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Adverse social conditions have been linked to a conserved tran-
scriptional response to adversity (CTRA) in circulating leukocytes
that may contribute to social gradients in disease. However, the CNS
mechanisms involved remain obscure, in part because CTRA gene-
expression profiles often track external social–environmental vari-
ables more closely than they do self-reported internal affective
states such as stress, depression, or anxiety. This study examined
the possibility that variations in patterns of natural language use
might provide more sensitive indicators of the automatic threat-
detection and -response systems that proximally regulate auto-
nomic induction of the CTRA. In 22,627 audio samples of natural
speech sampled from the daily interactions of 143 healthy adults,
both total language output and patterns of function-word use
covaried with CTRA gene expression. These language features pre-
dicted CTRA gene expression substantially better than did conven-
tional self-report measures of stress, depression, and anxiety and
did so independently of demographic and behavioral factors (age,
sex, race, smoking, body mass index) and leukocyte subset distribu-
tions. This predictive relationship held when language and gene
expression were sampled more than a week apart, suggesting that
associations reflect stable individual differences or chronic life cir-
cumstances. Given the observed relationship between personal ex-
pression and gene expression, patterns of natural language use may
provide a useful behavioral indicator of nonconsciously evaluated
well-being (implicit safety vs. threat) that is distinct from conscious
affective experience and more closely tracks the neurobiological
processes involved in peripheral gene regulation.
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Across a diverse array of adverse life circumstances such as low
socioeconomic status, social isolation, diagnosis with a life-

threatening disease, and posttraumatic stress, circulating immune
cells have been found to show a conserved transcriptional re-
sponse to adversity (CTRA) marked by up-regulated expression of
proinflammatory genes and down-regulated expression of genes
involved in type I IFN antiviral responses and IgG antibody syn-
thesis (1, 2). These effects are mediated peripherally by sympa-
thetic nervous system (SNS) activation of β-adrenergic signaling
pathways that regulate gene transcription in existing cells and
stimulate hematopoietic development of new myeloid lineage
leukocytes (particularly monocytes) (3, 4). Peripheral SNS activity
is controlled by a central network of brain structures including the
insular and anterior cingulate cortex, extended amygdala, and
lateral hypothalamus, which collectively regulate sympathetic
outflow from the medulla oblongata (5, 6). Despite the clear role
of CNS processes in regulating SNS activity, CTRA gene expres-
sion has shown less consistent association with self-report mea-
sures of internal affective experience (e.g., stress, depression, or
negative emotions) than it has with measures of external social
conditions (e.g., socio-economic status, social rank, bereavement)
or subjective perceptions of those external conditions (e.g., per-
ceived isolation) (7–11). Adverse environments are clearly “get-
ting under the skin” somehow, and this presumably involves some

form of CNS information processing [as neuropharmacologic and
behavioral interventions can inhibit the CTRA (3, 12, 13)], but the
specific psychological processes involved remain poorly under-
stood. In the present research we sought to identify an objectively
observable behavioral indicator of the psychological processes
involved in generating stable individual differences in basal CTRA
gene expression.
Findings from affective neuroscience suggest that conscious

experiences of negative emotional states such as stress, fear, or
anxiety are mediated by a neocortical system which is function-
ally distinct from the more basic automatic threat-detection and
-response system that proximally regulates SNS activity (see ref. 6
for more details on the functional and neuroanatomical distinction
between the conscious fear system and the automatic threat de-
fense system). If the nonconscious threat defense system is more
sensitive to adverse social conditions than is the conscious affect
system, that could explain why CTRA gene expression more re-
liably tracks measures of adverse environmental conditions than it
does self-report measures of experienced affect (Fig. S1). How-
ever, this raises a significant methodological challenge for efforts
to map the central psychological processes that mediate “social
signal transduction” (1, 2): If psychometric self-report instruments
cannot accurately track the activity of the relevant neural system,
then how instead should we measure it?
Recent psycholinguistic analyses have found that patterns of

natural language use change systematically under threatening
conditions such as social deception (14–17), terrorist attack (18),
low social status (19), and personal crisis (20). These changes
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include alterations in total language output and a shift in the use
of specific function words such as pronouns (17). Function words
(e.g., articles, adverbs, pronouns) are generated relatively auto-
matically by CNS language systems and serve to map relationships
among the more consciously generated meaning words (e.g.,
nouns or verbs) that carry the primary semantic information
speakers intend to convey (17, 21, 22). Function words by them-
selves have no semantic purpose, but together they help provide
the structure of syntax. Given the relatively automatic production
of function words and their empirical sensitivity to threat, sys-
tematic variations in language structure may provide an implicit
behavioral indicator of the nonconscious threat-response system
that regulates SNS activity and, by extension, CTRA gene ex-
pression (see Fig. S1 for a graphical depiction of this model) (3, 4).
We tested this hypothesis using unobtrusive ecological speech
sampling (23, 24) and identified systematic individual differences
in broad patterns of natural language use that track CTRA gene
expression better than do conventional self-report measures of
stress, depression, and anxiety.

Results
Natural language use was assessed in 22,627 30- to 50-s audio
samples collected unobtrusively at 9- to 12.5-min intervals over
2 d from each of 143 healthy community-dwelling adults during
waking hours. Speech samples were acquired using the electroni-
cally activated recorder (EAR) system (23, 24), which generated
an average of 158 (range, 14–260) audio samples per individual.
Audio samples were coded for technical validity (i.e., participants
being awake and wearing the EAR device) and the presence of
others, and all valid samples were transcribed to isolate the study
participant’s speech. These analyses yielded individual summary
values on four metavariables reflecting total language volume: the
fraction of samples in which the individual spoke, the fraction in
which the individual was alone, average words spoken, and aver-
age sentence length (Fig. 1A). Participant speech transcripts were
subsequently processed using the Linguistic Inquiry and Word
Count (LIWC) system to quantify individual differences in general
language style (25). These analyses yielded 13 dimensions of lan-
guage structure (Fig. 1B) including the prevalence of eight gen-
eral categories of function words (adverbs, articles, auxiliary verbs,
conjunctions, negations, prepositions, quantifiers, and imper-
sonal pronouns) and five subcategories of personal pronoun [first-
person singular, first-person plural, second-person singular,
third-person singular, and third-person plural, each represented

separately due to their potentially divergent patterns of change
under threat (17)].
Characteristics of the study sample are given in Table S1 and

reflect generally healthy young adults (mean age ± SE 34.2 ±
0.7 y; range, 25–56 y) from the Atlanta metropolitan area with a
preponderance of females (66%), multiple races (30% African
American, 59% white, 7% Asian, 4% other), and low behavioral
health risk factors (mean BMI 24.3 ± 0.3, with 8% having a
BMI >30 and 8% having a history of regular smoking). Self-report
psychometric measures of stress, depression, anxiety, and loneli-
ness were moderately correlated (r’s ranging from 0.44 to 0.64)
(Dataset S1) but showed no substantial association with language
metrics (all jrj <0.25) (Dataset S1). Several language metrics were
also correlated (Dataset S1), and the fraction of audio samples in
which the subject spoke (talk frequency) showed particularly
strong correlation with total word counts and frequency of being
alone (both jrj >0.70, P < 0.0001). Talk frequency was thus analyzed
separately to avoid multicollinearity (variance inflation factor =
8.3). No other language metrics showed substantial multicollinearity
[variance inflation factors ranged from 1.4 to 2.8, all well below the
material threshold of 10 (26)].

CTRA Gene Expression. Expression of 50 CTRA indicator genes was
assessed using microarray-based transcriptome profiling of pe-
ripheral blood mononuclear cell samples that were collected under
resting conditions following the 2-d language-sampling period. The
CTRA profile was quantified as an a priori-defined contrast across
the 50 indicator variables [inflammation-related transcripts were
weighted +1, and antiviral and antibody-related transcripts were
weighted −1 (8, 10, 27, 28)] and was tested for association with five
general domains of predictor variables: demographic and health
behavior parameters (age, sex, race, BMI, and smoking); language-
volume measures (word count, words per sentence, frequency of
being alone vs. with others); language-structure measures (relative
frequency of 13 function-word classes); self-report psychometric
measures (depression, anxiety, perceived stress, and loneliness);
and RNA-based measures of leukocyte subset distribution (CD4+

and CD8+ T lymphocytes, B lymphocytes, natural killer cells, and
monocytes). Each domain was comprised of multiple sub-
dimensions that were tested simultaneously using a single omnibus
partial F test (26) to assess this study’s two a priori substantive
hypotheses regarding the potential association of CTRA gene ex-
pression with individual differences in language volume and lan-
guage structure. Following a statistically significant omnibus test,
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Fig. 1. Natural language-use features. Distribution of individual differences in (A) EAR-sampled parameters of language volume and (B) language structure,
including eight general categories of function word (capitalized labels) and five subcategories of personal pronoun (lowercase labels). Data represent average
values for each parameter computed over a mean of 158 (range 14–260) 30- to 50-s audio samples collected at 9- to 12.5-min intervals over 2 d (resulting in an
average of 4,070 ± 272 words per individual). Whiskers indicate the range of individual values across 143 study participants; boxes span 25th–75th percentiles,
and internal bars indicate 50th percentile.
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exploratory follow-up analyses assessed the specific subdimension
parameters that contributed to the overall domain association with
CTRA. Domain associations were tested in an a priori-specified
sequence beginning with a null model (predicting similar CTRA
expression in all participants), followed by the addition of de-
mographic and behavioral covariates, language-volume measures,
language-structure measures, self-report psychometric measures,
and leukocyte subset distributions.
Relative to a null model predicting similar CTRA gene ex-

pression across all 143 individuals, addition of an a priori-specified
set of demographic and health-behavior parameters (age, sex,
race, BMI, and smoking) significantly increased predictive power
[F(7, 135) = 3.11, P = 0.0045]. Follow-up exploratory analyses of
individual subdimension parameter estimates (Dataset S2, model
1) found BMI to be the most significant individual contributor to
the overall domain association with gene expression.
The addition of basic language-volume measures to the model

significantly enhanced the prediction of CTRA gene expression
beyond the level attainable by demographic and behavioral factors
alone [F(3, 132) = 12.80, P < 0.0001; alternative likelihood ratio
test in Table S2]. Follow-up exploratory analyses of subdimension
parameter estimates found low total word count to be the most
significant contributor to CTRA prediction by the overall language-
volume domain (Dataset S2, model 2).
Inclusion of language-structure metrics involving function-word

prevalence led to a further increase in CTRA prediction beyond
that attainable by demographic/behavioral factors and language
volume [F(13, 119) = 6.80, P < 0.0001; see also Fig. 2A]. Follow-
up exploratory analyses of individual language-structure parame-
ters (Dataset S2, model 3) found CTRA gene expression to track
most strongly with a low prevalence of third-person plural pro-
nouns (e.g., they) and a high prevalence of adverbs (e.g., so, very,
really), impersonal pronouns (e.g., it), and third-person singular
pronouns (e.g., she, he).
Ancillary analyses found that language-structure metrics also

predicted CTRA gene expression in the absence of language-
volume metrics [F(13, 122) = 5.12; P < 0.0001]. Follow-up anal-
yses of individual parameter estimates (Dataset S2, model 3b)
again implicated low prevalence of third-person plural pronouns
and high prevalence of adverbs, as well as high prevalence of ar-
ticles and low prevalence of conjunctions (e.g., and, but).

Psychometric Measures. To determine whether language-use pat-
terns capture the same predictive information as conventional
psychometric instruments, additional analyses included self-
report measures of depression, anxiety, perceived stress, and
perceived social isolation/loneliness. Results (Fig. 2B) continued
to show distinct CTRA associations with language volume [(F(3,
112) = 19.24, P < 0.0001] and language structure [F(13, 112) =
7.68, P < 0.0001] above and beyond the significant predictive
contribution of psychometric variables [F(4, 112) = 4.70, P =
0.0015]. Follow-up exploratory analysis of individual parameters
identified loneliness as the only psychometric variable that con-
sistently predicted gene expression (Dataset S2, model 4). Per-
ceived stress also showed some incremental prediction of gene
expression when language metrics were included in the analysis
(Dataset S2, model 4) but not in their absence (Dataset S2,
model 4b). Neither loneliness nor perceived stress showed any
significant association with the specific language features that
tracked CTRA gene expression (although both were linked to
reduced preposition frequency, and loneliness was also associ-
ated with a higher prevalence of audio samples in which the
participant was alone) (Dataset S1).

Leukocyte Subsets. CTRA gene expression is structured in part by
hematopoietic influences on the distribution of leukocyte subsets
in circulating blood (3, 29). As expected, CTRA gene expression
varied with an a priori-specified set of seven variables measuring

the prevalence of major leukocyte subset markers [F(7, 105) =
9.51, P < 0.0001] (Fig. 2C). Follow-up analyses of individual pa-
rameters (Dataset S2, model 5) found this effect to be carried by
mRNA markers of monocytes (CD14), B lymphocytes (CD19), T
lymphocytes (CD3D, CD4), and natural killer cells (CD16/
FCGR3A, CD56/NCAM1). However, CTRA gene expression
continued to show significant additional associations with lan-
guage volume [F(3, 105) = 30.01, P < 0.0001] and language
structure [F(13, 105) = 8.67, P < 0.0001], as well as with psycho-
metric measures [F(4, 105) = 6.02; P < 0.0001], following control
for leukocyte subset distributions.

Acute Influences. This research was motivated by the hypothesis
that stable individual differences in threat-related information
processing chronically influence both speech production and gene
regulation. However, transient environmental events may also
acutely modulate speech and gene expression. To discriminate
between the relative contributions of acute vs. chronic processes,
we compared the strength of association between language pat-
terns and gene expression in all samples (i.e., both acute and
chronic influences) with that observed when acute effects were
reduced by excluding blood samples collected within 1 wk of
language sampling (i.e., chronic influences only). In the absence of
acute effects, results continued to show CTRA association with
both language volume [F(3, 102) = 23.04, P < 0.0001] and lan-
guage structure [F(13, 102) = 6.39, P < 0.0001]. In follow-up
analyses of the five individual language dimensions that signifi-
cantly predicted gene expression in the overall sample (Dataset
S2, model 3), none showed a significant decrease in predictive
strength following the removal of acute influences (change in av-
erage association strength: +7.4%) (Table S3).

Discussion
This research identified a relationship between individual differ-
ences in natural language use and basal gene-expression profiles in
circulating immune cells. Expression of the CTRA transcriptome
profile showed verbal correlates in both the volume of speech
(total word count and speech frequency) and the structure of
speech (pronoun and adverb prevalence). Patterns of speech pro-
duction predicted CTRA gene expression substantially better than
did self-report measures of negative affective states such as stress,
depression, and anxiety, and they did so above and beyond the
effects of demographic and behavioral factors (age, sex, race,
smoking, BMI) and variations in leukocyte subset distributions.
Natural language patterns predicted gene expression even when
the two variables were sampled more than 1 wk apart, suggesting
that their association stems in large part from stable individual
differences in processes that jointly influence both speech pro-
duction and gene regulation. These findings are consistent with the
hypothesis that individual differences in automatic CNS threat-
detection and -response systems (6, 30) can influence both lan-
guage processes (17) and leukocyte gene expression (3, 4). The
distinct predictive contributions of self-report psychometric in-
struments and relatively nonconscious speech patterns parallels the
distinct neural substrates of consciously experienced negative affect
and the more automatic threat-detection and -response systems
that proximally regulate SNS activity (Fig. S1) (6). As such, sta-
tistical patterns in natural language use may serve as useful indi-
cators of nonconsciously evaluated well-being (i.e., implicit threat
vs. safety) that afford greater insight into SNS/β-adrenergic control
of peripheral gene expression than do conventional self-report
measures of conscious affect.
Exploratory analyses identified several specific language fea-

tures that predicted CTRA gene expression, but the psychological
mechanisms underlying these features remain to be clarified in
future research. Low total language output and speech frequency
could represent a verbal manifestation of the caution/avoidance
and behavioral inhibition responses generated by automatic
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threat/defense responses (6). CTRA down-regulation with in-
creased language output is also consistent with research linking
self-expression to physical health (31, 32) and reciprocal data
showing effects of psychological inhibition (reduced expression)
on SNS activation (33–36). Consistent with that theory, explor-
atory analyses of other LIWC metrics besides function words
identified inhibition-related language as one of the few significant
correlates of CTRA gene expression (SI Results). Language output
may also serve as a proxy for social contact rates that could affect
gene expression (13, 37). However, direct measures of the pres-
ence vs. absence of others failed to predict CTRA gene expression
in this sample, whereas language volume continued to associate
with gene expression after control for social contact frequency.
Independent of total language volume, CTRA gene expression

also tracked stylistic variations in language structure involving
patterns of function-word use. We had no a priori hypotheses
about the specific types of function word that would associate most
strongly with variations in gene expression. Exploratory analyses of
that topic found CTRA gene expression to track most strongly with
a high prevalence of adverbs, impersonal pronouns, and third-
person singular pronouns and with a low prevalence of third-per-
son plural pronouns. Future research will be required to define the
psychological mechanisms underlying these specific language fea-
tures. However, the observed results are consistent with two pre-
vious hypotheses regarding the psychological basis for systematic
variations in language style. Pronoun use is thought to reflect the
deployment of attention (17, 19), and the association of reduced
CTRA gene expression with a high prevalence of third-person
plural pronouns (they, them) may indicate an outward orientation
toward the social world that serves to reduce personal threat or
arousal and thereby down-regulate SNS activity (38). In contrast,
adverbs often serve as intensifiers (really, very, certainly), and their
association with up-regulated CTRA gene expression may indicate
greater CNS arousal and consequent increases in SNS activity.
Among the psychometric self-report measures examined, only

perceived social isolation (loneliness) consistently predicted CTRA
gene expression. However, language volume and language structure
continued to predict individual differences in CTRA gene expres-
sion above and beyond the effects of loneliness and other psycho-
metric characteristics. Consistent with previous research (9, 10, 29,
37), loneliness was associated with up-regulation of the CTRA. In
statistical models that included language metrics, perceived stress
also showed a counterintuitive and statistically significant inverse
association with the CTRA. Similar inverse stress effects have been
observed previously (9, 10) and would be expected in multivariate
analyses if gene expression tracks the automatic threat-response
system whereas perceived stress tracks the functionally distinct but
moderately correlated conscious fear/anxiety system (6). Consistent
with that prediction, perceived stress showed no significant associ-
ation with CTRA gene expression in statistical analyses that omitted
language metrics.
The present findings are subject to several limitations. The

observed relationships involve spontaneous spoken language use
sampled from the everyday life of American adults in the Atlanta
metropolitan area, and it is unclear whether similar results would
emerge in other language contexts (e.g., in writing or topically
directed speech) or in other demographic, socioeconomic, or
cultural contexts. This is an observational study, and additional
research will be required to define the causal interactions between
language and gene expression. This study was motivated by the

CT
RA

C

CT
RA

A

B

CT
RA

Fig. 2. Prediction of CTRA gene expression. (A) Prediction of peripheral blood
mRNA levels for 50 CTRA indicator transcripts (proinflammatory genes, IFN
response genes, and antibody-related transcripts) by demographic and behav-
ioral characteristics (blue chords), language-volume metavariables (orange
chords), and language-structure features representing the prevalence of eight
categories of function word (dark green chords) and five subcategories of
personal pronoun (light green chords). Black arcs indicate total CTRA prediction
in each mixed-effect linear model. Chord widths indicate the relative contri-
bution from standardized values of each variable (squared partial regression
coefficients, sorted top-to-bottom by descending magnitude in Dataset S2
model 3). Colored chords indicate statistically significant effects (P < 0.05), and

gray chords indicate nonsignificant effects. (B) Increment to CTRA prediction
from adding self-report measures of depression, anxiety, perceived stress,
and perceived social isolation/loneliness (red chords); Dataset S2 model 4.
(C) Increment to prediction from adding mRNA markers of leukocyte subsets
in the peripheral blood cell pool (purple chords); Dataset S2 model 5.
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hypothesis that speech patterns and leukocyte gene-expression
profiles come to be associated through their common regulation
by stable individual differences in upstream CNS threat-detection
and -response systems (Fig. S1) (6). However, language use may
also causally affect gene expression [e.g., by influencing perceptual
or interpretive processes involved in threat-detection or coping
responses (6)], and gene expression may causally influence lan-
guage use [e.g., via effects of circulating cytokines on CNS affec-
tive, cognitive, or social processes (39–41) that subsequently
impact speech production]. This study design was not optimal for
detecting the effects of acute environmental influence on language
and gene expression due to the broad 2-d language-sampling pe-
riod, the variable lag between language sampling and blood
sampling, and the absence of any experimental manipulation of
environmental conditions. The CTRA is specific to immune cells,
and the language correlates of gene expression in other tissues
(e.g., the CNS) remain to be determined in future research, as do
the health implications of the preset findings. Future studies will
also be required to assess the generalizability of the diagnostic
language patterns identified here and to define their underlying
neural and psychological mechanisms (e.g., Do they track threat
per se or cognitive coping responses that are activated in response
to threat? Which specific elements of the nonconscious threat
defense system interact with language production? Are language
patterns a useful proxy measure of intervention-induced changes
in SNS activity?). This study focused on a narrow range of a priori-
defined language metrics to avoid capitalizing on chance in sta-
tistical association analyses. However, language use can be char-
acterized on many other dimensions (17, 42–44), and some of
those may also be found to associate with gene expression in fu-
ture studies (see SI Results for some initial results). These analyses
also tested an a priori genomic hypothesis involving the CTRA
gene set as a whole, and no genome-wide discovery analyses were
performed to identify specific individual gene transcripts that
might relate to language use. Additional genes, gene networks,
and epigenetic processes may well be found to relate to language
use in future research. These analyses also focused on two a priori
hypotheses regarding the general domains of language use that
may relate to CTRA gene expression—language volume and
language structure—and we had no a priori hypotheses regarding
the specific dimensions within each general language domain that
might best predict gene expression. Given the exploratory nature
of analyses examining specific language features (e.g., word count,
adverb prevalence, pronoun frequency), their predictive signifi-
cance should be regarded as provisional until future studies rep-
licate these findings as a priori hypotheses (45).
The present data indicate a systematic relationship between

personal expression and gene expression. As such, statistical
pattern analysis of natural language use may provide a useful
behavioral indicator of nonconsciously evaluated well-being
(implicit safety vs. threat) that is distinct from the information
provided by conventional self-report measures and more closely
tracks the activity of underlying CNS processes which regulate
peripheral physiology, gene expression, and health.

Methods
Study Design and Data Collection. Language, psychometric, and gene-expression
data were collected under basal conditions from 143 healthy (medication-free)
adults in the Atlanta metropolitan area. Speech was sampled over 2 d using an
iPod Touch implementation of the EAR (worn on a belt) (23), transcribed by
trained coders, and processed through LIWC 2007 software (25) to generate
language-volume and -structure measures. Audio files were coded by raters to
exclude spurious data (e.g., asleep) and to classify participants as being alone
vs. with others (intraclass correlation of two independent codings = 0.94) and
talking vs. not talking (0.98). Psychometric measures were collected at the time
of blood sampling [an average (± SD) of 11 (± 9) d after language sampling]
and included the Perceived Stress Scale (46) (Cronbach α = 0.86), Beck De-
pression Inventory (47) (α = 0.90), Beck Anxiety Inventory (48) (α = 0.84), and
UCLA Loneliness Scale (49) (α = 0.91). Total RNA was extracted from resting
venous blood samples, tested for mass and integrity, and assayed by Illumina
HT-12 v4 BeadArrays in the University of California, Los Angeles (UCLA) Neu-
roscience Genomics Core Laboratory as previously described (10, 27, 28).
Interassay coefficients of variability (CVs) for the 50 analyzed gene transcripts
averaged 0.78% (range: 0.34–1.46%). All participants provided written in-
formed consent to participate in the study after the nature and design of
the study had been fully described and any related questions had been an-
swered. All procedures were approved by the Institutional Review Board at
Emory University.

Analysis. Quantile-normalized gene-expression data (GSE87656) were log2-
transformed and standardized within gene for analysis by mixed-effect lin-
ear models (50) testing the association between the average expression of
the 50 available CTRA indicator transcripts (10, 27, 28) and a priori-specified
sets of demographic and health behavior variables (age, sex, race, BMI,
smoking), language-volume metavariables (word count, words per sentence,
frequency of being alone vs. with others), language-structure variables
(eight general function-word categories and five personal pronoun subcat-
egories listed in Fig. 1B), psychometric variables (stress, depression, anxiety,
loneliness), and seven RNA transcripts marking the relative prevalence of
major leukocyte subsets (CD14, CD19, CD3D, CD4, CD8A, CD56/NCAM1,
CD16/FCGR3A). Predictors were standardized for comparison of association
strength, IFN- and antibody-related transcripts were sign-reversed to reflect
their inverse contribution to the CTRA (10, 27, 28), and all models included
gene-specific intercepts and a fully parameterized (unstructured) covariance
matrix to account for correlation among residuals across the 50 CTRA tran-
scripts. Models were estimated using SAS v9.3 PROC MIXED with omnibus
partial F tests (26) structured to assess this study’s two primary substantive
hypotheses regarding association of the CTRA gene expression contrast with
the three-dimensional space of language-volume measures and the 13-di-
mensional space of language-structure measures (function-word preva-
lence). Parallel likelihood ratio tests (50) were performed to corroborate
omnibus F tests (Table S2). For predictor domains showing a significant
omnibus association, exploratory follow-up tests assessed the specific sub-
dimensions contributing to the overall domain association with CTRA. Ad-
ditional details on measurement and statistical analysis are available in
SI Methods.
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