical and cortical brain regions are integral to coordinating systems-level 353 
functional interactions towards accomplishing or switching between cognitive or behavioral tasks (Shine 354 
et al., 2019, 2021). Along these lines, future work may address how dynamic patterns of activity within 355 
the distributed subcortical-cortical network identified in our VPRL model-based analysis forms 356 
representations of state-action-outcome associations and how they co-evolve with representations of 357 
affective subjective experiences. In this regard, our results outline a potential role for ventral striatum and 358 
ventromedial prefrontal cortex interactions in mediating experience-dependent changes in brain activity 359 
associated with dynamic changes in subjective phenomenal experience (Xiang et al., 2013; Rutledge et 360 
al, 2014; Eldar et al., 2016; Tom et al., 2007; Chang et al., 2021), consistent with the dynamic affective 361 
core hypothesis (Kishida and Sands, 2021). 362 

 363 
Non-invasive brain activity measurements like fMRI are unable to provide information on the 364 

neurochemical basis of VPRL-reward prediction errors or VPRL-punishment prediction errors, though 365 
recent advances provide an opportunity for testing competing hypotheses (Kishida et al., 2016; Moran et 366 
al., 2018; Bang et al., 2020). Neurobiologically, an independent aversive system involved in valence 367 
processing may be implemented by a variety of possible neural substrates, such as a distinct population 368 
of dopamine neurons tuned for aversive stimuli (Matsumoto and Hikosaka, 2009; Lammel et al., 2014; 369 
Kishida et al., 2016; Kishida and Sands, 2021) or the serotonin neurotransmitter system (Daw et al., 370 
2002; Boureau and Dayan, 2013; Montague et al., 2016; Moran et al., 2018; Kishida and Sands, 2021). 371 
For instance, direct electrochemical recordings of dopamine and serotonin microfluctuations in human 372 
striatum during a sequential investment task (Kishida et al., 2016; Moran et al., 2018) are consistent with 373 
the notion that these neurotransmitter systems can act as positive and negative valence-processing 374 
systems, respectively (Montague et al., 2016; Kishida and Sands, 2021). Further, dissociable effects of 375 
rewards and punishments on reversal learning have been linked to dopamine and serotonin transporter 376 
polymorphisms, respectively (den Ouden et al., 2013). Distributional RL (Dabney et al., 2020) has 377 
recently been demonstrated as a mechanism for representing a wide dynamic range of reward 378 
magnitude; still, it remains unclear how dopamine neurons come to achieve varying value prediction ‘set 379 
points’ as well as whether and how they might encode a distribution over aversive experiences. 380 
Alternatively, VPRL-like hypotheses for future investigation might address the potential distributional 381 



coding of rewards and punishments in candidate neuromodulatory systems (e.g., dopamine and 382 
serotonin; Montague et al., 2016; Kishida and Sands, 2021; Moran et al., 2018; Bang et al., 2020).  383 

 384 
Human behavior and subjective self-reports about associated phenomenal experiences, good 385 

and bad, are multidimensional. Prior work investigating computational models and associated BOLD 386 
imaging measurements of brain activity associated with subjective experience, mood, and subjective 387 
well-being utilized traditional unidimensional reinforcement learning models as a framework (Delgado et 388 
al., 2006; Rutledge et al., 2014; Eldar et al., 2016) and inspired the present work. Here, however, we 389 
demonstrate that a unidimensional reward prediction error is not enough (in contrast to arguments 390 
presented in Silver et al., 2020; Vamplew et al., 2021) to fully account for the dynamics of human choice 391 
behavior and associated subjective experiences and can even be detrimental when reward-associated 392 
actions also incur substantial physical costs or other negative externalities that cannot be disentangled 393 
with traditional TDRL (Elfwing and Seymour, 2017). Instead, our results using VPRL suggest that (at 394 
least) two valence dimensions are necessary, but this is almost certainly far from a complete depiction of 395 
the generative signals involved in experiences and behaviors associated with ‘what it is like’ to be (Nagel, 396 
1974). Our results are consistent with a need to account for appetitive and aversive input in parallel, 397 
though independently, such that the integration of these signals can be performed downstream of the 398 
systems that generate the error signals. As but one possible approach, VPRL maintains the 399 
computational advantages of TDRL, but also better accounts for information that biological agents must 400 
track (e.g., costly punishments or losses) that are often independent from co-occurring appetitive stimuli. 401 
We have taken an initial step to test VPRL as a hypothetical framework for investigating basic questions 402 
about how humans adapt their choice behavior and how associated signals may account for subjective 403 
phenomenal experiences. Our findings imply that new insights may be gained should VPRL (or other 404 
valence-partitioning models) be applied to computational psychiatric problems (Montague et al., 2012; 405 
Huys et al., 2016; Redish and Gordon, 2016; Brown et al., 2021) where subjective suffering and 406 
fundamental changes in adaptive behavior characterize severe challenges to mental health.   407 
  408 
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METHODS 443 
 444 
Participants 445 
 446 

A total of 47 participants (across two neuroimaging experiments (n=20; and n=27) were recruited 447 
from the local Winston-Salem community to complete the probabilistic reward and punishment (PRP) 448 
task. In the first fMRI cohort, participants (n=20; 16 female) were recruited from the community in 449 
Winston-Salem, NC. For the second fMRI cohort, participants (n=27; 19 female) were recruited as ‘control 450 
participants’ for an ongoing study. Recruitment of these participants in the second fMRI cohort was similar 451 
to the first fMRI cohort. However, consent to participate included repeated visits to be completed after an 452 
initial visit where the tasks completed include the PRP task as well as more extensive behavioral 453 
characterization after the PRP task was completed; the first visit in this ongoing study is similar to the 454 
visit completed by participants in the first fMRI cohort, except that after the completion of the PRP task 455 
with scanning participants underwent a more involved psychiatric evaluation process to properly control 456 
for the observational experimental group. Informed written consent was obtained from each participant, 457 
and the experiment was approved by the Institutional Review Board (IRB#’s: IRB00042265, 458 
IRB00054337, and IRB00056131) of Wake Forest University Health Sciences (WFUHS). All experiments 459 
were conducted at WFUHS. 460 

 461 
Three participants’ subjective rating data were not used in the regression modeling analysis due 462 

to limited variability in the responses on the subjective rating assessment (i.e., choosing the same rating 463 
across 90% of rated trials). This results in n=44 participants for the combined fMRI cohort. From our 464 
leave-one-participant-out cross-validation approach, we computed Pearson’s correlation coefficient (rho) 465 
and r-squared values for the cross-validated model-predicted ratings (defined as the mean of samples of 466 
the posterior predictive density for the held-out participant’s ratings) and actual held-out participant 467 
ratings. This procedure was iterated across participants, such that each individual acted as the held-out 468 
participant once. We used the fitted subjective rating model coefficients for each participant (i.e., the 469 
mean model coefficients for the cross-validated model iteration when the participant was held out) to 470 
impute a subjective rating for all trials for that participant, which we incorporate into the participant’s first-471 
level GLM in our model-based fMRI analysis. 472 

 473 
Probabilistic Reward and Punishment (PRP) task experimental procedure 474 
 475 

The PRP task (Figure 1c) is a 150-trial, two-choice monetary reward and punishment learning 476 
task, where chosen options are reinforced probabilistically with either monetary gains (or no gain) or 477 
monetary losses (or no loss). Six options (represented by fractal images) comprise the set of possible 478 
actions, with each option assigned to one of three outcome probabilities (25%, 50%, and 75%) and one 479 
of two outcome valences (monetary gain or loss); the assignment of options to outcome probabilities and 480 
valences is randomized across participants. The task proceeds through three phases. At the beginning 481 
of the experiment (Phase 1, trials 1-25), each trial starts with the presentation of two of the three possible 482 
‘gain/no gain options, and participants are reinforced with either a monetary gain or nothing ($1 or $0) 483 
according to the chosen option’s fixed probability. In Phase 2 (trials 26-75), the game introduces trials 484 
which present two of the three ‘loss/no loss’ options that result in either a monetary loss or nothing (-$1 485 
or $0) with fixed probabilities. There are 25 ‘gain/no gain’ and 25 ‘loss/no loss’ trials randomly ordered in 486 
Phase 2. In Phase 3 (trials 76-150), two options are presented randomly such that any trial may consist 487 
of two ‘gain/no gain options, two ‘loss/no loss’ options, or one ‘gain /no gain and one ‘loss/no loss’ option. 488 
Moreover, in Phase 3 the outcome magnitudes of all options change: the 25%, 50%, or 75% ‘gain’ options 489 
now payout $2.50, $1.50, and $0.50 respectively, and the 25%, 50%, or 75% ‘loss’ options now lose -490 
$1.25, -$0.75, and -$0.25, respectively (dashed lines in Fig. 1A, bottom).  491 

 492 
A participant is presented with two options at the beginning of each trial, and they select an option 493 

at their own pace. The unchosen option disappears at the same time the chosen option is highlighted, 494 
and this screen lasts for three seconds. The outcome is then displayed for one second followed by a 495 
blank screen that lasts for a random time interval (defined by a Poison distribution with 𝜆 = 3 seconds) 496 



before the next trial begins. After each trial, with probability 0.33, the blank screen following outcome 497 
presentation is followed by a subjective feeling rating screen with the text “How do you feel about the last 498 
outcome?”. Participants are asked to rate with a visual-digital scale (Figure 1) their feelings about the 499 
last outcome, after which the blank screen reappears for another random interval before a new trial 500 
begins.  501 

 502 
Temporal Difference Reinforcement Learning (Q-learning) model 503 
 504 

In the standard ‘unidimensional’ TDRL model (Sutton 1988; Watkins and Dayan, 1992; Sutton 505 
and Barto, 1998), the expected value of a state-action pair 𝑄(𝑠# , 𝑎), where 𝑖 indexes discrete time points 506 
in a trial, is updated following selection of action 𝑎 in state 𝑠# according to the update rule: 507 

 508 
𝑄(𝑠# , 𝑎#) ← 𝑄(𝑠# , 𝑎#) + 	𝛼𝛿# eq. 1 

 509 
where 0 < 𝛼 < 1 is a learning rate parameter that determines the weight prediction errors have on 510 
updating expected values, and 𝛿# is the TD reward prediction error term:  511 
 512 

𝛿# = [𝑜𝑢𝑡𝑐𝑜𝑚𝑒# + 𝛾max$ 𝑄(𝑠#%&, 𝑎@)] − 𝑄(𝑠# , 𝑎#) eq. 2 
 513 
where 𝑜𝑢𝑡𝑐𝑜𝑚𝑒# is the outcome (positive or negative) experienced in state 𝑠# after taking action 𝑎#, 0 <514 
𝛾 < 1 is a temporal discount parameter that discounts outcomes expected in the future relative to 515 
immediate outcomes (i.e., a temporal discounting parameter), and max

$
𝑄(𝑠#%&, 𝑎@) is the maximum 516 

expected value over all actions 𝑎@ afforded in the next state 𝑠#%&. We defined the trials of the PRP task as 517 
consisting of the set of 𝑖 = {1, 2, 3, 4} event time points (1: options presented; 2: action taken; 3: outcome 518 
presented; 4: (terminal) transition screen). We modeled participant choices (𝑐ℎ𝑜𝑖𝑐𝑒') on each trial 𝑡 of the 519 
PRP task with a softmax choice policy (i.e., categorical logit choice model) that assigns probability to 520 
choosing each of the two options presented on a trial according to the learned Q-values of the two options 521 
present. For example, for a trial that presents option 2 and option 5, the corresponding Q-values 522 
𝑄(𝑠&, opt_2) and 𝑄(𝑠&, opt_5)	are used to compute the probability of selecting each option (e.g., option 2):523 
  524 
 525 

𝑃M𝑐ℎ𝑜𝑖𝑐𝑒' = opt_2	N	𝑄(𝑠&, opt_2), 𝑄(𝑠&, opt_5)O = 	
𝑒((*!,,-._0)/3

𝑒((*!,,-._0)/3 	+ 	𝑒((*!,,-._4)/3
 eq. 3 

 526 
where 0 < 𝜏 < 20 is a choice temperature parameter that determines the softmax function slope and 527 
parameterizes an exploration versus exploitation trade-off where higher temperature values lead to a 528 
more uncertain distribution of choices and low temperature values allow choices to be attracted to higher 529 
expected values. 530 
 531 
Valence-Partitioned Reinforcement Learning (VPRL) model 532 

 533 
For Valence-Partitioned RL (VPRL; Kishida and Sands, 2021), we extend the TDRL framework, 534 

but separate ‘outcomes’ and how they are processed based on the valence of the input. VPRL treats 535 
‘Positive’ (P) and ‘Negative' (N) input as though separate, parallel, P- and N-systems maintain a partition 536 
between appetitive and aversive input throughout processing. P- and N-system Q-values are estimated 537 
(𝑄! , 𝑄", respectively) independently, though each in a TDRL manner (see eq. 4-7). We model their 538 
integration in the simplest manner (eq. 8) when value-based decisions must be made (Note: alternative 539 
approaches for integrating these value estimates may be investigated in future work).  540 

 541 
P- and N-systems update via TD-prediction errors on every episode, but by valence specific rules 542 

(P-system: eq. 4 and N-system: eq. 5). The P-system only tracks rewarding (i.e., appetitive) outcomes 543 
(𝑜𝑢𝑡𝑐𝑜𝑚𝑒# > 0, eq. 4) and the N-system only tracks punishing (i.e., aversive) outcomes (𝑜𝑢𝑡𝑐𝑜𝑚𝑒# < 0, 544 



eq. 5); both systems encode the opposite-valence outcomes and null outcomes similarly – as though no 545 
outcome occurred.  546 

 547 
For the P-system, the reward-oriented TD prediction error therefore is 548 
 549 

𝛿#! = Q
𝑜𝑢𝑡𝑐𝑜𝑚𝑒# 	+ 𝛾! ∗ max$ 𝑄!(𝑠#%&, 𝑎@) − 𝑄!(𝑠# , 𝑎#)							𝑖𝑓	𝑜𝑢𝑡𝑐𝑜𝑚𝑒# > 0	

								0								 + 𝛾! ∗ max
$
𝑄!(𝑠#%&, 𝑎@) − 𝑄!(𝑠# , 𝑎#)							𝑖𝑓	𝑜𝑢𝑡𝑐𝑜𝑚𝑒# ≤ 0

 eq. 4 

 550 
where 0 < 𝛾! < 1 is the P-system specific temporal discounting parameter (directly analogous to the 551 
standard TDRL temporal discounting parameter).  552 

 553 
The N-system similarly encodes a punishment-oriented TD prediction error term: 554 
 555 

𝛿#" = Q
|𝑜𝑢𝑡𝑐𝑜𝑚𝑒#| + 𝛾" ∗ max$ 𝑄"(𝑠#%&, 𝑎@) − 𝑄"(𝑠# , 𝑎#)						𝑖𝑓	𝑜𝑢𝑡𝑐𝑜𝑚𝑒# < 0	

									0									 + 𝛾" ∗ max
$
𝑄"(𝑠#%&, 𝑎@) − 𝑄"(𝑠# , 𝑎#)						𝑖𝑓	𝑜𝑢𝑡𝑐𝑜𝑚𝑒# ≥ 0

 eq. 5 

 556 
where 0 < 𝛾" < 1 is the N-system temporal discounting parameter and |𝑜𝑢𝑡𝑐𝑜𝑚𝑒#| indicates the absolute 557 
value of the outcome. The absolute value of the outcome is taken to be interpreted as though the system 558 
only updates on aversive stimuli and does so based solely on the varying magnitudes. 559 

 560 
The P- and N-systems prediction errors update expectations of future rewards or punishments of 561 

an action, respectively, according to the standard TD-learning update rule but, again, for each system 562 
independently:  563 

 564 
𝑄!(𝑠# , 𝑎#) ← 𝑄!(𝑠# , 𝑎#) +	𝛼!𝛿#! eq. 6 
𝑄"(𝑠# , 𝑎#) ← 𝑄"(𝑠# , 𝑎#) +	𝛼"𝛿#" eq. 7 

 565 
where 0 < 𝛼! < 1 and 0 < 𝛼" < 1 are learning rates for the P- and N-systems, 𝑄!(𝑠# , 𝑎#) is the expected 566 
state-action value learned by the P-system, and 𝑄"(𝑠# , 𝑎#) is the expected state-action value learned by 567 
the N-system.  568 

 569 
We compute a composite state-action value term for each action by contrasting the P- and N-570 

system Q-values, 571 
 572 

𝑄(𝑠# , 𝑎#) ← 𝑄!(𝑠# , 𝑎#) − 𝑄"(𝑠# , 𝑎#) eq. 8 
 573 
which is entered into the categorical logistic choice model (e.g., softmax policy, eq. 3) as for the TDRL 574 
model above.  575 
 576 
TDRL and VPRL hierarchical model parameterization 577 

 578 
We specified a hierarchical structure to the TDRL and VPRL computational models to fit 579 

participant choice behavior on the PRP task. Individual-level parameter values (e.g., learning rates) are 580 
drawn from group-level distributions over each model parameter. This hierarchical modeling approach 581 
accounts for dependencies between model parameters and biases individual-level parameter estimates 582 
towards the group-level mean, thereby increasing reliability and certainty in parameter estimates, 583 
improving model identifiability, and avoiding overfitting (Ahn et al., 2017). These hierarchical models 584 
therefore cast individual participant parameter values as deviations from a group mean.  585 

 586 



Formally, the joint posterior distribution 𝑃(𝜙, 𝜃|𝑦,𝑀) over group-level parameters 𝜙 and individual-587 
level parameters 𝜃 for a given model 𝑀 conditioned on the data from the cohort of participants	𝑦 takes 588 
the form 589 

 590 

𝑃(𝐰|𝑦,𝑀) =
𝑝(𝑦|𝒘,𝑀)𝑝(𝒘|𝑀)

𝑝(𝑦|𝑀)
 eq. 9 

 591 
We simplify our notation to 𝑃(𝐰|𝑦,𝑀), where 𝐰 = {𝜙, 𝜃}); here, 𝑃(𝑦|𝐰,𝑀) is the likelihood of choice data 592 
𝑦 conditioned on the model parameters and hyperparameters, 𝑃(𝑦|𝑀) is the marginal likelihood (model 593 
evidence) of the data given a model, and 𝑃(𝐰|𝑀) is the joint prior distribution over model parameters as 594 
defined by the model, which can be decomposed into the product of the prior on individual-level model 595 
parameters conditioned on the model hyper-parameters 𝑃(𝜃|𝜙,𝑀) times the prior over hyper-parameters 596 
𝑃(𝜙|𝑀). We define the prior distributions for individual-level model parameters (e.g., 𝜃5678 = {𝛼, 𝜏, 𝛾} for 597 
𝑀 = TDRL) and the hyper-priors of the means −∞ < 𝜇(.) < +∞ and standard deviations 0 < 𝜎(.) < +∞ of 598 
the population-level parameter distributions (e.g., 𝜙5678 = {𝜇: , 𝜇3, 𝜇; , 𝜎: , 𝜎3, 𝜎;}) to be standard normal 599 
distributions. We estimated all parameters in unconstrained space (e.g., −∞ < 𝜇; < +∞) and use the 600 
inverse Probit transform to map bounded parameters from unconstrained space to the unit interval [0,1] 601 
before scaling estimates by the parameter’s upper bound: 602 
 603 

𝜇;	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1) eq. 10 
𝜎;	~	𝑁𝑜𝑟𝑚𝑎𝑙%(0,1) eq. 11 
𝝉<		~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1) eq. 12 

𝝉		 = 	𝑃𝑟𝑜𝑏𝑖𝑡=&M𝜇; +	𝜎; ∗ 𝝉<O ∗ 20 eq. 13 
 604 
where bold terms indicate a vector of parameter values over participants. This non-centered 605 
parameterization (Papaspiliopoulos et al., 2007) and inverse Probit transformation creates a uniform prior 606 
distribution over individual-level model parameters between specified lower and upper bounds. Note that 607 
for learning rate and temporal discount parameters, the scaling factor (upper bound) was set to 1, 608 
whereas it was set to 20 for the choice temperature parameter. We used the Hamiltonian Monte Carlo 609 
(HMC) sampling algorithm in the probabilistic programming language Stan via the R package rstan (v. 610 
2.21.2; Carpenter et al., 2017) to estimate the joint posterior distribution over group- and individual-level 611 
model parameters for the TDRL and VPRL models for both cohorts individually. For both models and 612 
each cohort, we executed 12,000 total iterations (2,000 warm-up) on each of 3 chains for a total of 30,000 613 
posterior samples per model parameter. We inspected chains for convergence by verifying sufficient 614 
chain mixing according to the Gelman-Rubin statistic 𝑅h, which was approximately 1 for all parameters.  615 
 616 
TDRL and VPRL model comparison 617 

 618 
We compared the TDRL and VPRL models’ fits to participant choice behavior on the PRP task 619 

according to their model evidence (i.e., model marginal likelihood), which represents the probability or 620 
‘plausibility’ of observing the actual PRP task data under each model (Mckay 2013). In Bayesian model 621 
comparison, the model with the greatest posterior model probability  𝑝(𝑀|𝑦) is deemed the best 622 
explanation for the data 𝑦 and is computed by: 623 

 624 
𝑃(𝑀|𝑦) ∝ 𝑃(𝑦|𝑀)𝑃(𝑀) eq. 14 

 625 
where 𝑃(𝑦|𝑀) is the model marginal likelihood (“model evidence”) and 𝑃(𝑀) is the model’s prior 626 
probability. The model evidence is defined as: 627 
 628 

𝑃(𝑦|𝑀) = j𝑃(𝑦|𝐰,𝑀)𝑃(𝐰|𝑀)𝑑𝐰 eq. 15 

 629 



where 𝑃(𝐰|𝑀) is the prior probability of a model 𝑀’s parameters 𝐰 before observing any data and 630 
𝑃(𝑦|𝐰,𝑀) is the likelihood of data 𝑦 given a model and its parameters. We adopt the approach of 631 
approximating this integral using importance sampling (i.e., bridge sampling). Given that we only wanted 632 
to compare the TDRL and VPRL models, the relative posterior model probability can be defined as: 633 
 634 

𝑃(𝑇𝐷𝑅𝐿|𝑦)
𝑃(𝑉𝑃𝑅𝐿|𝑦)

=
𝑃(𝑇𝐷𝑅𝐿) ∗ 𝑃(𝑦|𝑇𝐷𝑅𝐿)
𝑃(𝑉𝑃𝑅𝐿) ∗ 	𝑃(𝑦|𝑉𝑃𝑅𝐿)

 eq. 16 

 635 
where the ratio of posterior model probabilities 𝑃(𝑇𝐷𝑅𝐿|𝑦) 𝑃(𝑉𝑃𝑅𝐿|𝑦)p  is referred to as the “posterior 636 
odds” of TDRL relative to VPRL; 𝑃(𝑇𝐷𝑅𝐿) and 𝑃(𝑉𝑃𝑅𝐿) are the prior probabilities of the TDRL and VPRL 637 
models, respectively; and the ratio of marginal likelihoods 𝑃(𝑦|𝑇𝐷𝑅𝐿) 𝑃(𝑦|𝑉𝑃𝑅𝐿)p  is termed the “Bayes 638 
factor”, which is a standard measure for Bayesian model comparison. Granting equal prior probabilities 639 
over the set of candidate models, each model’s evidence 𝑃(𝑦|𝑀) can be used to rank each model in the 640 
set for comparison. The marginal likelihoods are computed as log-scaled. We estimated the log model 641 
evidence for the TDRL and VPRL models for each cohort using an adaptive importance sampling routing 642 
called bridge sampling as implemented in the R package bridgesampling (v. 1.1-2; Gronau et al., 2017). 643 
Bridge sampling is an efficient and accurate approach to calculating normalizing constants like the 644 
marginal likelihood of models even with hierarchical structure and for reinforcement learning models in 645 
particular (Gronau et al., 2017). To further ensure stability in the bridge sampler’s estimates of model 646 
evidence, we performed 10 repetitions of the sampler and report the median and interquartile range of 647 
the estimates of model evidence. The model with the maximum (i.e., less negative) model evidence is 648 
preferred, and therefore a positive value for the difference between the log model evidences for TDRL 649 
and VPRL (as reported in Table 1) favors TDRL, while a negative value favors VPRL. 650 
 651 
 In addition to the standard Bayesian model comparison using model marginal likelihoods, we 652 
estimated each model’s Bayesian leave-one-out (LOO) cross-validation predictive accuracy, defined as 653 
a model’s expected log predictive density (ELPD-LOO): 654 
 655 

𝑒𝑙𝑝𝑑8>> =qlog	(𝑝(𝑦#|𝑦=#))
"

#?&

 eq. 17 

 656 
where the posterior predictive distribution 𝑝(𝑦#|𝑦=#) for held-out data 𝑦# given a set of training data 𝑦=#, is 657 
 658 

𝑃(𝑦#|𝑦=#) = j𝑝(𝑦#|𝐰)𝑝(𝐰|𝑦=#)𝑑𝐰 eq. 18 

 659 
The ELPD is an estimate of (i.e., approximation to) the cross-validated accuracy of the TDRL or VPRL 660 
models in predicting new (i.e., held-out) participant data, given the posterior distribution over model 661 
parameters fit to a training set of participant data (Vehtari et al., 2017). Again, we approximate this integral 662 
via importance sampling of the joint posterior parameter distribution given the training data 𝑝(𝐰|𝑦=#). 663 
Furthermore, the upper tail of the distribution of importance weights are smoothed by a Pareto distribution 664 
(Pareto-smoothed importance sampling, PSIS) to improve the ELPD-LOO estimation. We calculated the 665 
model ELPD in this way using the R package loo (v. 2.3.1; Vehtari et al., 2017). 666 
 667 
Subjective rating computational modeling and cross-validated Bayesian regression analysis  668 

 669 
We defined a Bayesian linear regression model of Positive and Negative valence system 670 

prediction errors and estimated Q-values on participants’ self-reported subjective feelings about their 671 
most recent outcomes measured throughout the PRP task (query probability = .33 on each trial). We 672 
express the subjective rating on a trial as normally distributed with a mean 𝐸(𝑦#|𝛽, 𝑋) that is a linear 673 



function of Positive and Negative system prediction errors and learned Q-values (predictor variable matrix 674 
𝑋): 675 

 676 
𝐸(𝑦#|𝛽, 𝑋) 	= 	𝛽@ + 𝛽&𝑥& + 𝛽0𝑥0 +⋯+ 𝛽A𝑥A + 𝜀# eq. 19 

𝜀	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎0) eq. 20 
 677 
where 𝐸(𝑦#) is the subjective rating (𝑖 = 1…50 indexes the numbers of ratings) from a participant, 𝛽A are 678 
the 𝑘 = 7 linear model weights, 𝑥A are rows of the predictor variable matrix 𝑋 (corresponding to each trial 679 
on which a subjective rating was sampled), and 𝜀# are the normally-distributed errors with variance 𝜎0. 680 
We define 𝜃 = {𝛽@, 𝛽&, … , 𝛽A , 𝜎} as the vector of all model parameters. The Bayesian rendering of the 681 
subjective rating linear regression model is therefore 682 
 683 

𝑝(𝜃|𝑦, 𝑋) ∝ 𝑝(𝑦|𝜃, 𝑋)𝑝(𝜃) eq. 21 
 684 
where 𝑝(𝑦|𝜃, 𝑋) is the (normally-distributed) data likelihood function and 𝑝(𝜃) = 𝑝(𝛽)𝑝(𝜎0) are the 685 
(weakly-informative) prior distributions over model parameters: 686 
 687 

𝑝(𝑦|𝜃, 𝑋)	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝑋𝛽, 𝜎0𝐼) eq. 22 
𝑝(𝛽)	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1) eq. 23 

𝑝(𝜎0)	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) eq. 24 
 688 
where 𝐼 is the 𝑛	 × 	𝑛 (𝑛  = number of participants in training sample) identity matrix. The joint posterior 689 
distribution over model parameters 𝜃 conditioned on the subjective ratings and predictor variable matrix 690 
factorizes into: 691 
 692 

𝑝(𝜃|𝑦, 𝑋) ∝ 𝑝(𝛽|𝜎0, 𝑦, 𝑋)𝑝(𝜎0|𝑦, 𝑋) eq. 25 
 693 
where the conditional posterior distribution 𝑝(𝛽|𝜎0, 𝑦, 𝑋) of linear model parameters 𝛽 conditional on 𝜎0 694 
is the normal distribution 695 
 696 

𝑝(𝛽|𝜎0, 𝑦, 𝑋)	~	𝑁𝑜𝑟𝑚𝑎𝑙M𝛽�, 𝑉B𝜎0O eq. 26 
 697 
and, from the least-squares solution, 698 
  699 

𝛽� = 	 (𝑋5𝑋)=&𝑋5𝑦 eq. 27 
𝑉C =	(𝑋5𝑋)=& eq. 28 

 700 
The marginal posterior distribution 𝑝(𝜎0|𝑦, 𝑋) is defined as 701 
 702 

𝑝(𝜎0|𝑦, 𝑋)	~	𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝜒0(𝑛 − 𝑘, 𝑠0) eq. 29 

𝑠0 =
1

𝑛 − 𝑘
M𝑦 − 𝑋𝛽�O

5
M𝑦 − 𝑋𝛽�O eq. 30 

 703 
where 𝑛 − 𝑘 is the number of degrees of freedom (data points). We implemented this Bayesian regression 704 
model using the R package rstanarm (v. 2.21.1; Gabry and Goodrich, 2017), which uses HMC via Stan 705 
to efficiently sample the entire joint posterior distribution over model parameters 𝑝(𝜃|𝑦, 𝑋). We adopted 706 
a leave-one-participant-out cross-validation approach by fitting the subjective rating regression model to 707 
all participants except for one person and drawing samples of (𝛽, 𝜎) from this fitted model’s joint posterior 708 
distribution to form a posterior predictive distribution 𝑝(𝑦@|𝑦) for the held-out participant’s ratings 𝑦@ as: 709 
 710 

𝑝(𝑦@|𝑦)	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝑋�𝛽, 𝜎0𝐼) eq. 31 
 711 



where 𝑋� is the held-out participant’s predictor matrix. For sampling both the linear model joint posterior 712 
distribution 𝑝(𝜃|𝑦, 𝑋) and the posterior predictive distribution 𝑝(𝑦@|𝑦), we drew 3,500 total samples (1,000 713 
warm-up) on each of 4 chains for a total of 10,000 samples for each parameter and verified sufficient 714 
mixing according to 𝑅h values, which were approximately 1 for all parameters.  715 
 716 
Functional MRI data acquisition, pre-processing, and model-based analysis 717 
  718 
 The fMRI cohort (N=47) was recruited as part of two separate studies at WFUHS, with one cohort 719 
n=20 and the other n=27. For all neuroimaging participants, we acquired fMRI and structural MRI data 720 
using a Siemens MAGNETOM 3T Skyra whole-body scanner and a 32-channel head coil. High-resolution 721 
(0.5x0.5x1.0mm3) T1-weighted structural MRI scans were acquired using a magnetization-prepared rapid 722 
gradient echo (MPRAGE) sequence (TR = 1480msec ; TE = 2.66msec ; flip angle = 12 degrees; FoV = 723 
24.5cm ; 192 slices), and fMRI BOLD data were acquired by means of a multi-band (simultaneous 724 
multislice, SMS) echo-planar imaging (EPI) sequence (MB factor = 8; TR = 1000msec; TE = 30msec; flip 725 
angle = 52 degrees; FoV = 20.8cm; 72 interleaved sagittal slices; isotropic 2mm3 voxels). All data were 726 
pre-processed and analyzed using FSL and SPM12. Each participant’s fMRI data were aligned to a 727 
single-band reference image (SBref) and corrected for EPI (B0) distortions using a fieldmap estimated 728 
from reverse-phase encoded functional volumes (directions Right->Left and Left->Right) via FSL’s topup 729 
tool (Andersson et al., 2003); co-registered to the high-resolution structural volume and warped to MNI 730 
template space (2mm3 isotropic); spatially smoothed with a 5mm FWHM Gaussian kernel; high-pass 731 
filtered at 128 seconds (<0.008Hz); and normalized by the session grand-mean value.  732 
 733 

For each participant, we constructed a first-level GLM to model BOLD signals during task 734 
performance. The following regressors were included in the GLM as events of interest and convolved 735 
with a canonical hemodynamic response function: (i) onset of ‘option presentation’, parametrically 736 
modulated by (a) expected value of the chosen option and (b) expected value of the unchosen option; 737 
(ii) onset of ‘outcome presentation’, parametrically modulated by the (a) ‘outcome presentation’-episode-738 
specific positive system prediction error, (b) ‘outcome presentation’-episode-specific negative system 739 
prediction error, and (c) imputed rating of subjective feelings; and (iii) all other motor and visual stimuli. 740 
The parametric modulators at the time of outcome presentation were orthogonalized. Six head motion 741 
parameters were included as covariates of no interest. First-level GLM results for each participant were 742 
incorporated into a second-level random effects analysis at the group-level. At the group-level, all 743 
analyses were whole-brain and conducted at either a family-wise error (FWE)-corrected statistical 744 
threshold of p<0.05 or an uncorrected significance thresholds of p<1e-4 and p<1e-5.  745 
  746 
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Supplemental Figure 1. VPRL leads to more accurate learned values of punishing options on 
the PRP task compared to TDRL. We used each participant’s estimated parameters for the TDRL 
and VPRL models to compute the expected state-action value (Q-value) for each option on the PRPT 
task over time. The PRP options are arranged top to bottom as the (A) 25%, (B) 50%, and (C) 75% 
reward-associated (left column) or punishment-associated (right column) options. Bold green and blue 
traces represent mean expected value for TDRL and VPRL, respectively, and the shaded region 
around the means represents one standard error of the mean. TDRL and VPRL model-derived learned 
values for reward-associated options were very similar to each other, whereas learned values for 
punishment-associated options were significantly different between models, according to an 
independent samples t-test at each time point of the difference between the true value (dashed line) 
and the TDRL or VPRL model-derived learned values across participants. Grey asterisk = p<0.05, 
black asterisk = p<0.05 Bonferroni corrected. 
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Supplemental Figure 2 – Medial prefrontal activity correlates with VPRL-derived expected state-
action value signals. Whole-brain model-based analysis of VPRL learning signals indicates that 
medial prefrontal cortex parametrically encodes the expected values (VP-Q-value) of the chosen and 
unchosen options on each trial. Analyses were whole-brain FWE-corrected at p<0.05, and the slices 
in MNI coordinates are x=-4, y=46, z=-12.  
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