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Abstract: Decreased expression of the plasma membrane citrate transporter INDY (acronym I'm
Not Dead, Yet) promotes longevity and protects from high-fat diet- and aging-induced metabolic
derangements. Preventing citrate import into hepatocytes by different strategies can reduce hepatic
triglyceride accumulation and improve hepatic insulin sensitivity, even in the absence of effects
on body composition. These beneficial effects likely derive from decreased hepatic de novo fatty
acid biosynthesis as a result of reduced cytoplasmic citrate levels. While in vivo and in vitro studies
show that inhibition of INDY prevents intracellular lipid accumulation, body weight is not affected
by organ-specific INDY inhibition. Besides these beneficial metabolic effects, INDY inhibition may
also improve blood pressure control through sympathetic nervous system inhibition, partly via
reduced peripheral catecholamine synthesis. These effects make INDY a promising candidate with
bidirectional benefits for improving both metabolic disease and blood pressure control.

Keywords: citrate transport; cardiovascular disease; metabolic disease; INDY (I'm Not Dead, Yet);
SLC13AS5; diabetes; insulin resistance; longevity; obesity

1. Introduction

The term cardiometabolic disease originated from the observation that metabolic and
cardiovascular disease, such as arterial hypertension, often occur in the same patients,
may have common underlying mechanisms, and require a comprehensive therapeutic
approach. In this review we will provide an overview on contributions of citrate transport
through INDY (I'm Not Dead Yet), the sodium-coupled citrate transporter SLC13A5, to
cardiometabolic disease traits. Moreover, we will explore the therapeutic potential of this
approach in the cardiovascular disease continuum.

Citrate as a Central Mediator of Cellular Energy Metabolism

The tricarboxylic acid trianion citrate (37) is a key metabolite in intermediary metabolism.
As a precursor to lipid and cholesterol synthesis, citrate is an important link between glucose
and lipid metabolism. Citrate plays a crucial role in intermediary hepatic energy metabolism
and intracellular signaling, mediating immunity and inflammation [1]. The major sources
maintaining plasma citrate levels include bone resorption, intestinal absorption from dietary
intake, or cellular metabolism via the tricarboxylic acid cycle (Figure 1). The citrate transport
protein INDY was originally described in Drosophila, where its partial loss has been shown
to increase lifespan [2]. In mammalians, distinct solute carrier (SLC) transporters mediate
cellular uptake and subcellular transport of the tricarboxylate citrate [3]. Although there are
similarities between species regarding biological function, inter-species comparisons reveal
distinct transport and structural characteristics [4]. In the tricarboxylic acid cycle, citrate is
oxidized to provide cellular adenosine trisphosphate (ATP) after being synthetized from acetyl-
CoA and oxaloacetate. Citrate levels in the cytoplasm are regulated by mitochondrial export
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via the mitochondrial citrate carrier (CIC) encoded by the SLC25A1 gene, and uptake from
the circulation via the sodium-coupled citrate transporter (NaCT), also known as SLC13A5 [5],
which is highly expressed in the mammalian liver, testis, and brain [6]. An overview of
SLC13A5 expression levels in various human tissues is provided by Li et al. [7]. Citrate acts
as a precursor for fatty acid synthesis in the cytoplasm, where the cytosolic enzyme ATP-
citrate lyase (ACLY) converts citrate to oxaloacetate and acetyl-CoA, the latter being a crucial
building block for endogenous fatty acid and cholesterol biosynthesis (Figure 1) [8]. In fact,
cytosolic citrate concentration has been shown to directly correlate with fatty acid synthesis
rates [9,10]. High cytoplasmic citrate levels may, thus, stimulate hepatic de novo fatty acid
biosynthesis and promote the development of non-alcoholic fatty liver (NAFL) [11]. As a
potent allosteric regulator, citrate inhibits phosphofructokinase-1—the pacemaker enzyme of
glycolysis—and stimulates fructose-1,6-bisphosphatase, an important regulatory enzyme in
gluconeogenesis, thereby affecting hepatic rates of glycolysis and gluconeogenesis [12,13]. As
such, metformin has lately been discovered to suppress SLC13A5 expression [14]. Due to its role
in cellular energy metabolism, manipulating cytoplasmic citrate levels in hepatocytes may be a
promising therapeutic approach for metabolic disorders such as type 2 diabetes or non-alcoholic
fatty liver disease (NAFLD), which are both linked to hepatic lipid accumulation and insulin
resistance [15].
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Figure 1. Systemic and cellular citrate homeostasis. Plasma citrate levels are maintained between
100-150 pmol either from intestinal absorption or from bone resorption and via urinary excretion.
Citrate levels in the cytoplasm of hepatocytes are regulated by export from mitochondria via the
mitochondrial citrate carrier SLC25A1 and by uptake from the circulation via the sodium-coupled
citrate transporter SLC13A5. In the cytosol, citrate is a precursor for fatty acid synthesis, where the
enzyme ATP-citrate lyase (ACLY) cleaves citrate to oxaloacetate and acetyl-CoA, the latter being
a necessary building block for endogenous fatty acid and cholesterol biosynthesis. The NADPH
required for fatty acid biosynthesis derives from the conversion of isocitrate to alpha-ketoglutarate
via isocitrate dehydrogenase (IDH) after isocitrate has been produced from citrate by cytoplasmic
aconitase (ACNT). Citrate also allosterically inhibits phosphofructokinase-1, the pacemaker enzyme
of glycolysis, and by this means influences hepatic rates of glycolysis. Abbreviations: FA-fatty acid;
O-acetate-oxaloacetate. Created with biorender.com.
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Along these lines, one aspect needs to be considered: while loss-of-function muta-
tions in Drosophila or deletion of Slc13a5 in mice may convey survival and metabolic
benefits [2,6], SLC13A5 deficiency in humans results in a recessive neurological disorder
known as early infantile epileptic encephalopathy-25 (EIEE-25) [16,17]. Although SIc13A5
null mice show some neurological abnormalities, neurological dysfunction does not seem
to be present in mice to the same extent [18]. Based on these different effects of NaCT
deficiency in the brain and the periphery, it has been suggested that NaCT inhibitors that
do not permeate the blood-brain barrier could have advantages [19]. It may thus be pru-
dent to avoid complete and sustained NaCT blockade when applying brain-permeable
NaCT inhibitors.

2. Liver-Specific Effects of INDY—From Mouse to Man?

The prevalence of NAFLD is increasing globally, and NAFLD is a risk factor for car-
diovascular disease, type 2 diabetes, and certain forms of cancer [20]. NAFLD is now
recognized as one of the primary causes of liver cirrhosis, and affects up to 30% of Amer-
icans [21,22]. Hepatic lipid accumulation favored by excess caloric intake and physical
inactivity can lead to lipotoxicity, and has therefore been linked to the development of
insulin resistance in the context of metabolic diseases such as type 2 diabetes [15,23]. The
growing epidemic of obesity and diabetes and currently limited treatment options for
NAFLD underline the need for novel therapeutic options.

A number of studies reported that mammalian INDY (mINDY) modulation impacts
liver metabolism in cellular and animal models, as well as in human beings [6,24,25]. Of
note, mINDY transcript levels are connected to NAFLD [25]. The pregnane X receptor (PXR)
is involved in regulating lipid metabolism and energy homeostasis supported by a recent
study indicating that SLC13A5 is transcriptionally regulated by PXR [26]. Induction of this
transporter in human primary hepatocytes is mediated by two distal responsive elements of
PXR. While rifampicin, an activator of PXR, can increase lipid accumulation, knocking down
SLC13A5 expression results in considerable reduction of lipid content in HepG2 cells [27].
The finding underlines the impact of modulating this highly inducible gene in human liver.
Proof-of-concept stems from a study that tested compound 2, a selective small molecule
inhibitor of NaCT activity, in human hepatocytes. Compound 2 blocked the uptake of
labelled citrate, and reduced citrate incorporation into triacylglycerol [28]. Oral dosing of
compound 2 reduced hepatic citrate uptake by 33% in mice, and also reduced incorporation
of labelled citrate into hepatic lipids in vivo [28]. Similarly, treatment with compound 2
was associated with reductions in plasma glucose, and also reversed subsequent high-fat
feeding induced glucose intolerance in mice. Triacylglycerols and diacylglycerols were
reduced in the livers of animals receiving compound 2 [28]. These proof-of-concept studies
further underline the therapeutic potential of NaCT inhibition.

Whole-body miIndy knock-out mice were protected from development of hepatic
steatosis and insulin resistance after a 6-week high-fat diet feeding [6]. Non-oxidative
glucose metabolism, i.e., hepatic glycogen synthesis, was elevated in mIndy knockout
mice. These mice also exhibited a relative reduction in whole-body fat, which may in part
contribute to the observed metabolic phenotype. A subsequent study recapitulated these
findings using 2'-O-methoxyethyl chimeric anti-sense oligonucleotides (ASOs) in high-fat
fed rats [24]. After four weeks of ASO treatment and high-fat (60%) diet feeding, hepatic
triglyceride content was significantly reduced in mIndy ASO treated rats, together with
increased suppression of hepatic glucose production. Body weight was similar in control
ASO and in mIndy ASO groups, suggesting that mIndy knock-down mediates improvement
of hepatic steatosis and insulin sensitivity independently of body weight [24].

Although miIndy expression seems to be regulated by hormonal and nutritional cues,
the regulatory mechanisms are not well established. To this end, one study utilized primary
rat hepatocytes and identified a cAMP-dependent and cAMP-responsive element-binding
protein (CREB)-dependent mechanism of mIndy regulation [29]. Induction of hepatic
mlndy in fasted rats and high-fat-diet-streptozotocin diabetic rats identified miIndy as a
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CREB-dependent target gene of glucagon [29]. Along these lines, metformin was recently
recognized to suppress NaCT expression in HepG2 cells, possibly via decreased phospho-
rylation of CREB [14].

In obese, insulin resistant individuals with NAFLD, mINDY expression correlated
positively with BMI, waist circumference, body fat, and robustly with the degree of steatosis
determined by histology [25]. The latter correlation remained significant even after adjust-
ing for potential confounders such as age, sex, waist circumference, and insulin resistance.
IL-6 serum levels from these patients correlated positively with hepatic mINDY expression
in a sense that elevated plasma IL-6 in these patients predicted higher mINDY expression
levels. Induction of mINDY expression after treating human hepatocytes with IL-6 and in
mice after IV injection of IL-6 provides supportive evidence for these findings. In line with
outcomes in patients, feeding a high-fat, high-sucrose diet to nonhuman primates for two
years enhanced hepatic mINDY expression [25]. These data show that mINDY expression
is regulated by nutritional cues, and depends on obesity status and metabolic health in
humans and that IL-6 can increase expression of mINDY.

3. Anti-Obesity Effects of Indy

Obesity is associated with increased morbidity and mortality, and is an established
risk factor for the development of insulin resistance and type 2 diabetes [30]. In brief,
excessive caloric intake in combination with physical inactivity contributes to a mis-
match between lipid uptake, storage capacities in white adipose tissue and lipid utiliza-
tion/oxidation/export, which leads to ectopic lipid deposition in muscle and liver [31].
Ectopic lipids can then interfere with insulin signaling pathways and contribute to insulin
resistance [32].

At least in D. melanogaster, decreased Indy expression prevents weight gain from
high-calorie food [33]. This study also shows that food calorie content is directly related
to the level of Indy transcription. Knockdown by siRNA of the C. elegans Indy homolog
CeNAC2 also reduced whole body fat content by ~50% [34]. A six-week period of high-fat
feeding resulted in decreased body weight gain and whole-body fat accumulation in mIndy
whole-body knock-out mice compared to wildtype controls [6]. Further analyses showed
an increased energy expenditure in these animals, which likely explains the reduced whole-
body fat content. Mechanistically, mIndy knock-out decreases hepatic ATP content and
ATP/ADP ratio which activates 5 AMP-activated protein kinase, and leads to increased
hepatic mitochondrial function and lipid oxidation capacity, concomitant with reduced de
novo lipogenesis in primary mlndy~/~ hepatocytes [6].

Interestingly, liver-selective siRNA knockdown of mIndy for eight weeks in C57BL/ 6]
mice fed a Western diet did not differently affect body weight, whole-body fat accumulation
or lean mass compared to animals treated with unspecific control siRNA [35]. Respiratory
exchange ratio as a crude measure of metabolic flexibility was also not different between
groups. Unsurprisingly, caloric intake and energy expenditure did not differ between
groups. Of note, with this knock-down approach, 35% of mIndy activity still remained [35].
Another study investigated the metabolic effects of a selective inducible hepatic mIndy
knockdown in rats on a 60% high-fat diet [24]. Although body composition was not
assessed in this study, body weight was not different between rats receiving ASO targeted
against mIndy and the control group. Compared to constitutive knock-out models, body
weight and composition seem not to be affected in models of conditional knock-down. The
finding can have several reasons, including too short an experimental timeframe to induce
changes in body weight, or remaining mIndy activity in the latter models as compared to
genetic knock-out, which results in complete deletion of mIndy during the entire course of
life, including prenatal development.

Human hepatic SLC13A5 expression is positively associated with measures of obesity,
body fat and liver fat content assessed from histology [25]. Lithium treatment in humans
can result in dyslipidemia and body weight gain [36]. Lithium also stimulates mINDY
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activity, implying a possible clinically relevant connection between increased mINDY
activity and obesity in humans [37].

Taken together, genetic knock-out approaches seem to impact body weight and body
composition while the more clinically relevant knock-down approaches do not. As potential
therapeutic approaches would likely involve selective and potent inhibition of organ-
specific citrate transport, it is possible that these approaches could have a limited effect
on body weight or fat content. Nevertheless, indirect effects on systemic lipid metabolism
could stem from reduction in hepatic lipid synthesis and subsequent decreased VLDL-
export and peripheral uptake.

4. Indy Contributions to Blood Pressure Control

The sympathetic nervous system has a crucial role in blood pressure regulation and
promotes arterial hypertension. Chronically increased energy balance leading to adiposity
and ageing is associated with increases in sympathetic activity in animal models and
human beings [38-40]. Conversely, fasting or chronic weight loss attenuate sympathetic
activity [41,42]. Reduced mIndy activity promotes a phenotype characterized by improved
body composition, reduced adiposity in the face of increased caloric supply, and metabolic
reprogramming akin to fasting [6]. Through these mechanisms, mIndy could regulate the
sympathetic nervous system and blood pressure.

In a recent study, blood pressure was measured through implanted telemetry probes
in freely moving mindy knockout mice and in wildtype controls [43]. Animals were on
standard chow, and body composition did not differ between groups. To spare carotid
baroreceptors, which regulate sympathetic activity and blood pressure, the arterial catheter
was inserted through the femoral artery. Mean blood pressure averaged over three days
was 8 mmHg lower in mIndy knockout mice (Figure 2A). Moreover, heart rate was 37 bpm
lower in mIndy knockout mice compared with wildtype controls (Figure 2B). The difference
in blood pressure and heart rate between groups was not explained by differences in
physical activity. Concomitant reductions in blood pressure and in heart rate could point
towards centrally mediated sympathetic inhibition in mIndy knockout animals. Indeed,
urinary norepinephrine and epinephrine excretion was substantially reduced in mIndy
knockout mice [43].

Pharmacological ganglionic blockade interrupts parasympathetic and sympathetic
efferent nerve traffic at the level of autonomic ganglia, and can be utilized to gauge sym-
pathetic support of blood pressure [40,44,45]. Compared with wildtype controls, blood
pressure and heart rate reductions with ganglionic blockade were attenuated in mIndy
knockout mice [43]. This finding confirms the idea that reduced mIndy activity lowers
blood pressure through sympathetic inhibition. Changes in sympathetic activity are usually
associated with altered dynamic influences of sympathetic and parasympathetic activity
on blood pressure and heart rate, which can be captured through heart rate and blood
pressure variability and spontaneous baroreflex sensitivity measurements [46]. Strikingly,
mlIndy knockout mice showed an approximately 50% reduction in systolic blood pressure
variability in the low-frequency range [43], which relates to sympathetic activity in mice
and in human beings [38,47]. Sympathetic and parasympathetic cardiovascular activity
are often regulated in a reciprocal fashion, such that reductions in sympathetic activity are
associated with increases in cardiac parasympathetic activity [48]. In fact, mIndy knockout
mice exhibited an increase in spontaneous baroreflex sensitivity, which is strongly affected
by parasympathetic heart rate control [43].
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Figure 2. Arterial blood pressure (A) and heart rate (B) in mIndy-KO mice (n = 6) and WT littermate
controls (n = 8) on a regular chow diet. Arterial blood pressure (A) monitored by a radiotelemetry
system was on average 8 mmHg lower in mIndy knockout mice compared to WT controls. Heart rate
(B) was on average 37 bpm lower in mIndy knockout mice compared with WT controls. KO-knock-out;
WT-wild-type; bpm-beats per minute; see [43] for more details.

The sympathetic inhibition in mIndy knockout mice may not solely be explained by
central nervous mechanisms. Gene expression analysis in adrenal medullary samples from
mlndy knockout mice showed decreased expression of catecholamine synthesis pathways.
In particular, the rate limiting enzyme in catecholamine biosynthesis tyrosine hydroxylase
was downregulated. In subsequent cellular experiments in a pheochromocytoma cell
line, pharmacological mIndy inhibition decreased cellular citrate uptake and lowered
norepinephrine precursor as well as native norepinephrine concentrations [43].

Overall, reduced mIndy activity appears to lower blood pressure through sympathetic
nervous system inhibition. Remarkably, reduced peripheral catecholamine synthesis may
contribute to the response, thus, providing an interesting target for the treatment of arterial
hypertension. Indeed, observations in exceedingly rare patients with dopamine-beta-
hydroxylase deficiency, the enzyme required to synthesize norepinephrine from dopamine,
support the notion that peripheral catecholamine metabolism is crucial for blood pressure
control [49]. Since mIndy affects weight gain in mice on high-fat diet and weight gain in turn
activates the sympathetic nervous system through the leptin-melanocortin pathway [50,51],
beneficial effects of mIndy on blood pressure may be greater in the presence of concomitant
obesity and associated metabolic diseases. However, this idea has not been tested.

5. Rationale for Indy Inhibition in Patients with Cardiometabolic Disease

A potential advantage of mINDY inhibition in the treatment of cardiometabolic disease
is that metabolic and cardiovascular traits are targeted in parallel. Patients with obesity,
type 2 diabetes mellitus, NAFLD, or non-alcoholic steatohepatitis (NASH) are at increased
risk for arterial hypertension, and vice versa. Concomitant metabolic disease and arterial
hypertension may exacerbate cardiovascular and renal disease risk, which complicates
clinical management. For example, patients with arterial hypertension and obesity require
more antihypertensive medications and are, nevertheless, less likely to have their blood
pressure controlled compared with patients who are hypertensive but normal weight [52,53].
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Concomitant metabolic disease and arterial hypertension may also create a therapeutic
dilemma when prescribing medications. Beta-blockers, which are commonly prescribed
to patients with arterial hypertension, may promote weight gain [54]. Moreover, beta-
blockers without vasodilating properties tend to worsen insulin sensitivity [55]. Conversely,
medications that have been developed to treat metabolic disease, such as the serotonin
and norepinephrine uptake inhibitor sibutramine, may worsen blood pressure control and
adversely affect cardiovascular risk [56]. Thus, therapeutic strategies that address metabolic
disease and at the same time improve blood pressure control may be particularly beneficial.
Recent large-scale cardiovascular outcomes trials suggest that this idea is not completely off
the mark. Sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide 1 receptor
agonists, which, in addition to improving glycemic control and body weight, also lower
blood pressure, improved hard cardiovascular endpoints [57,58]. Combined angiotensin
subtype 1 receptor and neprilysin inhibition, which not only lowers blood pressure, but
also ameliorates insulin sensitivity [59], had a beneficial effect on cardiovascular outcomes
in patients with heart failure [60]. Overall, these findings provide an impetus investigating
the potential of mINDY inhibition in improving metabolic disease and blood pressure in
more detail.

6. Conclusions

Arterial hypertension is often accompanied by metabolic diseases such as obesity,
type 2 diabetes, NAFLD, and NASH, and vice versa. Coexistence of these diseases increases
the risk for further cardiovascular and renal comorbidities and complicates treatment.
Although mINDY is an interesting candidate for improving these conditions, inhibition
of mINDY would likely need to be specifically targeted to individual organs, such as the
liver, in order to avoid off-target effects in the brain. While there are no genetic association
studies linking SLC13A5 variants to human metabolic diseases [61], data from cell-based,
mouse, and human studies indicate that inhibition of mINDY comprises an interesting and
promising strategy to target metabolic and cardiovascular traits within the cardiometabolic
disease spectrum.
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