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Ca2+ is probably the most versatile signal transduction element used by all cell types. In
the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless
Ca2+ is not only a key element in excitation-contraction coupling (EC coupling), but it is also
a pivotal second messenger in cardiac signal transduction, being able to control processes
such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+
activates Ca2+-dependent transcription factors by a process called excitation-transcription
coupling (ET coupling). ET coupling is an integrated process by which the common signaling
pathways that regulate EC coupling activate transcription factors. Although ET coupling has
been extensively studied in neurons and other cell types, less is known in cardiac muscle.
Some hints have been found in studies on the development of cardiac hypertrophy, where
two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII) and
phosphatase calcineurin, both of which are activated by the complex Ca2+/Calmodulin.
The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+
is continuously oscillating. In this focused review, we will draw attention to location
of Ca2+ signaling: intranuclear ([Ca2+] 2

n) or cytoplasmic ([Ca +]c), and the specific ionic
channels involved in the activation of cardiac ET coupling. Specifically, we will highlight
the role of the 1,4,5 inositol triphosphate receptors (IP3Rs) in the elevation of [Ca2+]n
levels, which are important to locally activate CaMKII, and the role of transient receptor
potential channels canonical (TRPCs) in [Ca2+]c, needed to activate calcineurin (Cn).
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Ca2+ has evolved as the most versatile signal transduction path-
way used by all cells (Berridge et al., 2000), but perhaps no other
cell type uses Ca2+ in such different ways as cardiac myocytes
do, in normal physiology and as a major contributor to heart
disease. First evidenced by Ringer as the signal carrier initiat-
ing contraction (Ringer, 1883), Ca2+ is known to control other
key cardiac cell processes (Berridge et al., 1998) including initia-
tion of pacemaker activity, action potential (AP) shape, regulation
of cell–cell communication, arrhythmogenesis, metabolism, and
transcriptional regulation. All these processes use Ca2+ as a
nexus, which auto controls its own cellular fluxes, as illustrated
by the Ca2+-induced Ca2+ release mechanism (Fabiato, 1983)
underlying excitation-contraction (EC) coupling, as well as the
Ca2+-induced Ca2+-entry (Richard et al., 2006) participating in
excitation-transcription (ET) coupling. ET coupling is the process
by which signaling molecules that regulate EC-coupling activate
Ca2+-dependent transcription factors (Anderson, 2000). In the
adult heart, neurohormonal/mechanical stress enhances ET cou-
pling, resulting in cell growth (hypertrophy), reexpression of the
fetal gene program, and alteration of ionic channels and trans-
porter expression (Chevalier et al., 1989; Marbán and Koretsune,
1990; Chien et al., 1991; Moalic et al., 1993; Gidh-Jain et al.,
1995; Nass et al., 2008). The transcription factors involved in car-
diac hypertrophy have been reviewed by Heineke and Molkentin

(Heineke and Molkentin, 2006). Among them, myocyte enhancer
factor 2 (MEF2) and GATA4 are initiated by a cascade activated
by Ca2+/Calmodulin (CaM): CaM Kinase II (CaMKII) for MEF2
(Passier et al., 2000) and calcineurin (Cn) for GATA4 (Molkentin
et al., 1998; Houser and Molkentin, 2008).

Thus, Ca2+ activates contraction in the heart in a beat-to-
beat fashion, while it is also able to activate hypertrophy by ET
coupling at a longer time scale (Maier and Bers, 2002). The mech-
anisms by which the heart differentiates between Ca2+ signals are
only beginning to be elucidated. In this review, we will focus on
the implication of local pools of Ca2+ in activating gene transcrip-
tion in adult ventricular cardiomyocytes, as during hypertrophy
development.

Ca2+ SIGNALING IN VENTRICULAR MYOCYTES
Ca2+ is a key element in cardiac EC coupling. In each heart-
beat, membrane depolarization during an AP activates L-type
Ca2+ channels (LTCCs) located in the sarcolemma. Ca2+ entry
activates intracellular Ca2+ release channels, named ryanodine
receptors (RyRs), located in the membrane of the sarcoplasmic
reticulum (SR). RyRs amplify the initial Ca2+ signal, provid-
ing enough Ca2+ to activate contractile myofibrils. Relaxation
occurs when cytosolic Ca2+ concentration ([Ca2+]c) returns
to diastolic values, due mainly to Ca2+ pumped back into
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the SR by the Ca2+-ATPase (SERCA) and extrusion from the
cell via the Na+/Ca2+ exchanger (Bers, 2002). New roles for
intracellular Ca2+ ([Ca2+]i) are being elucidated (Bers, 2008).
For instance, prohypertrophic transcription factors are acti-
vated by nuclear/perinuclear activation of CaMKII promoted
by local elevation of nuclear [Ca2+] ([Ca2+]n) (Wu et al.,
2006): CaMKII phosphorylates histone deacetylases (HDAC)
4 and 5, resulting in their translocation out of the nucleus,
derepriming the transcription factor MEF2. Cytoplasmic Ca2+
elevations are also involved in ET coupling by activating
Cn, which dephosphorylates the nuclear factor of activated
T cells (NFAT), which is imported into the nucleus where
it activates the transcription factor GATA (Molkentin et al.,
1998).

However, it is still not fully understood whether [Ca2+]n vari-
ations can be dissociated from bulk [Ca2+]i oscillations during
contraction-relaxation cycles. The proposed mechanisms are the
location and the specificity of the channels. Thus, rapid eleva-
tions in cytoplasmic Ca2+ activate contraction, while [Ca2+]n

activates Ca2+-dependent transcription factors. Regarding the
channels and oversimplifying the situation: if Ca2+ comes from
SR, the channel involved in contractile activity is the RyR, while
the one involved in transcription is the inositol 1,4,5 triphos-
phate receptor (IP3R). The location, RyR in the SR and IP3R in
the nuclear envelope (NE) and perinuclear area, preferentially
affects cytosolic and [Ca2+]n, respectively. When Ca2+ enters
through the sarcolemma, the specific channel involved may also
help to differentiate contractile vs. transcriptional Ca2+. LTCCs
are mainly involved in contraction, while other less known Ca2+
permeating channels in the cardiomyocyte, such as TRPCs, play
an important role in hypertrophy development (Wu et al., 2010).
However, LTCCs may also be involved in transcription acti-
vation. It has been shown that the C-terminal part of LTCCs
may travel from the membrane to the nucleus, activating tran-
scription. The T-type Ca2+ channels have been shown to be
involved in cell growth. However, in the adult myocyte this chan-
nel is not or is only very weakly expressed. At late stages of
Ca2+ hypertrophy, the T-type Ca2+ channels are reexpressed
(Nuss and Houser, 1993; Martinez et al., 1999), but their impli-
cation in the initiation of hypertrophy has not been demon-
strated.

Below we summarize some of the known aspects of transcrip-
tion induction by [Ca2+]n, focusing on the role of IP3R, and
by [Ca2+]c, focusing on the role of TRPCs. The involvement of
two Ca2+-dependent enzymes, Cn and CaMKII, has been estab-
lished. Their involvement in cardiac hypertrophy-ET coupling is
reviewed in Bers (2008) and Molkentin (2000), among others.

NUCLEAR Ca2+ IN ET COUPLING
The question of how ET coupling can co-exist in cardiac myocytes
in which [Ca2+]c continuously oscillates within each heartbeat
remains a matter of debate. Localization of the Ca2+ signal
restricted to microdomains may be the answer. It has thus been
postulated that intranuclear/perinuclear Ca2+ is involved in ET
coupling, whereas [Ca2+]c is responsible for EC coupling. While
there is no doubt on the second, whether or not [Ca2+]n signaling
is independently regulated from cytosolic Ca2+ is not that clear.

In fact, the NE [which also acts as a Ca2+ reservoir, continuously
to the SR (Wu and Bers, 2006)] has pores permeable to Ca2+
(Bootman et al., 2009). Thus, [Ca2+]c can passively diffuse into
the nucleus, challenging the possibility of an independence of
[Ca2+]n from cytosolic [Ca2+]c. This important question is still
not answered. However, the hypothesis of separately controlled
domains is supported by the following: (1) the location of Ca2+
release channels is different in SR and NE; (2) some molecules
preferentially affect [Ca2+]n; and (3) [Ca2+]n signal decay is
slower, due mainly to the lack of SERCA in the inner membrane of
the NE (Bootman et al., 2009), and thus under conditions of fast
pacing Ca2+ can be accumulated in the nucleoplasm initiating the
hypertrophic signaling.

1. The location of RyRs on the junctional SR, facing LTCCs
(located on the T-tubules), is crucial for EC coupling in ven-
tricular myocytes. Other Ca2+ release channels expressed in
cardiac myocytes are the IP3Rs, which are concentrated on
the NE/perinuclear area (Escobar et al., 2011). After activa-
tion of Gq-coupled protein receptors, phospholipase C (PLC)
is activated, producing IP3. Activation of IP3Rs provide Ca2+
to the intranuclear or perinuclear region where activate local
CaMKII, which phosphorylates class II HDAC, prompting
their translocation out of the nucleus and derepressing the
prohypertrophic transcription factor MEF2 (McKinsey et al.,
2000; Zhang et al., 2002). IP3Rs are also expressed at the junc-
tional SR of hypertrophied hearts, where they may play a role
in EC coupling (Harzheim et al., 2009) under this patholog-
ical condition. Furthermore, RyRs may also be expressed in
the NE (Bootman et al., 2009), although its role there is not
known.

2. Some prohypertrophic molecules have shown an action ele-
vating [Ca2+]n more than [Ca2+]c. For instance, endothelin,
which activates Gq and PLC producing IP3, increases [Ca2+]n

in both atrial (Kockskamper et al., 2008a,b) and ventricu-
lar myocytes (Wu et al., 2006) independently of [Ca2+]c.
Recently, we analyzed the effects on [Ca2+]n of Epac (De
Rooij et al., 1998), a protein with prohypertrophic actions in
cardiac myocytes (Morel et al., 2005; Metrich et al., 2008).
This protein is directly activated by cAMP and contributes
to β-adrenergic-induced cardiac hypertrophy (Metrich et al.,
2008). Epac induces IP3 production (Metrich et al., 2010;
Pereira et al., 2012) and a significant increase in [Ca2+]n,
correlating with the perinuclear expression pattern of Epac
(Pereira et al., 2012). Moreover, sustained Epac activation
(from 30 min) drives the HDAC5 nuclear export in a man-
ner that is CaMKII- and IP3Rs-dependent, with the conse-
quent activation of MEF2 (Metrich et al., 2010; Pereira et al.,
2012).

3. Oscillating Ca2+ may also be an important contributor to the
activation of gene transcription. Increasing the frequency of
[Ca2+]i transients (as in tachycardia) induces cardiac hyper-
trophy and heart failure (HF). It is not known whether the cell
is stimulated by an increase in the time-average [Ca2+]i or if,
because [Ca2+]n dynamics are slower than cytoplasmic ones,
there is an accumulation of Ca2+ in the nucleoplasm at higher
frequencies.
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CYTOPLASMIC Ca2+ IN ET COUPLING
Although nuclear localization is involved in ET coupling,
mathematical models have predicted that separate compartments
may not be necessary in vitro (Cooling et al., 2009). Without dis-
regarding the relevance of [Ca2+]n in ET coupling, [Ca2+]c may
also play a role. In fact, Ca2+/CaM activates Cn, found in the
cytosol, which is involved in hypertrophy (Molkentin et al., 1998).
When activated, Cn dephosphorylates NFAT in the cytoplasm,
permitting its translocation to the nucleus where it participates in
the hypertrophic gene expression (Heineke and Molkentin, 2006).
Moreover, the plasma membrane Ca2+ ATPase antagonizes Ca2+
hypertrophy, suggesting that extruding Ca2+ from the cytosol,
probably close to Cn, prevents its activation (Wu et al., 2009).

The Ca2+ entry pathways which may activate Cn are being elu-
cidated. LTCCs located in lipid rafts could form a Ca2+ signaling
microdomain (Houser and Molkentin, 2008). But other Ca2+-
permeable channels may be located on these microdomains to
activate Cn. Ca2+ entry through TRPC channels is necessary to
induce hypertrophy (Wu et al., 2010). Most of the TRPC stud-
ies have been conducted in non-excitable cells, and thus their
role in ventricular myocytes is not yet completely clear, although
the proof that they are needed for cardiac hypertrophy has high-
lighted an important role in the heart (Wu et al., 2010). Ca2+
influxes through LTCCs and TRPCs are thus the proximal sources
of Ca2+ influx that regulate cardiac gene expression in adult ven-
tricular cells. These Ca2+ influxes might influence gene expres-
sion by several mechanisms. Ca2+ can diffuse to the nucleus
and activate nuclear calcium-dependent transcription factors and
coregulators (Hardingham et al., 2001) or Ca2+ can activate
calcium-dependent signaling proteins around the mouth of the
channel, which propagate the signal to the nucleus (Deisseroth
et al., 1998; Dolmetsch et al., 2001). Another mechanism was
recently observed in neurons (Gomez-Ospina et al., 2006) and
cardiac myocytes (Schroder et al., 2009). The C-terminal domain
of the LTCC pore-forming subunit, Cav1.2, might be truncated as
a result of post-translational processing. The cleaved fragment, in
a Ca2+-dependent manner, translocates to the nucleus and acts as
a transcription factor to control the transcription of a variety of
genes, including Cav1.2.

L-TYPE Ca2+ CHANNELS (LTCCs)
Treating myocardial cultures with high potassium to inhibit spon-
taneous contractions (and LTCCs) results in decreased myosin
and ribosomal RNA expression (McDermott et al., 1985, 1991;
Samarel and Engelmann, 1991). In neonatal rat ventricular cell
cultures, LTCC activators stimulate atrial natriuretic factor (ANF)
expression (Sei et al., 1991), and ANF expression induced by elec-
trical stimulation of contractions was inhibited by nifedipine, an
LTCC blocker (McDonough and Glembotski, 1992). Moreover,
Zn2+ influx via voltage-dependent Ca2+ channels can turn on
gene expression (Atar et al., 1995). Similarly to what was pre-
viously described in skeletal muscle cells (Taouis et al., 1991;
Duff et al., 1992), treatment with verapamil, a Ca2+ channel
blocker, increases the Na+ channel α-subunit mRNA levels in
neonatal rat cardiac myocytes, while treatment with A23187,
a Ca2+ ionophore, leads to a decrease in the mRNA levels
(Chiamvimonvat et al., 1995). In adult ventricular myocytes,

transient changes in [Ca2+]i can modulate Cav1.2 mRNA and
protein abundance, producing a corresponding change in func-
tional Ca2+ channels (Davidoff et al., 1997). Surprisingly, whereas
early studies in mammalian heart muscle were unable to detect
an increased number of channels (Nishiyama et al., 1986; Gengo
et al., 1988), an LTCC block by in vivo pharmacological treatment
might result in up-regulation of L-type Ca2+ current (ICa,L),
CaV1.2 protein, and mRNA (Chapados et al., 1992; Chiappe De
Cingolani et al., 1994; De Cingolani et al., 1996; Morgan et al.,
1999; Schroder et al., 2007). We found some lines of evidence
supporting this hypothesis. We saw that aldosterone, a neurohor-
mone involved in HF, (1) activates LTCC expression (Bénitah and
Vassort, 1999), (2) increases diastolic Ca2+ release by decreas-
ing the expression of the RyR accessory proteins FKBP12 and
12.6 (Gomez et al., 2009), and (3) decreases the expression of
the channel responsible for the transient outward potassium cur-
rent (Ito) secondarily to an increase in [Ca2+]i and activation
of Cn (Bénitah et al., 2003; Perrier et al., 2004), thereby reca-
pitulating some of the outcomes of HF (Bénitah et al., 1993,
2002; Gómez et al., 1997; Marx et al., 2000). Interestingly, the
increase in LTCC expression precedes cell hypertrophy (Perrier
et al., 2003).

There is evidence that physiopathological perturbations in
CaV1.2 Ca2+ influx regulate K+ channel expression. We have
seen that aldosterone increases LTCC expression (Bénitah and
Vassort, 1999), which secondarily decreases the expression of the
channel responsible for Ito (Bénitah et al., 2003). Consistently,
we have reported that increased Ca2+ influx results in decreased
Ito density, as a result of down-regulation of Kv4.2 transcript
expression mediated by Cn (Perrier et al., 2004). Although it
has been reported that expression of a constitutively active form
of Cn increases Ito densities through the up-regulation of Kv4.2
transcript expression in neonatal rat ventricular myocytes (Gong
et al., 2006), the transcriptional down-regulation of Kv4.2 across
the ventricular wall (Rossow et al., 2006), as well as follow-
ing myocardial infarction (Rossow et al., 2004), results from
differences in [Ca2+]i that appear to underlie a differential
activation of Cn and NFAT. In addition, it has been reported
that increased CaMKII activity down-regulates Kv4.3 transcript
expression, resulting in decreased Ito densities in isolated canine
ventricular myocytes (Xiao et al., 2008).

Thus in cardiac myocytes, although not as broadly illustrated
in other cell types (Barbado et al., 2009), it clearly appears
that Ca2+ itself, or even other divalent cations like Zn2+ influx
through LTCCs, is involved in transcriptional regulation and/or
post-transcriptional events in response to membrane depolariza-
tion. This is of particular importance but it is not always taken
into account in acquired or inherited cardiac diseases, during
which AP duration is altered.

Although LTCCs have been the focus of the majority of the
studies with regard to non-cardiac and cardiac gene regulation,
some studies also suggest the implication of Ca2+ entry through
non-L-type channels in ET coupling, notably TRPC channels.

TRPC CHANNELS
TRPC channels provide Ca2+ entry pathways, modulate the driv-
ing force for Ca2+ entry, and also likely provide intracellular
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pathways for Ca2+ release from cellular organelles. Preferentially
localized to the peripheral plasma membrane in cardiomyocytes
(Kuwahara et al., 2006; Seth et al., 2009; Wu et al., 2010), they
are cation-selective channels that initiate cardiac hypertrophy by
Ca2+ influx and subsequent Cn activation (Bush et al., 2006;
Kuwahara et al., 2006; Nakayama et al., 2006; Onohara et al.,
2006).

The TRPC family includes 7 isoforms (TRPC1–7) divided into
2 general subfamilies based on structural and functional sim-
ilarities: TRPC1/4/5 and TRPC3/6/7. TRPC2 is not expressed
in humans (Lof et al., 2011). TRPC channels can be homo-
meric or heteromeric assemblies between 4 TRPC subunits. Each
TRPC subunit has a transmembrane region flanked by function-
ally important intracellular N and C termini (Clapham, 2003).
TRPC3/6/7 are activated by diacylglycerol (DAG) generated by G-
protein coupled receptors Gαq/PLC signaling. TRPC1/4/5 can be
activated by depletion of intracellular Ca2+ stores or by stretch
(Nilius et al., 2007; Abramowitz and Birnbaumer, 2009). Once
activated, these channels induce signal transduction through ele-
vations in [Ca2+]i and Na+ or through refilling of ER Ca2+
stores to ensure prolonged signaling events (Nilius et al., 2007;
Abramowitz and Birnbaumer, 2009).

One controversy surrounding TRPC channels concerns their
participation in store-operated Ca2+ entry (SOCE) versus
receptor-operated Ca2+ entry (ROCE) (Figure 1). TRPC1/4/5
channels are proposed candidate subunits of store-operated chan-
nels (SOCs). These types of channels are activated by IP3-
dependent mechanisms (Nishida et al., 2006). TRPC3/6/7 are
directly activated by DAG, independently of the stores (Hofmann
et al., 1999) linked to PLC activation. TRPC channels might
also sense and transduce mechanical stress (stretch-activated
Ca2+ channels, Figure 1). Another study suggested that TRPC3/6
are activated by DAG causing membrane depolarization with
effects on LTCCs and Ca2+ oscillations (Onohara et al., 2006)
(Figure 1).

The role of TRPC channels in SOCE is less clear since
the discovery of stromal interaction molecule 1 (STIM1) and
Orai1 as mediators of SOCE. STIM1 serves as a Ca2+ sensor in
the endoplasmic reticulum/SR, which, when is Ca2+ depleted,
clusters proximal to the plasma membrane to activate Orai1,
the pore-forming subunit of the Ca2+ release-activated chan-
nel (Frischauf et al., 2008) but possibly also to activate TRPC
channels (Figure 1). Indeed, it has been shown that TRPC1/4/5
can directly bind STIM1, activating SOCE (Yuan et al., 2007).

FIGURE 1 | Scheme for the TRPC signaling pathway in hypertrophy.

Stimulation of Gq-protein coupled receptors (GPCR) and subsequent
activation of PLC leads to IP3 and DAG generation. DAG directly activates
TRPCs and induces receptor-operated Ca2+ entry (ROCE), causing
membrane depolarization and secondarily activating LTCCs. IP3 activates

IP3Rs, which induce depletion of stores and activation of STIM. STIM1
provokes store-operated Ca2+ entry (SOCE) through Orai and/or TRPCs.
TRPC channels can also be activated by stretch (SAC). The increase in
intracellular Ca2+ following TRPC activation is involved in hypertrophy
development via activation of the calcineurin-NFAT pathway.
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STIM1 can also indirectly activate TRPC3/6, but not TRPC7
(Liao et al., 2009). Interestingly, TRPC channels can also colocal-
ize with STIM1 and Orai in lipid raft domains (Pani et al., 2008).
One study even suggests that Orai and TRPC form complexes
that participate in SOCE and ROCE (Liao et al., 2009). However,
other investigators have not observed a role for TRPC channels
in the Orai/STIM1 complex, suggesting a model whereby these
2 mechanisms of Ca2+ entry are distinct and not coregulated
(Dehaven et al., 2009). Interestingly, STIM1 amplifies agonist-
induced hypertrophy via activation of the Cn-NFAT pathway
(Luo et al., 2012). Figure 1 summarizes some of the TRPC path-
ways involved in ET coupling.

In conclusion, [Ca2+]i, besides its major role in EC cou-
pling, is an important messenger in signal transduction reg-
ulating cardiac hypertrophy by activation of Ca2+-dependent
transcription factors. Here we have attempted to present some
of the pathways by which cardiac Ca2+ signaling is involved
in ET coupling, notably during cardiac hypertrophy develop-
ment. Although the profound influence of Ca2+ signaling on gene
expression has been recognized mainly in neurons (Dolmetsch,
2003), the notion of cardiac ET coupling has recently emerged

(Atar et al., 1995; Anderson, 2000; Richard et al., 2006). Evidence
is growing that intracellular signaling pathways are laid down
in a very sophisticated manner to enable cardiac cells to dis-
tinguish between Ca2+ signals. This is particularly important
during cardiac hypertrophy, which occurs in response to a vari-
ety of stimuli (neurohumoral stimulation, stretch, and pacing)
but is initiated in many cases by an elevation in [Ca2+]i. New
discoveries are expected in the near future on cardiac Ca2+ reg-
ulation to further enrich our understanding in this fascinating
research field.
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