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An integrative method to decode regulatory logics
in gene transcription
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Modeling of transcriptional regulatory networks (TRNs) has been increasingly used to dissect

the nature of gene regulation. Inference of regulatory relationships among transcription

factors (TFs) and genes, especially among multiple TFs, is still challenging. In this study, we

introduced an integrative method, LogicTRN, to decode TF–TF interactions that form TF

logics in regulating target genes. By combining cis-regulatory logics and transcriptional

kinetics into one single model framework, LogicTRN can naturally integrate dynamic gene

expression data and TF-DNA-binding signals in order to identify the TF logics and to

reconstruct the underlying TRNs. We evaluated the newly developed methodology using

simulation, comparison and application studies, and the results not only show their

consistence with existing knowledge, but also demonstrate its ability to accurately

reconstruct TRNs in biological complex systems.
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Unraveling mechanisms of transcriptional gene regulation
in eukaryote organisms is fundamental to the under-
standing of biological processes responsible for develop-

ment of organs, progression of diseases and other complex
biological events like aging. To unravel these mechanisms,
systems biology approaches aim to model regulatory relationships
among molecules in a biological system as a whole rather than as
individual entities. A robust systems biology approach is possible
only through application of computational modeling theory with
high-throughput technologies. Modeling approaches are mainly
devoted to infer transcriptional regulatory networks (TRNs) that
accommodate direct regulations from TFs to their target
genes. TRNs can be inferred using either gene expression data or
DNA-binding information1, 2. Derived networks based exclu-
sively on expression data represent possible functional relation-
ships among genes, but not all relationships are associated
with DNA binding and altered gene function. High-throughput
TF-DNA-binding data provides abundant information to
investigate the physical interactions between TFs and genes.
Coupling chromatin immunoprecipitation with next-generation
sequencing (ChIP-seq) allows high fidelity mapping of TFs
to genomic locations3, and detection of TF-binding regions on
DNA sequences. Thus, TF-DNA-binding signals can be employed
to reconstruct TRNs. However, TF binding is not always func-
tionally involved in the regulation of gene transcription. The
complexity of these approaches thus poses significant challenges
to computational biologists.

Integrative analyses that interrogate different types of omics
data are more appealing in revealing transcriptional relationships
than non-integrative analyses. A number of studies have made
useful attempts to predict TF target genes by combining gene
expression profile and TF-binding data. Examples include NCA4

and fastNCA5 using matrix decomposition, APG using Graphical
Gaussian model6, linear model with LASSO GEMULA7, and
COGRIM using Bayesian hierarchical algorithm8. The Dialogue
for Reverse Engineering Assessments and Methods (DREAM)

started a concerted effort by developing various algorithms
to understand the transcriptional gene regulation from high-
throughput data9–11. Previously, we developed integrative
methodologies to identify network-based TF target genes, such as
sparse matrix decomposition12, and Graphical Gaussian model
with partial least squares13. Although most of these methods
show a capacity to integrate the two types of data, it remains
challenging to capture co-regulatory features of TFs. This is
because the inferred TRNs characterize neither the interactive
nature between TFs in regulating the target genes nor the tran-
scriptional dynamics. Consequently, these existing methods or
approaches cannot effectively decode the cooperative regulation
of multiple TFs on dynamic gene expression. Thus, the resultant
networks are still far from being adequate to model true tran-
scriptional gene regulation.

Logic gates, which utilize more than one input, have long been
used to describe complex interactive relationships among TFs14.
The regulatory function specified in cis-regulatory sequence in sea
urchin system was represented as Boolean logics among seven TF-
binding sites that direct the spatial expression and repression of the
Endo16 gene15. In vertebrate neural tube, the regulatory logic of a
transcriptional network which links three TFs to Sonic Hedgehog
signaling, was found to be responsible for differential spatial and
temporal gene expression16. In the skeleton-genic mesoderm of sea
urchin embryo, a regulatory logic of double negative gate was
able to prevent the expression of a global transcriptional repressor
that establishes the skeleton-genic regulatory state through a
lineage-specific repressor, Pmar-117. Typically, regulatory logics
were applied on binary variables, which only provide qualitative
features, and thus may not be adequate to describe the complicated
dynamic behaviors in gene expression18–20.

In this study, we present a comprehensive methodology,
LogicTRN, by integrating gene expression data and TF-DNA-
binding information to decipher TF regulatory logics in gene
transcription. The newly developed method can quantitatively
characterize logic relations between TFs by combining
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cis-regulatory logics and transcriptional kinetics in one single
model framework. The derived TF logics are then used to infer
the putative TF cooperation in regulating target genes so as to
reconstruct TRNs. We conducted simulation and comparison
studies to evaluate the performance of LogicTRN. Then we
applied this method to analyze data sets representing the
estrogen-induced breast cancer and human-induced pluripotent
stem cell (hiPSC)-derived cardiomyocyte (CM) development. The
derived networks are able to explore the nature of transcriptional
gene regulation with biological meanings, which are consistent
with previously experiments. Successful application of LogicTRN
shows its ability to identify TF targets and to reconstruct TRNs.

Results
Computational framework of LogicTRN. The computational
framework of LogicTRN is illustrated in Fig. 1. Briefly, to identify
TF regulatory logics in a biological process, two types of data are
required to start LogicTRN, including time series gene expression
profiles (A) and TF-DNA-binding signals (B). For a given gene
TG, TF1, TF2, and TF3 are assumed as three putative TFs that
can bind its promoter. We extract the dynamic expression data
of TG from (A), and the binding signals of the three TFs on
TG from (B). Based on (A) and (B), the TF-DNA-binding
occupancies can then be estimated (C). Third, the transcriptional
regulatory model in LogicTRN is represented with a group of
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Fig. 2 Identification of URLs in a simulation study. a Each subplot corresponds to a target gene, in which the x-axis represents all 66 URLs, and the y-axis
represents the predicted probabilities of the URLs (normalized by dividing with the largest value), as illustrated in small white circles ‘○’. The true
regulatory logics are marked with green circles, while the predicted logics are marked with red squares. It can be seen that LogicTRN correctly identifies the
regulatory logics for five of six genes. b ROC curve and AUC of network reconstruction in the simulation study. The average ROC curve and its dynamic
range are obtained from 1000 runs with random settings in each run. The red line represents the performance of random guesses
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model equations with the inputs of gene expression data and
TF-DNA-binding occupancies. Solving the model equations can
lead to identification of the regulatory logics of the target gene
TG (D) using the method described in Methods section and
Supplementary Information. Two resultant logics, TF2&TF3, and
TF2¬TF1 are identified to regulate TG (E). Repeatedly applying
the same procedure for each gene, we thus can reconstruct a
TR`N that links all the TF logics and their regulated genes (F).
The identified logics of a target gene provide a hypothesis
for exploring the underlying mechanism of its transcriptional
regulation (G).

Simulation study. To evaluate the reliability of LogicTRN, we
constructed a simulation platform of six nodes representing TF
proteins (when used as regulators) and genes (when used
as targets). The platform was configured to simulate the process
of transcriptional gene regulation to generate dynamic
gene expression data and TF-DNA-binding occupancy after
setting the regulatory logics and kinetic parameters. The kinetics
of TF gene expression on each node are described as
dymðtÞ=dt ¼ Is tð Þ � kdmym tð Þ, where ymðtÞ is gene expression at
time t, Is(t) is the gene initiation rate, and kdm is gene degradation

rate. The kinetics of TF protein are defined as
dPðtÞ=dt ¼ KTrymðtÞ � kPymðtÞ, where ym(t) is gene expression at
time t, Is(t) is the gene initiation rate, and kdm is gene degradation
rate. The kinetics of TF protein are defined as
dPðtÞ=dt ¼ KTrymIs tð Þ � kPym tð Þ, where KTr is protein transla-
tion rate, P(t) is protein concentration level and kP is protein
degradation rate. The TF-DNA occupancy is defined by
Y tð Þ ¼ KrP tð Þð Þ= Dn þ KrP tð Þð Þ, where Kr is the relative equili-
brium constants defined as the ratio between the specific and the
non-specific equilibrium constants, which normally ranges from
104 to 106. Dn represents the number of unoccupied nonspecific
sites, which can be regarded as a constant approximated using
90% of the total genome.

For simplification purposes, we restricted each gene to
regulation by at most two TFs (self-regulation is allowed). Thus,
a total set of 66 combinatorial logics is available for each gene.
The ranges of kinetic parameters are set as follow: messenger
RNA (mRNA) degradation rate ranges from 0.005 to 0.015
(percentage per minute), the regulatory strength ranges from
1.0 to 3.0; the maximal transcription initiation rate is from 20 to
100 mRNA per minute. Other parameters are fixed as below: gene
transcriptional delay is set to 20 min; protein translational delay
20 min; protein translational rate 2 molecules/mRNA*minute;
protein degradation rate is set to 0.01, 0.009, 0.008, 0.007, 0.006,
and 0.005 percentage per minute for protein a, b, c, d, e, and f,
respectively; and relative equilibrium constants on TF Gene A, B,
C, D, E, and F were fixed as 10,000, 14,000, 20,000, 24,000, 30,000,
and 40,000, respectively.

Based on the data generated by the platform, LogicTRN was
implemented to predict the TF logic on each gene. Implementa-
tion of LogicTRN is as follows: Step one, use all of the six TFs as
potential regulators for each gene. Step two, construct the
signatures of 66 unique regulatory logics (URLs) based on all
72 composite variables (Supplementary Data 1). Step three,
construct the model equations using the gene profiles and
TF-DNA-binding occupancy data generated by the simulation
platform. Step four, conduct LASSO regression21, 22 on the group
of model equations of a gene to obtain a coefficient matrix.
Step five, calculate the confidence value of each URL according to
the coefficient matrix. The URL with the highest confidence value
will be chosen as the dominant logic. As such, both the regulator
TFs and logic can be determined for a target gene.

Figure 2 shows the results of the simulation. In Fig. 2a, each
subplot corresponds to a target gene, in which x-axis shows all
the 66 URLs and y-axis represents the confidence value. The
confidence values of all the URLs are illustrated with small white
circles. The true regulatory logics are marked with solid green
circles, while the predicted logics are marked with red squares. It
can be seen that LogicTRN correctly identified the regulatory
logics for five out of six genes in this example. To evaluate the
overall accuracy and reliability of LogicTRN in logic prediction,
we performed the above procedure 1000 times. For each run, the
regulatory logics and kinetic parameters were randomly set for
each gene. We used the receiver operating characteristic curve
(ROC) to evaluate the accuracy of logic identification. Upon the
ranked logics of a gene predicted by LogicTRN, the threshold of
confidence value was gradually reduced to involve more logics in
prediction. The true-positive rate (TPR) and false-positive rate
(FPR) of logic identification were obtained by comparing the
prediction with the true logics. The ROC is shown in Fig. 2b, and
the area under the curve (AUC) is 0.943, suggesting that logics
generated by LogicTRN is highly accurate and reliable.

Comparison study. To further examine the efficiency or accuracy
of LogicTRN in identifying the target genes of TFs, we compared
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LogicTRN with existing methods COGRIM8, APG6, NCA4, and
PTHGRN13 that are capable of integrating gene expression and
TF-DNA-binding data. The four methods and LogicTRN were
independently applied to run mouse embryonic stem cell (mESC)
data set (Supplementary Data 2, Supplementary Note 1). Since
these existing approaches do not accommodate TF regulatory
logics, we only compared the methods on the accuracy of
predicting TF target genes. Figures 3a, b show the ROC and
Precision-Recall (PR) curves of the five methods on mESC,
respectively. The area under the ROC curve and PR curves,
namely ROC-AUC and PR-AUC, were calculated to represent the
performance of a prediction. It can be seen that LogicTRN has the
highest ROC-AUC (0.935) among the five methods on the mESC
data set, which are much higher than the ROC-AUCs of other
methods. Similarly, the PR-AUC of LogicTRN is 0.301 (using all
negatives), again is the highest among all the methods. Both
results indicate that LogicTRN is a more accurate method for
identification of TF target genes.

TRNs in the E2-induced breast cancer development. The
deregulation of Estrogen Receptor alpha (ESR1) is a major factor
causing pathogenesis of breast cancer. Estrogen Receptor-positive
tumors, accounting for 60–70% of breast cancer, use steroid
hormone estradiol (E2) as their main growth stimulus. ESR1 is
able to interact with many TFs, cofactors, and growth factor-
activated membrane pathways to form the regulatory machinery
which will modulate cancer-related biological processes23, 24. To
evaluate the applicability of LogicTRN in biological systems, we
identified regulatory logics formed by ten breast cancer-related
TFs ESR1, FOXA1, FOXM1, GATA3, CEBPB, JUN, FOS, JUND,
EP300, and CTCF on regulating target genes, by integrating times
series gene expression data of the E2-induced tumor progression
and ChIP-seq-binding data of these TFs (Supplementary Note 2).

We first determined how the ten TF genes are regulated by
logics. Figure 4 shows logic networks linking the ten TFs at early
stages (T1–T2, Fig. 4a) and late stages (T2–T3, Fig. 4b), in which
the three parts at left, middle, and right represent regulators,
logics and target genes, respectively. The resultant networks
indicate that 15 (early stages, Fig. 4a) and 10 (late stages, Fig. 4b)
logics control the dynamic transcription of the TF genes.
Noticeably, ESR1 and GATA3 logics are dominant, and in
particular at the early stage. ESR1 is well known as a master
player by interacting with other TFs, that were previously
implicated in breast cancer, such as GATA3, FOXA1, and
EP30025, AP1 (JUN and FOS)26, 27, FOXM128, and CEBPB29. In
an inferred TRN, ESR1 interacts with other TFs such as AP1,
GATA3, and CEBP to mediate distinct biological functions in
breast cancer cells30. Our analysis validates ESR1 function as a
main regulator linking cancer-related TFs, especially GATA3 to
promote breast cancer development.

Next, we investigated transcriptional regulation of TF logics on
their downstream genes. Supplementary Data 4 provides the list
of target genes of all the identified logics, in which top ranked
logics were found to regulate a majority of the differential genes at
the two stages. It is noticed that these differential target genes
of the top ranked logics recruited by LogicTRN mainly involve
cell cycle, cell proliferation, and apoptosis (Table 1). We evaluated
the enrichment of the predicted logics and their target
genes among all the differentially expressed genes by a statistical
test (Supplementary Methods). To verify the reliability of the
enrichment, we set-up the negative controls (Supplementary
Methods) by collecting the logics beyond the enriched logics but
have the same TFs involved. As shown in Supplementary Fig. 1A,
B, most of the negative controls have higher p-values than the
enriched logics in human breast cancer, indicating that top

ranked logics determined by our method can recruit more
differentially expressed genes. GATA3 logics are highly enriched
and can target the largest number of differential genes at early
stages. We re-organized the top 15-ranked logics and their
differential targets, and constructed the E2-responsible TRNs
(Supplementary Fig. 2). In particular, GATA3 and ESR1 regulate
cell cycle and apoptosis by cooperating with other TFs, as
shown in Fig. 5. At early stages, GATA3 or ESR1 logics
mainly upregulate CDC25A, E2F1, and E2F2 that control G1 to
S transition and cell proliferation, and downregulate apoptotic
genes BCL2L1 and CXCR4 (Fig. 5a). By contrast, at late
stages, ESR1 and GATA3 interact with FOXM1, JUND, and
CEBPB to upregulate cyclins B and A, CDC25C and CDC20 that
control G2 to M transition (Fig. 5b). The regulation of gene
expression at late stages is carried out by logics of ESR1, GATA3,
and a broad set of TFs. The LogicTRN analysis provides evidence
that GATA3 and ESR1 are key regulators in E2-induced cell
proliferation of breast cancer cells. Their regulatory function is by
targeting G1 to S and G2 to M of cell cycle at different time
periods, respectively.

GATA3 and FOXA1 have been demonstrated as two co-TFs
functionally linking with ESR1 in modulating the estrogen
response at the transcriptional level25. GATA3 was found to act
upstream of FOXA1 in mediating ESR1 binding by analyzing
ChIP-seq-binding signals in breast cancer cells31. In fact, our
result supports co-regulation of ESR1 and GATA3 on FOXA1 at
the early stage (Supplementary Fig. 7A). In breast cancer, the
direct binding of ESR1 on FOXM1 promoter was confirmed both
in vitro and in vivo32. We repeated this result, and detected joint
regulation of ESR1 with CEBPB on FOXM1 during the E2-
induced response (Supplementary Fig. 7A). In addition, several
other logics are consistent with experimental validation, such as
GATA3¬FOXM133, GATAs¬EP30034, and ESR1&GATA335.
Our result supports the perspectives regarding role of ESR1 in
leading to transcriptional programs underlying breast
tumorigenesis24, 36, 37.

To further validate the predicted logics, we analyzed the
influence of various logics on their target genes after TF
knockdown (See Methods). According to our model, both TFs
in a AND logic, or the activator TF in a NOT logic, should be
more crucial to the expression of the target gene. For instance,
after knocking down CEBPB, the distribution of GATA3&CEBPB
target genes displays significant larger variations comparing to
GATA3|CEBPB (p-value= 0.0002, Supplementary Fig. 3A). This
result is consistent with the definition of the regulatory logic,
suggesting the predicted GATA3&CEBPB is likely to be true.
Consistently, the target genes of the predicted CEBPB¬FOXM1
are more affected by knockdown of CEBPB, comparing to
FOXM1¬CEBPB (Supplementary Fig. 3A). Meanwhile, the target
genes of the predicted ESR1&GATA3 are more affected by
knockdown of ESR1, comparing to GATA3¬ESR1 and ESR1|
GATA3 (p-value< 0.001, Supplementary Fig. 3B). Similar
results were observed when knocking down GATA3
(Supplementary Fig. 3C). The identified E2-responsible TRNs
provide evidence that ESR1 form modulators with co-TFs or
cofactors to regulate the downstream genes, especially with
GATA3 to promote E2-inducd gene expression programs in
breast cancer.

TRNs in hiPSC-derived cardiomyocyte differentiation. Devel-
opment of embryonic CM is associated with dynamic changes in
gene expression conferring biological functions to CM formation.
The altered gene expression could be underlined by a set of
cardiac TFs that form TRNs, such as MESP1, MEF2C, GATA4/6,
NKX2-5, TBX5, and HAND1/2. These TFs play critical roles in
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regulating cardiac lineage commitment38–40. However, it remains
unclear how these TFs interact with each other to modulate
dynamic progression from human pluripotent stem cells to CM
maturation. To solve this challenge, we applied LogicTRN to
integrate a time series gene expression profile of the hiPSC-
derived CM differentiation with binding data of the eight TFs
(Supplementary Note 3).

First, we investigated how the cardiac TFs form logics to
regulate themselves. There are 12 logics found to target the eight
TF genes at the T1-T2 and T2-T3 stages, respectively (Supple-
mentary Fig. 4). The derived networks show that MESP1 is a
primary regulator controlling/triggering transcription of other TF
genes, supporting MESP1 function as a master player in
determining cardiac cell lineage commitment41, 42. This result is
consistent with ChIP-seq experiments in mouse showing that
Mesp1 directly binds to regulatory DNA sequences located in the
promoter of many key cardiac TFs, resulting in a rapid
upregulation of Hand2, Nkx2-5, Gata4, Mef2c43. By contrast,
GATA6 interactions with other TFs are likely mediated through
different mechanisms, such as competitive or inhibitory actions
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Fig. 4 Regulatory logics formed by ten TFs during the E2-treated breast cancer development. Time-course gene expression microarray data was employed.
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Table 1 Top-ranked TF regulatory logics identified in breast
cancer

Regulatory logics No. of differential
target genes

Pathways or processes
involved

T1-T2 stage
GATA3 68 Apoptosis, cell cycle,

proliferation
CEBPB 24 Migration, apoptosis
ESR1 22 Cell cycle, proliferation
GATA3|CEBPB 22 Cell cycle, apoptosis
GATA3¬EP300 20 Cell cycle
EP300 19 Cell cycle, proliferation

T2-T3 stage
ESR1 36 Cell cycle
GATA3 27 Cell cycle
FOXM1 22 Cell cycle, proliferation
CEBPB 13 Migration, apoptosis
GATA3|FOXM1 11 Cell cycle, proliferation
JUND¬FOXM1 10 Cell cycle
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with other TFs such as MESP1, MEF2C, and TBX5 (Supplemen-
tary Fig. 4).

Next, we conducted LogicTRN analysis to identify cardiac TF
logics in directing CM differentiation. Among all the predicted
logics during the three stages of the CM differentiation
(Supplementary Data 5), the top ranked logics account for
regulating the majority of differential genes. Similarly, we showed
the top ranked enriched logics in hiPSC-CM more reliable than
negative controls (Supplementary Fig. 1C, D). These differential
target genes are mainly involved in heart development, contrac-
tion and embryonic development (Table 2). We constructed the
cardiac TRNs based on the top 15-ranked logics and their
differential downstream genes, and show MESP1 and GATA6 as
two dominant TFs to form logics in gene networks associated
with heart development, embryonic development, and cell cycle
(Supplementary Fig. 5). In particular, MESP1 logics dominate
downregulation of pluripotentcy TFs, SOX2, NANOG, OCT4, and
ZIC2 that trigger the hiPSC differentiation at early stages (Fig. 6a).
Meanwhile, MESP1 is also shown to cooperate with GATA6, as
well as other cardiac TFs such as TBX5, HAND1/2, and NKX2-5
to activate expression of genes important for Ca handling
(CACNA1C, SLN, RYR2, and ATP2A2), contraction (MYL4,

MYL7, MYH6, and TNNT2) and heart development (IRX4,
NPPA, and NPPB). These results confirm the function of MESP1
in initiating cardiac lineage differentiation through targeting key
components of cardiac relevant pathways or biological processes.
At late (T2-T3) stages, MESP1, GATA6, and NKX2-5 logics
become more crucial by jointly upregulating the cardiac gene
programs (Fig. 6b).

Our prediction is consistent with the published experimental
data: MESP1 promotes the expression of cardiac genes Myh6,
Myl2, Myl7, and Tnnt242. Cooperation of GATA4/6 and NKX2-5
is able to facilitate the expression of contractile genes44, 45.
GATA6 and other GATA members including GATA4 were
identified as essential regulators of NPPA and NPPB46.

Moreover, we validated the predicted logics by examining the
influence of TF overexpression. For example, the target genes of
predicted logics MESP1, MESP1¬GATA6, and MESP1&HAND1
are more affected by overexpression of MESP1, compared to
other MESP1 logics (Supplementary Fig. 6). Besides, our previous
study established a coexpression network among GATA4,
HAND1, NKX2-5 and TBX5 associated with human ESCs-
derived ventricular development47. Supplementary Fig. 7B pre-
sents a model showing how the logics formed by MESP1 and

b

ESR1 CEBPB

CEBPB|ESR1

CEBPB

CHEK1 E2F2 MCM2CDC7PKMYT1E2F1
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Fig. 5 E2-responsible TRNs in breast cancer. Time-course gene expression microarray data was employed. The data represents 12 time points 0, 1, 2, 4, 6,
8, 12, 16, 20, 24, 28, and 32 h (h) following the E2 treatment, which was divided into three stages, T1 (0–2 h), T2 (4–20 h), and T3 (24–32 h). For
a (at T1-T2 stage) and b (at T2-T3 stage), triangle nodes in blue refer to TFs, and triangle nodes in light blue are TF logics. The target genes in different
pathways of logics are represented in oval nodes (cell cycle: G1 to S at T1-T2 stage, G2 to M at T2-T3 stage) and diamond nodes (apoptosis). Nodes in red
and green represent upregulated and downregulated genes, respectively. Logic relationships include AND (&), NOT (¬), and OR (|)
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GATA4/6, HAND2, TBX5, and NKX2-5 control transcription of
two CM marker genes TNNT2 and MYL7.

Indeed, the LogicTRN-defined logics and the findings support
the previous conclusion that MESP1 functions in driving
cardiovascular specification41. MESP1&GATA6 cooperative logic
likely acts as an important cardiac TF module, which would be
valuable for further experimental testing. This application reveals
logic relations of cardiac TFs and orchestrates dynamic TRNs that
instruct sequential differentiation and maturation of hiPSC-
derived CM.

Discussion
A major goal in systems biology is to develop appropriate com-
putational models that are able to integrate various experimental
data for dissecting biological complexity in transcriptional gene
regulation. To address this challenge, we combine cis-regulatory
logics and transcriptional kinetics to develop a biologically
plausible model. Theoretically, TFs can form many logics in gene
regulation, but in reality, only a few of them become the driving
force in a biological process. LogicTRN has the ability to identify
the dominant logics in an accurate and high-throughput way. In
LogicTRN, the change of gene expression is defined as a function
of TF-binding occupancies and kinetic parameters. Unlike exist-
ing integrative analyses that treat gene expression and TF-DNA
binding as two separate processes, our approach puts these two
types of data into one single model, which is more biologically
meaningful.

One obstacle is that transcriptional kinetic function is essen-
tially nonlinear, which makes it difficult to develop computational
methodologies. Here, we adopted Taylor expansion to convert the
nonlinear kinetic function to a polynomial function. The usage of
the polynomial function provides a general mathematic form to
simultaneously involve different regulatory logics. By assuming
each logic has a probability of being involved in regulating a
target gene, we are able to construct the model equation. Solving
the model equations can lead to a determination of the TF logics.

One challenge in developing LogicTRN is that the number of
combinatorial logics increases drastically as more TFs are
involved. To make it more computationally feasible, we converted
the full model into a pairwise-logic model. The pairwise-logic
model only identifies the dominant two-TF logics and thus can
greatly reduce the model’s complexity.

To test the performance of LogicTRN, we conducted a simu-
lation study. The simulation platform provides us a fully con-
trolled environment to assess the accuracy of network
reconstruction. In this simulation, we repeated the experiments
with random settings in each run to reconstruct the TRN. The
overall results with 1000 runs suggest that our method is very

accurate and reliable in identifying the regulatory logics. We next
compared LogicTRN with four existing algorithms of TF target
identification4–6, 8, 13 using one real-world dataset. LogicTRN
performs the best in detection of known TF target genes. We
applied LogicTRN to reconstruct the TRNs during E2-induced
breast cancer cell development and the hiPSC-derived CM dif-
ferentiation. In breast cancer, certain bioinformatics methods
have tried to define interactions among ESR1, co-TFs, and genes.
However, they did not elucidate logic relationships between TFs
for the regulated genes. In fact, these methods are also based on
the integration of gene expression data and ChIP-seq-binding
peaks or binding sites of TFs for qualitative identification of target
gene. For example, Expectation Maximization of Binding and
Expression pRofiles employed an unsupervised machine learning
algorithm to infer the gene targets of sets of ESR1 and co-TFs48.
Using a Bayesian multivariate modeling approach, one can reveal
the dynamic properties of the ESR1-centered regulatory network
and associated distinct biological functions30. Similarly, a logistic
regression model coupling with dynamic Bayesian network was
used to construct the dynamic networks at four developmental
stages from mouse ESC to CM through combining RNA-seq
and ChIP-seq data of cardiac TFs49. LogicTRN establishes a
strong link with regulatory logics of ESR1 and GATA3 in
E2-induced breast cancer cell development or MESP1 in
the hiPSC-derived CM differentiation, as well as their related
pathways or functional processes, in agreement with viewpoints
previously drawn from biological experiments. The result from
both computational modeling and experimental consistency
suggests that LogicTRN is suitable for decoding co-regulatory
features of TFs and their target genes in other biological systems.
To our knowledge, this is the first use of regulatory logics
for uncovering dynamic transcriptional gene regulation in a high-
throughput manner.

In summary, LogicTRN is a systematic approach developed
based on the well-established theories of cis-regulatory logics and
transcriptional kinetics, which provides an efficient way to
directly infer TF–TF interactions in regulating target genes.
Through simulation and comparison studies, our model show its
reliability and robustness in capturing TF regulatory logics and
identifying targets of TFs, and in constructing TRNs. Applica-
tions in human breast cancer and the hiPSC-derived CM devel-
opment demonstrate consistency between the identified TF gene
regulation and the previous experiments. With increasing num-
ber of dynamic high-throughput data of gene expression and
multiple regulator binding signals, our method would provide a
powerful tool in interpreting the dynamics and complexity of
transcriptional gene regulation. In the future, it should be possible
to extend our method to cover gene regulation by other

Table 2 Top-ranked TF regulatory logics in hiPSC-derived CM differentiation

Regulatory logics No. of differential target genes Pathways or processes involved

T1-T2 stage
GATA6 103 Heart, contraction, embryonic
MESP1 96 Heart, cell cycle, embryonic
MESP1¬GATA6 82 Heart, contraction, embryonic
TBX5|MESP1 60 Heart, cell cycle, embryonic
GATA6|MESP1 57 Heart, contraction, cell cycle
HAND2|MESP1 48 Cell cycle, embryonic

T2-T3 stage
GATA6 83 Heart, contraction, MAPK
MESP1&NKX2-5 45 Contraction, cell cycle
MESP1 37 Contraction, cell cycle
HAND2&MESP1 32 Heart, contraction
HAND1¬GATA6 30 Heart, contraction
MESP1¬NKX2-5 28 Contraction
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regulators, such as epigenetic regulators, and other DNA-binding
proteins. Such an integrated systems biology approach should
help researchers develop accurate model transcriptional rela-
tionships among molecules in a biological system as a whole, thus
permitting greater understanding of complex biological processes
associated with development, aging, and disease.

Methods
Transcriptional kinetics of regulatory logics. In study of transcriptional kinetics,
the concentration of mRNA is often considered as the result of two opposite
processes: gene synthesis and degradation50. When RNA polymerase binds to the
promoter of the target gene, transcripts are initiated. If all the newly synthesized
pre-RNAs can become mature messengers, then the rate of mRNA synthesis
should be equal to the rate of transcript initiation. Therefore, the change of mRNA
expression during a time interval equals to the rate of transcript initiation, minus
the rate of mRNA degradation. Let ym(t) represent the gene expression at time t,
the transcriptional kinetics can be expressed as an ordinary differential equation
(ODE)51:

dym tð Þ
dt

¼ Is tð Þ � kdmym tð Þ ð1Þ

where Is(t) is transcript initiation rate, and kdm denotes mRNA degradation rate
which is normally treated as a constant during a process. The transcript initiation
rate, however, is controlled by TF-DNA binding occupancy, which is defined as the
probability that the gene promoter sites are occupied by TFs. Let Y(t) denote the
binding occupancy of a TF at time t to its target gene, then IsðtÞ can be represented

as the regulatory function below51:

Is tð Þ ¼ Imax 1� exp � kbYðt � TmÞ
Imax

� �� �
ð2Þ

where Imax is the physical limit of transcript initiation rate determined by the
RNA elongation speed and the size of the polymerase, kb is the TF activation
strength, and Tm the transcriptional delay.

When two TFs are engaged in regulating a gene, the TFs might interact with
each other in different ways. TF interactions are often represented as basic logics
including AND, OR, and NOT15, 52–54. The AND logic describes the situation that
the gene is only activated when the two TFs concurrently binding to the gene
promoter, and OR logic represents that the gene can be independently activated by
either of the two TFs, while NOT logic characterizes the inhibitive operation.
Transcriptional initiation under different logics is expressed as different functions.
The regulatory function of AND and OR logics can be written as below51:

AND: A&B Is tð Þ ¼ Imax � 1� exp � kbAB
Imax

YA t � Tmð Þ � YB t � Tmð Þ
� �� �

ð3Þ

OR: A Bj

Is tð Þ ¼ Imax
2 � 1� exp � kbA

Imax
YA t � Tmð Þ

� �� �
þ 1� exp � kbB

Imax
YB t � Tmð Þ

� �� �n o
ð4Þ
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Fig. 6 The TRNs of hiPSC-derived CM differentiation. Time-course gene expression microarray data was employed. The data represents 0, 3, 7, 10, 14, 20,
28, 35, 45, 60, 90, and 120 days following the hiPSC-derived CM differentiation, which was divided into four stages, T1 (0–3 days), T2 (7–20 days),
T3 (28–45 days), and T4 (60-120 days). For a (at T1-T2 stage) and b (at T2-T3 stage), triangle nodes in blue refer to TFs, and triangle nodes in light blue
are TF logics. The target genes in different pathways of logics are represented in oval nodes (contraction), diamond nodes (stem cell pluripotency),
hexagon nodes (Ca handling), and rectangle nodes (heart development). Nodes in red and green represent upregulated and downregulated genes,
respectively. Logic relationships include AND (&), NOT (¬), and OR (|)
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Note both AND and OR logic satisfies the commutative law, which indicates
that switching of the sequence of operators does not change the meaning of the
logic.

The NOT logic is used to represent the repressive regulation. As gene
transcription in eukaryote cells is “off” by default, so for any expressed genes, there
must be at least one activator in its regulatory logic. Repressor TFs modulate gene
expression by interfering or inhibiting binding of the activator TFs. Thereby the
regulatory function of NOT logic with an activator A and a repressor B can be
written as:

NOT : A:B Is tð Þ ¼ Imax � 1� exp � kbA
Imax

YA t � Tmð Þ � 1� YB t � Tmð Þð Þ
� �� �

ð5Þ
Note the NOT logic does not satisfy the commutative law, i.e., A:B and B:A

are different logics.

Polynomial functions of regulatory logics. The nonlinear regulatory functions in
(2)–(5) make it difficult to computationally identify the model. To address this
issue, we apply Taylor expansion on the nonlinear regulatory function and obtain:

Is tð Þ ¼ Imax �
X1
n¼1

�1ð Þnþ1 kb
Imax

� �n

� Yn t � Tmð Þ=n!
� �

ð6Þ

where n is the order of Taylor expansion. Substituting (6) into (3)–(5) and
omitting the term of t � Tmð Þ for simplification purpose, we obtain the polynomial
regulatory functions:

AND : A&B Is tð Þ ¼ Imax �
X1
n¼1

�1ð Þnþ1 kbAB
Imax

� �n

� Yn
A � Yn

B=n!

� �
ð7Þ

OR : AjB IsðtÞ ¼ Imax=2ð Þ �
X1
n¼1

�1ð Þnþ1 kbA
Imax

� �n

� Yn
A þ �1ð Þnþ1 kbB

Imax

� �n

� Yn
B=n!

� �

ð8Þ

NOT : A:B Is tð Þ ¼ Imax �
X1
n¼1

�1ð Þnþ1 kbA
Imax

� �n

� Yn
A � 1� YBð Þn=n!

� �

ð9Þ

Multi-TF regulatory function. The binary logic between two TFs can be extended
to combinatorial logic to represent interactions among multiple TFs. For example,
‘‘A&B&C’’ is used to describe that a gene is only activated when the TFs A, B, and
C are concurrently binding to the gene’s promoter. In fact, there could be unlimited
number of combinatorial logics for multiple TFs, if a TF can be used repeatedly.
Here, we define the concept of URL, which restrict that a TF can at most occur
once in the logic. For instance, ‘‘A’’, ‘‘A|B’’, and ‘‘A&B|C’’, are legal URLs, whereas
“(A&B)|B”, “A:A”, and “A&B&C|C” are illegal because they include duplicate TFs.
According to URL, one can obtain a closed set of combinatorial logics for a group
of TFs. For instance, two TFs can form total six URLs (Supplementary Methods).
The number of URLs for a group of TFs can be computed according to Supple-
mentary Methods.

For a target gene, we assume that each of the URLs has a probability of being
involved in its regulation. Let Ri represent the ith URL, ωi be the probability of Ri,
and Ii be the contribution of Ri to gene initiation. Then, the overall gene initiation
by all the URLs can be expressed as:

Is ¼
XNR

i
ωiIi ð10Þ

where NR is the number of URLs for this target gene.
Let Y1;Y2; � � � ;Yp represent the TF-DNA-binding occupancies of a number of

p TFs on the target gene. We first define a general composite variable,
Zi1 ;���ip ¼ Yi1

1 Y
i2
2 � � �Yip

p , where i1; � � � ip 2 ½0; n�, and n is the order of Taylor
expansion in the polynomial regulatory function. Then, the set of composite
variables, Z, can be expressed as fZi1 ;���ip ¼ Yi1

1 Y
i2
2 � � �Yip

p ji1; � � � ip 2 ½0; n�g. We
found that the regulatory function of a URL, regardless its specific TFs or logics,
can be generally expressed as:

Ii ¼
Xn

ip¼0
� � �

Xn

i2¼0

Xn

i1¼0
ai1 ;i2 ;���ip � Zi1 ;���ip
� �þ εi ð11Þ

where ai1 ;���ip is the coefficient associating with the composite variable Zi1 ;���ip ,
and εi is the truncation error of Taylor series. Equation (11) means that the
regulatory function of a URL can be converted to a polynomial function of a set of
common composite variables. For simplification purpose, we re-organize
fZi1 ;���ip ¼ Yi1

1 Y
i2
2 � � �Yip

p ji1; � � � ip 2 ½0; n�g to be fZjjj 2 ½1;NZ �g, in which Zj
represents the jth element in the set, and NZ is the number of elements. Using Zj to
replace Zi1 ;���ip , and aij to replace ai1 ;i2 ;���;ip , then (11) can be re-written as:

Ii ¼
XNZ

j¼1
aij � Zj
� �þ εi ð12Þ

The coefficient aij is associated with the ith URL and the jth composite variable,
which in fact is a function of the kinetic parameters (including the TF regulatory

strength and maximal initiation rate). A further elaboration using two-TF
regulation as an example can be found in Supplementary Methods.

The model equation of transcriptional gene regulation. Substitute (12) into (10),
let βj ¼

PNR
i ωiaij andε ¼

PNZ
i¼1 ωiεi , then we have

Is ¼
XNZ

j¼1
βj � Zj þ ε ð13Þ

Here βj is a function of the kinetic parameters and probability ωi , while βj can
only be specified when p (the number of regulators) and n (the degree of Taylor
expansion) are giving.

Substitute (13) into (1), and convert the differential equation to a difference
equation, we obtain the model equation of transcriptional gene regulation:

ŷm tlð Þ ¼
XNZ

j¼1
βj � Δt

� �
� Zj þ 1� kdm � Δtð Þ � ym tl�1ð Þ þ ε � Δt ð14Þ

where l ¼ 2; � � � ; L are the indices of time points, bj ¼ βj � Δt and b0 ¼
1� kdm � Δt are the regression coefficients, ε′ ¼ ε � Δt is the truncation error, and
Δt ¼ tl � tl�1 is the sampling time interval. In case that the samples are acquired
with equal time interval, then Δt can be treated as a unit value and replaced by 1.
Therefore, the model equation in (14) can be simplified as

ŷm tlð Þ ¼
XNZ

j¼1
βj � Zj þ 1� kdmð Þ � ym tl�1ð Þ þ ε ð15Þ

The model equation describes the relationships between dynamic gene
expression and TF interactions. Theoretically, once the coefficients (β’s) are solved
out from the model equation, the regulatory logics and kinetic parameters can thus
be determined accordingly.

The pairwise-logic model equation. Since the number of URLs increases dras-
tically with the number of TFs (Supplementary Methods), it is not feasible to
computationally solve the model when there are multiple TFs. Here propose to
convert the full model to be a pairwise-logic model, such that to greatly reduce the
number of URLs and the model’s complexity. The TF pairs of a group of p TFs
Au; u ¼ 1; pf g can be expressed as Au;Avð Þ; u 2 1; p½ � and v 2 uþ 1; p½ �f g. For

each TF pair, the URLs and the composite variables are countable according to
Supplementary Methods. The contribution of a TF pair to gene initiation can be
expressed as:

I u;vð Þ ¼
XN

Z u;vð Þ
j¼1

β u;vð Þ
j � Z u;vð Þ

j ð16Þ
Let quv denote the probability involving the TF pair Au;Avð Þ in gene regulation,

the gene regulatory function can be represented as:

Is ¼
Xp
u¼1

Xp
v¼uþ1

quv � Iðu;vÞ ð17Þ

Substitute (16) in (17), we thus obtain:

Is ¼
Xp
u¼1

Xp
v¼uþ1

quv �
XN

Z u;vð Þ
j¼1

β u;vð Þ
j � Z u;vð Þ

j

� �
ð18Þ

Let ZðallÞ ¼ fZðu;vÞ
j ju 2 ½1; p�; v 2 ½uþ 1; p�; j 2 ½1;NZðu;vÞ �g represent the set

of composite variables of all TF pairs, where NðallÞ
Z is the number of elements in

ZðallÞ. Then ZðallÞ can be simplified to fZðallÞ
j jj 2 ½1;NðallÞ

Z �g, and the coefficient set
βðallÞ ¼ fβðu;vÞj ju 2 ½1; p�; v 2 ½uþ 1; p�; j 2 ½1;NZðu;vÞ �g can be simplified to
fβðallÞj jj 2 ½1;NðallÞ

Z �g. Therefore, (18) can be re-written as:

Is ¼
XN

Z allð Þ
j¼1

β allð Þ
j � Z allð Þ

j ð19Þ
Substituting (19) into (1), we can obtain the pairwise-logic model equation:

ŷm tlð Þ ¼
XN

Z allð Þ
j¼1

β allð Þ
j � Z allð Þ

j þ 1� kdmð Þ � ym tl�1ð Þ þ ε ð20Þ
The pairwise-logic model uses much less URLs. For instance, in case of five TFs,

there are 351,816 URLs in the full model, while only 66 URLs in the pairwise-logic
model. Now the problem is how to determine the dominant regulatory logic and
kinetic parameters from experimental data. Here, we introduced a probabilistic
approach to solve the model equation, details are presented in Supplementary
Methods. The algorithm of LogicTRN is presented in the Supplementary Methods.

Comparison among different methods. To compare the performance of different
methods in identifying the target genes of TFs, we conducted widely-used ROC and
PR analyses, respectively. The ROC analysis plots a two-dimensional curve between
TPR and FPR of the predictions, whereas PR curves are to plot precision against
recall. Computational algorithms or methods can be evaluated by analyzing the
AUC of ROC, and PR curves. A high AUC means the better performance of an
algorithm or method in identifying TF target genes. LogicTRN and four methods
COGRIM8, APG55, NCA4, and PTHGRN13, were separately applied to analyze the
input data (Supplementary Note 1). First, we have generated a benchmark set
consisting of a “positive” and a “negative” set. To define the positive set, we
derived the known target genes of the four mouse ESC TFs (Oct4/Pou5fl, Sox2,
Nanog, and Suz12) from our web server Chip-Array256 that is based on ChIP-seq-
binding peaks and experimental testing by TF knockdown or overexpression
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(Supplementary Data 3). A set of genes in Supplementary Data 3 were used as
positive signals if they are present in Affymetrix Mouse Expression 430A Array
and also contain ChIP-seq-binding loci of the four TFs based on binding peak
analysis (Supplementary Data 2). The negative set includes those genes that are
not positives but present in both Supplementary Data 2 and the 430A Array
(see Supplementary Data 3). They represent genome-wide unknown-binding target
genes of the four TFs. The predicted target genes using the five methods were listed
in Supplementary Data 3. To conduct an unbiased evaluation for ROC and PR
analyses, we utilized full size of positives and negatives. Through comparison of
identification of known TF target genes, we are able to assess the performance of
the five methods.

Validation of predicted TF logics. To validate the logics predicted by LogicTRN,
we analyzed the influence of logics to their target genes obtained after knockdown
or overexpression of the engaged TFs. In breast cancer, we analyzed the data set
(GEO accession number GSE31912) that accounts for gene expression profile in
MCF7 breast cancer cells after knockdown of ESR1, GATA3, and CEBPB (Results
see Supplementary Fig. 3). We used the violin plot to show the density distribution
of the expression changes of the target genes regulated by a TF logic. The differ-
ences of the distribution of expression change between each group of target genes
were determined by one-way analysis of variance (ANOVA) using IBM SPSS
Statistics 23. A two-tailed p-value was calculated by ANOVA and corrected by false
discovery rate. A p-value of less than 0.05 was considered statistically significant,
and indicates that the distribution of target genes of a logic formed by two TFs are
influenced significantly by TF knockdown comparing to other logics of the two
TFs. Thus, the TF logic is likely to be true. Similarly, to validate the logics of hiPSC-
CM differentiation, we used the Mesp1 overexpression-treated gene expression
data (GEO database GSE5976). Same analytical approaches were adopted. The
results were shown in Supplementary Fig. 6.

Code availability. The LogicTRN codes used in this study are available at http://
staffweb.hkbu.edu.hk/hlzhu/2017LogicTRN_codes.html or upon request.

Data availability. Microarray and ChIP-seq data were published previously and
are available on GEO (Comparison study: GSE3231 and GSE11724. Application
Study for breast cancer cell: GSE26831, GSE29073, GSE32692, GSE32465,
GSE14664, GSE19013, GSE54855, GSE40129, as well as E-MTAB-223 from
ArrayExpress. Application Study for hiPSC-derived CM: GSE35671. Validation of
predicted TF logics using knockdown or overexpression of TFs: GSE31912 and
GSE5976. All other remaining data are available in the Article and Supplementary
Files, or available from the authors upon request.
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