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Myeloid-derived suppressor cells (MDSCs) constitute an important component in

regulating immune responses in several abnormal physiological conditions such as

cancer. Recently, novel regulatory tumor MDSC biology modulating mechanisms,

including differentiation, expansion and function, were defined. There is growing

evidence that miRNAs and long non-coding RNAs (lncRNA) are involved in modulating

transcriptional factors to become complex regulatory networks that regulate the MDSCs

in the tumor microenvironment. It is possible that aberrant expression of miRNAs

and lncRNA contributes to MDSC biological characteristics under pathophysiological

conditions. This review provides an overview on miRNAs and lncRNAs epiregulation of

MDSCs development and immunosuppressive functions in cancer.

Keywords: myeloid-derived suppressor cells, cancer, miRNA, tumor microenvironment, long non-coding RNAs,

molecular mechanism

INTRODUCTION

Myeloid-derived suppressor cells (MDSCs) are produced due to aberrant myelopoiesis (1) and
represent one of the most pivotal mediators in the orchestration of immunosuppression (2). The
normal development and maturation of myeloid linage cells are essential for the promotion of
innate immunity, however, under pathological contexts such as chronic inflammation or cancer,
normal hematopoiesis is dysregulated, signals that origin from the HSCs niche alter the magnitude
and combination of the hematopoietic output, a characteristic of immune regulation known as
“emergency” hematopoiesis, needed to provide appropriate supply of both myeloid and lymphoid
cells to increased demand (3). In particular, in cancer, modified myelopoiesis generates lineage-
restricted hematopoietic progenitors, resulting in the accumulation of myeloid cells with an
immature state and more importantly with the characteristic as an immune response suppressive
in the bone marrow (4, 5).

Of note, MDSC are considered as not only immature myeloid cells but also matured cells
that could be converted to MDSC. Rivoltini et al. reported that culturing monocytes with
melanoma-derived exosomes in vitro generates cells which have phenotypic and functional
characteristics similar to those exhibited by MDSC (Exo-MDSC). It was indicated that Exo-MDSC
have an increased level of mRNA and release of protumourigenic and immunosuppressive
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cyto/chemokines, decrease the expression of HLA-DR, and
suppress T cell proliferation. This hypothesis is well-supported
by the evidence that peripheral MDSC from melanoma patients
share characteristics of gene-expression and miRNA profile,
phenotypic and functional features of Exo-MDSC (6).

MDSCs are accumulated and expand in the tumor
microenvironment and in the peripheral lymphoid organs
of tumor-bearing hosts (7–9). Several studies indicated the
mechanisms of MDSC-mediated immune suppression and its
expansion (10, 11). Ongoing investigation has shown epigenetic
regulation of MDSCs as a potential approach in attaining this
objective. Indeed, epigenetics states all heritable phenotype
variations in gene expression (active vs. inactive genes)
without any modifications in the underlying DNA sequence.
The mentioned epigenetic modifications enable substantial
adjustability in the gene expression, rather than just genes to be
turned off or on. DNA variation, covalent histone change, and
RNA interference are three systems, fundamental in starting and
maintaining epigenetic silencing. Epigenetic reprogramming of
MDSC’s properties results in the alteration of its features, with
a consequential rearrangement of the tumor milieu instead of
opposing the development and progression of the tumor (12).

More recently, several studies have also unveiled an
important regulatory role for miRNAs and long non-coding
RNAs (lncRNA) in modulating immune responses and in
MDSCs differentiation and functions (13–17). This review will
summarize the miRNAs and lncRNAs that contribute to the
differentiation, maturation, and immunosuppressive function of
MDSCs in cancer. With this goal in mind, this review will
summarize miRNAs and lncRNAs that contribute to MDSCs
differentiation, maturation, and immunosuppressive function
in cancer.

MYELOID-DERIVED SUPPRESSOR CELLS

Major studies introduce MDSCs as a heterogeneous population
of cells with myeloid origin (18). The heterogeneity features of
such cells including their phenotype and functions are highly
influenced by the type of tumor and the stage of tumor
progression (19). MDSCs are described in animals and humans
with malignancy (20, 21). MDSCs in mice are characterized
by co-expression of the CD11b (CR3A or integrin αM) and
GR1,myeloid-cell lineage differentiation antigen, comprising
Ly6C and Ly6G isoforms and divided in two subpopulations
polymorphonuclear (PMN)-MDSC (CD11b+Ly6G+Ly6Clo) and
monocytic (M)-MDSC (CD11b+Ly6G−Ly6Chi) (22–24).

According to a new classification by Bronte et al., human
MDSCs are generally classified as follows: PMN-MDSC
described as CD11b+CD14−CD15+ or CD11b+CD14−CD66b+

and M-MDSC described as HLA-DR−/loCD11b+CD14+

CD15−. Another population also described as early-stage
MDSC (eMDSC) and characterized by the HLA-DR− CD33+

Lin− (CD3, CD19, CD56, CD14, and CD15) phenotype,
includes mixed cells of MDSC comprising more immature
progenitors (25–27). Moreover, Fibrocytic MDSCs (F-MDSCs),
a novel MDSC subset, were recently described as CD11b low

CD11c low CD33+ Interleukin (IL)-4Ra+ cells with fibrocystic
phenotypes (28, 29). In tumor-bearing mice and cancer patients,
although PMN-MDSCs are the dominant subsets (70–80%)
of the total MDSCs population, this subset demonstrates less
immunosuppressive features than M-MDSCs (5, 30).

Several studies suggested that MDSCs represent
a “dysfunctional state” of myeloid lineages such as
monocytes/neutrophils (31). Dysregulation in myelopoiesis
in cancerous and non-cancerous conditions induces MDSC
differentiation and expansion and affects the host immune
response (22, 32). In the case of cancer, the tumor cells produce
different mediators that inhibit the differentiation of mature
myeloid cells and, in parallel, stimulate MDSCs expansion,
generating an immunosuppressive microenvironment that
affects tumor progression (33). These mediators include
bombina variegata peptide 8 (Bv8), KIT ligand [stem-cell factor
(SCF)], prostaglandin E2 (PGE2), vascular endothelial growth
factor (VEGF), FMS-like tyrosine kinase 3 ligand(FLT3L),
granulocyte colony-stimulating factor (G-SCF), macrophage
colony-stimulating factor(M-CSF), granulocyte-macrophage
colony stimulating factor (GM-CSF), IL-1, IL-6, TNF, and IL-10.
It was shown that GM-CSF and IL-6 could be the most powerful
expanding factors of MDSCs deriving from bone marrow
progenitors (11, 34–37). In addition, the immunosuppressive
activity of MDSCs requires mediators which induce their
activation (38). The most important MDSC activating mediators
are the Transforming Growth Factor (TGF-ß), ligands for
toll-like receptors, IL-1β, Interferon (IFN)-γ, and IL-4 which
are chiefly originated from activated T cells and tumor stromal
cells. Most of these mediators promote signaling pathways that
converge the Signal transducer and the activator of transcription
(STAT)-1, STAT-6, and nuclear factor-κB (NFκB) signaling
pathways (4, 39–43).

MDSCs are involved in determining potent immune-negative
regulation and tumor-promoting functions in the TME via
multiple mechanisms. MDSCs could deplete and capture the
amino acids required for T cell activation and proliferation
such as L-arginine and L-cysteine, thus generating the reactive
oxygen and nitrogen species such as NO, ROS, and peroxynitrite
(44–46). Activated M-MDSCs upregulate Arginase-1 (Arg1) and
inducible nitric oxide synthase (iNOS), while activated PMN-
MDSCs highly express Arg1 and reactive oxygen species (ROS)
(47, 48). High expression of Arg1 causes the depletion of
L-arginine resources, resulting in T-cell function impairment
and inhibition of T cell proliferation via several mechanisms,
including translational blockade of CD247 [the ζ chain of the
T-cell receptor (TCR)] and decreased production of IFN-γ/IL-
2 by T cells (30, 49–52). Arginine is also oxidized by iNOS to
produce citrulline and Nitric Oxide (NO) (53). NO, a powerful
oxidative modulator, can inhibit T cell proliferation, adhesion,
and migration by blocking Jak3 and STAT5 transcription factor
activity, inhibiting E-selectin expression on endothelial cells
and inducing T-cell apoptosis (54, 55). NO is also changed
to the radical peroxynitrite, a reactive nitrogen-oxide species,
in the presence of ROS (56). Peroxynitrite alters tyrosine
side chains in the TCR-CD8 complex, prevents peptide-MHC-
TCR interaction and finally stops T cell responses (57). ROS
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play a fundamental role in the induction of T cell apoptosis
through B cell lymphoma-2 (Bcl-2) downregulation (58).
Moreover, by producing indoleamine 2,3 dioxygenase (IDO) and
reducing local tryptophan levels, MDSCs can inhibit T cells
proliferation (59).

MDSCs also exert immunosuppressive features by skewing
anti-tumor immune cells subsets toward immune suppressive
counterparts, for example, through the conversion of naïve CD4+

T cells into Tregs and polarization of macrophages toward an
alternatively activated macrophages (M2) phenotype (22, 60). As
a matter of fact, MDSCs through the production of IL-10 and
TGF-β, arginine deprivation and CD40-CD40L interacting can
induce Treg cells (61). Chen et al. (62) have demonstrated that
TGF-β production leads to Foxp3 gene expression in T cells,
which in turn re-polarizes them toward a Treg phenotype with
a potent immunosuppressive potential. Moreover, activation
of M2 macrophages due to factors like IL-13, IL-10, IL-4,
and glucocorticoid, promote tumor growth by secreting high
levels of IL-10 and low levels of IL-12. MDSC-polarizes TAMs
toward the M2 phenotype via the production of IL-10 in which
it suppresses IL-12 and enhances IL-10 production by these
cells. These polarized cells create a feedback cycle through
MDSCs modification and enhance IL-10 production, which will
subsequently facilitate the tumor growth (63).

MDSCs can also down-regulate homing receptors on the
surface of T cells, such as L-selectin (CD62L), by expression of
aADAM17 (disintegrin andmetalloproteinase domain 17) as well
as inhibit T cell homing to lymph nodes (52).

MICRO RNAs

MicroRNAs are small, single-stranded, non-coding RNAs of
approximately 22 nucleotides (64). miRNAs control about 30%
of human genes (65). They regulate range of physiological
processes, such as cell cycle, differentiation, development, and
metabolism (66–69), as well as pathological process, such as
chronic disease, immuno- or neurodegenerative diseases, and
cancer (70–74). MiRNAs are progressively being described as
main factors in regulating the immune system. They exert
an important role in the epiregulation of the development,
the differentiation and the activity of various immune cells,
like B and T lymphocytes, dendritic cells, and macrophages
(75–78). Moreover, miRNAs show a notable regulatory role in the
development, expansion, and function of MDSC (Figure 1) (79).
Several studies demonstrated the main role of several miRNA
in cancer development. In particular, these molecules have been
studied in order to identify potential diagnostic, prognostic or
therapeutic targets in several tumors (80, 81). Numerous current
researches emphasize the function of certain miRNAs in the
MDSCs regulation (Table 1).

MicroRNA-30a
A recent study revealed that miR-30a as a member of the miR-
30 family increases the differentiation of MDSCs and their
immunosuppressive activity through regulating SOCS3 in B-cell
lymphoma model mice. Xu et al. (82) detected augmented
expression of miR-30a in PMN-MDSCs and M-MDSCs in mice

with B cell lymphoma. MicroRNA-30a targets SOCS3, which is
a JAK2/STAT3 pathway regulator. SOCS3 negatively regulates
MDSCs development and functions by inhibiting STAT3
activation (96). Reduced SOCS3 expression and stimulated
JAK2/STAT3 signaling increase MDSCs differentiation and
promotes its suppressive function. In both M-MDSCs and PMN-
MDSCs, miR-30a is able to promote the expression of suppressive
factors, such as arginase-1, IL-10, and ROS, by targeting SOCS3
and stimulating JAK2/STAT3 signaling, thus resulting in tumor
growth, which correlates with increased levels of MDSC in the
tumor microenvironment, and reduced CD8+ T-cell infiltration
in tumors. Furthermore, miR-30a improved the development of
tumor by promoting the differentiation and immunosuppressive
ability of MDSCs in mice with B-cell lymphoma. MicroRNA-
30a antagomir injection in mice demonstrated a considerably
improved B-cell lymphoma, while miR-30a agonist injection in
mice with B-cell lymphoma stimulated tumor growth (96). These
data showed that targeting miR-30a leads to reduced suppression
activity of MDSC and lessens the MDSCs numbers, consequently
improving anti-tumor response.

MicroRNA-494
MiR-494 is overexpressed by tumor-derived factors and it
can regulate the immunosuppressive function of MDSCs
(83). Liu et al. reported that tumor cells secrete TGF-β1
which regulates MDSCs activity via stimulation of miR-494
expression; this stimulation is Smad 3 pathway-dependent. An
increased miR-494 expression was noticed in MDSCs in tumor-
bearing mice compared with those in tumor-free mice. This
research found that miR-494 targets phosphatase and tensin
homolog (PTEN) and stimulates the PI3K/Akt pathway and
controls the accumulation and function of MDSCs. The PTEN
downregulation and augmented activation of the PI3K/Akt
pathway changed the intrinsic apoptotic/survival signal and
also heightened the effectiveness of CXCR4-related recruitment
and increased MDSC immunosuppressive function. This study
implied that the stimulated PI3K/Akt pathway strongly supports
the matrix metalloproteinase (MMPs) expression and results
in tumor invasion and metastasis. Additionally, knockdown
of miR-494 considerably reversed MDSC function and tumor
development and repressed metastasis in an in vivomouse model
of 4T1 mammary carcinoma (84). The data revealed that miR-
494 induction by TGF-b1 regulates MDSC accumulation and
activity and can be recognized as a possible target in the treatment
of cancer.

MicroRNA-155
MicroRNA-155 is a typical miRNA involved in numerous
processes in molecular biology, regulating inflammation,
hematopoiesis, and immunity (97). Bioinformatics analyses of
functional aspects conducted by Robert et al. indicated that
multiple miRNAs, including miR-155, are highly expressed
in early hematopoietic progenitors and control early stages
of hematopoietic differentiation (98). Normal mature B cells,
T cells, granulocytes, and monocytes express low levels of miR-
155 (99). Moreover, several findings have supported a critical
function for miR-155 in concert to MDSCs, emerging as a critical
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FIGURE 1 | The role of certain miRNAs in regulation of differentiation, expansion and activation of MDSCs.

TABLE 1 | Summary of miRNAs implicated in regulation of MDSC development and function.

miRNA Target gene(s) Disease Function References

miRNA-30a SOCS3 B-cell lymphoma Increases MDSC differentiation and

immunosuppressive activity

(82)

miRNA-494 PTEN Murine breast cancer Activates the PI3K/Akt pathway and

increases activity and accumulation of

MDSCs

(83, 84)

miRNA-200c PTEN and FOG2 – Activates STAT3 and PI3K/Akt and

augments immune suppressive activity of

MDSCs

(85)

miRNA-9 Runx1 Lewis lung carcinoma Reduces MDSC differentiation and

increases MDSC-mediated suppression

(86)

miRNA-210 IL-16 and CXCL12 – Enhances MDSC activity through

augmenting arginase function and

generation of nitric oxide

(87)

miRNA-34a N-myc – Inhibits MDSCs apoptosis by suppressing

the expression of N-myc

(88)

miRNA-223 Mef2c

Arg1 and Stat3

Breast cancer cell

murine model of

autoimmune

encephalomyelitis

Decreases accumulation of MDSCs by

inhibits progenitor expansion

Enhances accumulation of MDSC and

lower levels of CNS-isolated T

cell responses

(89–91)

miRNA-155 SHIP-1 &SOCS-1 – Development of MDSC and also for

MDSC-mediated modulation of

CD4+Foxp3+ regulatory T cells to facilitate

tumor growth

(92, 93)

miRNA-21 and

miRNA-181

NFI-A – Promotes MDSC generation and their

inhibition reduces MDSCs and provokes

myeloid differentiation in macrophage and

dendritic cells

(94, 95)

MDSC, myeloid-derived suppressor cells; SOCS3, Suppressor of cytokine signaling 3; PTEN, Phosphatase and tensin homolog; FOG, Friend of GATA2; MEF2C, Myocyte Enhancer

Factor 2C; NFIA, nuclear factor I A.
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element in the control of their differentiation and function
(100). This molecule is markedly elevated in both PMN-MDSCs
and M-MDSCs stimulated with GM-CSF and IL-6. Moreover,
the expression of miR-155 in MDSCs was controlled by the
TGF-β signaling pathway (100). The induction of the miR-155
expression by TGF-β in turn results in the inhibition of Src
Homology Inositol Phosphatase (SHIP-1) as a target of miR-155.
SHIP-1 is an adaptor protein that negatively controls the survival
and proliferation of myeloid cells. During the induction of
functional MDSC, down-regulation of this essential molecule
promotes STAT3 activation and accordingly induces MDSC
expansion (100). Similarly, an experimental study revealed that
genetic ablation of miR-155 confers resistance to the growth
of transplanted cancer cell in mice tumor models. Moreover,
miR-155 is essential for the development of MDSC and also
for MDSC-mediated modulation of CD4+Foxp3+ regulatory
T cells, indicating that MDSCs are associated with miR-155
to promote tumor growth (92). On the other hand, miR-155
deficiency reduces the immune responses of both dendritic cells
and T cells against tumor cells. These discrepancies underscore
a context-dependent activity of miR-155 in regulating tumor
immunity via distinct subsets of immune cells within the
tumor microenvironment (92). Although the above data
support a role for miR-155 expression in tumor progression,
Wang et al. (93) stated that miR-155 deficiency enhances solid
tumor development by augmenting the tumor-supporting
properties and recruitment of MDSCs to the tumor milieu.
These contradictory observations might be associated with the
tumor type and the adjacent microenvironment. Future studies
are required to clarify the subject.

MiRNA-34a
Unlike its family members miR-34b/c, miR-34a is expressed in
a wide variety of normal human tissues (101). As an example,
miR-34a, produced by FoxP3-expressing regulatory T (Treg)
cells, has been shown to have a vital role in regulating immune
reactions. Yang et al. (102) explored TGF-β signaling activity
during hepatocellular carcinoma (HCC) progression, and the
results revealed that miR-34a expression is directly regulated by
the TGF-β pathway in HCC cell lines. In all HCC cell lines
investigated, the stimulation of the TGF-β signaling pathway
induced a significant reduction in the expression of miR-34a,
leading to the increased production of a miR-34a target gene,
the chemokine CCL22, which results in the accumulation of
Treg cells which enhance immune escape (102). However, as far
as myeloid suppressor cells are concerned, miR-34a resembles
a tumor suppressor, since miR-34a-mimic transfected into a
murine colorectal carcinoma cell line, CT26 cells, leads to a
lower induction of myeloid precursor cells into Gr1+CD11b+

cells, the phenotype of MDSC with immunosuppressive activity,
in mice (103). This finding indicates the negative activity of
miR-34a in the induction of MDSC. Consistent with the above
data on the correlation of TGF-β and miR-34a expression in
Treg cell recruitment, miR-34a might control the action of
tumor cells, inducing MDSCs via TGF-β and/or IL-10 (103).
Moreover, miR-34a repressed MDSC apoptosis by inhibiting N-
myc expression, but did not influence MDSCs proliferation. The

over-expression of miR-34a results in an increase of MDSCs due
to a reduction of MDSCs apoptosis. The proto-oncogene N-
myc which is a transcription factor that has a role in activities,
including cell growth, differentiation, and apoptosis, is a target
of miR-34a in MDSCs (88). As a result, restoring miR-34a
expression contemporarily to stopping TGF-β signaling might
offer a promising molecular treatment in concert with MDSC
inhibition in cancer.

MiRNA-21 and miRNA-181
The miR-181 family has a crucial role in normal myeloid
differentiation and adult acute myeloid leukemia (AML)
development (104). The miR-181 family consists of four miRs:
miR-181a/b/c/d. Overexpression of all of them has been detected
in different subtypes of adult AML, suggesting an oncogenic
role by the direct inhibition of genes involved in myeloid
differentiation such as protein kinase C delta (PRKCD) (104).
Also, miR-21 is one of the most studied miRNAs that has
attracted particular attention in the myeloid subject area. In
particular, miR-21 has been identified as a molecule whose
deregulation impairs myelopoiesis (94).

Sepsis is a life-threatening condition characterized by
activation of the host’s inflammatory pathways. Bacterial sepsis
is a scenario where pathological inflammation driving defects in
innate immunity can result in bacterial growth. However, less
reports describe the regulation of miR21 and miR-181 family
expression in tumor-induced immunosuppression by MDSCs,
the role of these miRNAs in sepsis-related immunosuppression
mediated by MDSCs is well characterized. These investigations
provide clues from which we may be able to trace their role in
development of MDSCs in the course of human malignancies
that resemble some disturbances found in sepsis. In sepsis-
induced inflammatory response, the produced miR-21 and miR-
181b promotes MDSC generation. Inhibition of this miRNAs
decreases the population of MDSCs and significantly enhances
late-sepsis survival (95). Importantly, concurrent inhibition of
both miR-21 and miR-181b in Gr1+CD11b+ myeloid cells
was able to enhance myeloid differentiation into macrophage
and dendritic cells and eliminated MDSCs, leading to an
enhancement of the innate immunity and improved bacterial
clearance. The findings have also linked miR-21 and miR181b
with the expression of NFI-A, a transcription factor involved in
myeloid differentiation in sepsis (95). These miRNAs upregulate
NFI-A, thereby maintaining the myeloid progenitor cells in an
immature state (105). This regulatory mechanism underlying
the expression of miR-21 and miR-181b in MDSCs under the
same pathological condition was further uncovered in a later
study. The authors demonstrated that transcriptional regulation
of miR-21 and miR-181b is mediated by a combination of
factors including STAT3 and C/EBPβ as critical transcription
factors in Gr1+CD11b+ myeloid cells in septic mice. STAT3 and
C/EBPβ factors bind to miR-21 and miR-181b and promote and
activate the expression of these molecules through a pathway
that requires IL-6 signaling, implicating phosphorylation on
the Rb protein, ultimately leading to MDSC expansion (106).
A more recently published study has provided some more
details on the mechanisms of miR-21/miR181 functions on
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MDSC biology in cancer which involves the suppression of
the Mixed-lineage leukemia 1 (MLL1) complex that is found
to play an important role in regulating hematopoietic stem
cell homeostasis. Mechanistically, tumor-secreted factors and
GM-CSF + IL-6 signaling activates Stat3 and Cebpβ leading
to the expression of miR-21a, miR-21b, and miR-181b. The
induction of these microRNAs inhibits the expression of the
components of MLL1 complex and thus may play a critical
role in PMN-MDSC expansion, activation, and differentiation
(107). In addition, miR-21 expresses some common biological
functions with the aforementioned miRNA, miR-155, during
MDSC induction in tumor bearing mice (100). In this aspect,
the cytokine, TGFβ has been shown to promote the induction
of MDSC by upregulating the expression of miR-21 and miR-
155. MiR-155 and miR-21 synergistically function to promote
MDSC stimulation through targeting SHIP-1 and phosphatase
and tensin homolog, respectively, leading to STAT3 activation
and MDSC expansion.

MicroRNA-200c
Also MiR-200c can regulate the suppressive activity and
differentiation of MDSCs. The genomic locus of miR-200c
is placed in fragile regions within two chromosomal clusters
of miR-200c-141 and miR-200b-200a-429 (108). PTEN, a
protein/lipid phosphatase, negatively regulates the PI3K/Akt
signaling pathway (109). Friend of Gata 2 (FOG2) is seen to
attach to a PI3K regulatory subunit and negatively controls the
PI3K/Akt pathway (110). Mei et al. demonstrated that miR-200c
enhances the MDSC-mediated suppressive activity by regulating
PTEN and FOG2, resulting in activation of STAT3 and PI3K/Akt.
They investigated the impact of miR-200c mimics loadedMDSCs
on T cell function. CD4+ T or CD8+ T cells were isolated
from the spleen, labeled by CFSE and triggered with anti-
CD3ε antibody, and then co-cultured with differently modified
MDSCs. MDSCs treated with miR-200c mimics indicated
significant inhibition on T cell proliferation with a reduction
in the proportion of proliferating cells; while inhibitors of miR-
200c lessened the MDSC-mediated suppressive activity. These
Authors also revealed that GM-CSF has an important role in
the stimulation of miR-200c in the microenvironment of tumor.
Furthermore, miR-200c stimulated by GM-CSF in the tumor
milieu suggests a major function in controlling the expansion and
activity of tumor-related MDSCs and can be a possible target for
immunomodulation in the immunotherapy of cancer (85).

MicroRNA-9
MicrRNA-9 has been described as an important factor in
controlling immune reactions (111), neuronal differentiation
(112), posttraumatic stress (113), and different cancers (114, 115).
Recently, Tian et al. (86) found the significant regulatory role
of miR-9 in differentiation and function of MDSC by targeting
Runt-related transcription factor 1 (Runx1). Runx1, as a key
target of miR-9, regulates MDSC differentiation and function
and is an important transcription factor during the development
of hematopoietic stem cells from the hemogenic endothelium
(116, 117), which is identified as amain inducer of differentiation.
Runx1 controls hematopoietic stem cell differentiation into

endothelial cells. It regulates the expression of some myeloid
differentiation related genes and supports the differentiation
of myeloid, lymphoid, and megakaryocytic lineages (116). The
significant role of Runx1 in controlling MDSCs differentiation
and function was confirmed by knocking down Runx1. It
was found that MDSC differentiation decreased after knocking
down Runx1. Moreover, suppressive agents expressed or released
through MDSCs, such as arginase, iNOS, and ROS, were highly
restored in MDSCs, and the ability of MDSCs to inhibit
CD4+ and CD8+ T cells improved after targeting Runx1
(86, 118). These results indicated that miR-9 targeting results in
decreased suppressive activity ofMDSCs and increases antitumor
response, which can thus be considered, with reason, a potential
treatment strategy.

MicroRNA-210
MicrRNA-210 is another important miRNA that can boost the
tumor-promoting effects of MDSCs. Noman et al. (87) verified
that hypoxia via HIF1a stimulatesmiR-210 in splenicMDSCs and
increases the activity of MDSC by promoting Arg-1 expression
and regulating IL-16 and CXCL12. Upregulation of miR-210
was sufficient to augment suppression of T cells by MDSC,
and targeting miR-210 was enough to reduce MDSC activity
against T cells. Thus, miR-210 inhibitor oligonucleotide, as
an adjuvant tool, a plus novel developing immunotherapeutic
approach might be helpful for improving the immune response
in patients with cancer (87).

MicroRNA-223
MicroRNA-223 has a central role in myeloid differentiation
and is highly expressed in granulocyte lineage in human
hematopoiesis (105). Its expression increasingly rises as
granulocytes mature (119). Given its central role in granulocytic
differentiation, the augmented expression of miR-223 is
apparently able to restore differentiation in leukemic blast
cells (89). In the case of MDSCs, the findings proposed a
negative function for miR-223 in MDSC development because
an overexpression of miR-223 can definitely control the
differentiation of myeloid progenitors (90). In a murine model
of autoimmune encephalomyelitis, genetic ablation of miR-223
was used to increase understanding of the molecular pathway
participated in the pathogenesis of EAE. It was found that miR-
223 knockout mice presented a less severe disease characterized
by the enhanced accumulation of MDSC and lower levels of
CNS-isolated T cell responses compared with control mice
(91). A greater suppressive function detected in miR-223−/−

MO-MDSCs was associated with an elevated level of Arg1 and
Stat3, which are reported as the target genes of miR-223 (91). The
downregulation of miR-223 expression by tumor-related factors
might enhance the induction and accumulation of MDSCs in
the tumor milieu (90). Tumor-associated MDSCs express lower
levels of miR-223 than Gr1+CD11b+ cells from the spleens of
tumor-free mice. In this process, myeloid ELF1-like factor 2C
(MEF2C) was detected as a direct target of miR-223, whose
expression induced myeloid progenitor proliferation. MiR-223
activity suppresses the MEF2C gene that inhibits progenitor
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expansion, leading to decreased accumulation of MDSCs and
induce tumor suppression (90).

LONG NON-CODING RNAs

Long non-coding RNAs (lncRNAs) are a large class of non-
coding RNAs (ncRNAs) with more than 200 nucleotides in
length (120, 121). Initially characterized as “transcriptional noise”
in previous RNA sequence researches, lncRNAs are currently
considered as efficient RNA factors with properties of shorter
length, comprising fewer exons, and low expression levels
compared to messenger RNAs (mRNAs) (122–124). lncRNAs are
indicated to be overexpressed in immune cells such asmonocytes,
macrophages, dendritic cells, neutrophils, T cells, B cells and
MDSCs during their development, differentiation and activation
(125). However, most of researches about lncRNAs controlling
cell biology emphasize in their effects on numerous cancer cells,
while their significance in MDSC regulation is also worthy of
attention (Table 2).

Hox Antisense Intergenic RNA
Hox antisense intergenic RNA (HOTAIR) is a lncRNA
and resembles an oncogenic molecule in several cancers.
Accumulating evidence proves that HOTAIR has crucial
functions in the progression and metastasis of different cancers,
such as breast (135), colorectal (136), non-small lung cell
(137), and gastric cancer (138). In the case of HCC cell lines,
a recent study confirmed that HOTAIR-overexpressing cells
release a high level of CCL2 and support macrophage/MDSC
proliferation. A report demonstrated that CCL2 is an essential
factor for the recruitment of macrophages and the accumulation
of MDSC in the tumor milieu (81, 126, 139, 140), signifying
that the overexpression of HOTAIR in cancer cells results in
TAMs/MDSCs recruitment through CCL2 release, leading to
augmented tumor progression and metastasis (127).

In another study, Ma et al. explained the difference in the
recruitment of MDSCs seen in human papilloma virus (HPV)-
positive head, neck squamous cell carcinoma (HNSCC) and
HPV-negative HNSCC by using lncRNA analysis. The results
showed significant function and importance of lncRNAs in HPV-
associated HNSCC, demonstrating that lncRNA is a possible
regulator of MDSCs recruitment in HPV-positive HNSCC (128).
The level of MDSCs in HPV-positive HNSCC was notably
more than in normal controls, indicating that infection with
HPV can support aggregation of MDSCs. Using an array-based
method to display the lncRNA expression between HPV-positive
HNSCC, HPV-negative HNSCC, and normal oral mucous, 132
various lncRNAs were found in diverse HPV infected conditions
of HNSCC. HOTAIR, PROM1, CCAT1, and MUC19 mRNA
levels, as detected by qRTPCR, which were reversely related to
MDSCs of HPV-related HNSCC. Therefore, lncRNAs resembled
a modulatory factor in HPV16 supporting MDSC recruitment in
HNSCC (128).

Retinal Non-coding RNA3
Retinal non-coding RNA3 (RNCR3), also named LINC00599
is an intergenic lncRNA and is introduced as a conserved

lncRNA in mammals. The proliferation and activity of various
cell types can be regulated by RNCR3 (141–143). In a current
research, Shang et al. proved the expression of RNCR3 in
MDSCs, and it was found that this expression is considerably
increased in the inflammatory and tumor microenvironment.
Moreover, RNCR3 stimulates the differentiation and activity of
MDSC through sponging miR-185-5p so as to produce its target
gene named Chop (129). Chop is a sensor of cellular stress,
which is stimulated via tumor-related ROS and nitrogen species.
Chop acts as a main factor in controlling the accumulation and
immunosuppressive activity of MDSCs (144). It is demonstrated
that miR-185-5p affected the MDSCs expansion and reversed
the impact of RNCR3 on MDSC differentiation and function by
targeting Chop. Therefore, this study proposed a RNCR3/miR-
185-5p/Chop autologously strengthening complex to support
MDSC differentiation and suppressive activity in response to
extracellular inflammatory and tumor-related signals (129).

Plasmacytoma Variant Translocation 1
The lncRNA plasmacytoma variant translocation 1 (Pvt1) is
intergenic and described as a conserved lncRNA in humans and
mice. Upregulation of Pvt1 is detected in numerous cancers,
such as melanoma, cervical, gastric, prostate, hepatocellular,
esophageal cancers, and AML (145–147). Although lncRNA Pvt1
mechanism in cancer cells is clear, how lncRNA Pvt1 controls
function and differentiation of MDSC is not well-known.
A recent study indicated that Pvt1 knockdown remarkably
stopped the immunosuppressive activity of G-MDSCs in vitro.
It is shown that the Pvt1 expression is increased by HIF-1α in
G-MDSCs under hypoxia. Pvt1 suppression lessened the Arg1
and ROS in G-MDSCs and increased T-cell-mediated antitumor
reactions. The findings of this research demonstrated that
Pvt1 targeting may reduce immunosuppression of G-MDSCs,
which can be further investigated as a possible therapeutic
approach (130).

Metastasis-Associated Lung
Adenocarcinoma Transcript 1
Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), a well-recognized lncRNA related to several diseases,
including cancer, has increasingly received consideration In 2003,
MALAT1 was firstly recognized to be significantly related to the
metastasis of early-stage non-small cell lung cancer (NSCLC),
and thus MALAT1 was suggested to be a predictive marker for
stage I NSCLC (148). MALAT1 is a central lncRNA associated
with many biological processes. The vital functions of MALAT1
in gene regulation and the significant impact on the basic activity
of cells, including tumor cells, have been established by several
researches (149). However, the function of this lncRNA in
MDSCs is undefined. A recent research noticed the proportion
of MDSCs in patients with lung cancer, the amount of ARG-1
in MDSCs, and the CD8+CTL cells percentage, and they also
examined the MALAT1 association with MDSCs in PBMCs
and revealed the regulatory activity of MALAT1 on MDSCs
stimulation in vitro. Their results indicated a negative link
between the MALAT1 level and the MDSCs proportion in
PBMCs of lung cancer patients. It is suggested that MALAT1 can
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TABLE 2 | Summary of lncRNA implicated in regulation of MDSC development and function.

LncRNA Disease Function References

Hox antisense intergenic RNA

(HOTAIR)

Hepatocellular carcinoma Overexpression of HOTAIR recruits

TAMs/MDSCs through the release of CCL2

(126, 127)

Hox antisense intergenic RNA

(HOTAIR)

Head and neck squamous cell

carcinoma

HOTAIR functions as a factor in HPV16

increasing MDSC recruitment in head and neck

squamous cell carcinoma

(128)

Retinal non-coding RNA3(RNCR3) B16 tumor-bearing mice RNCR3 stimulates differentiation and activity of

MDSC through miR-185-5p/Chop

(129)

Plasmacytoma variant translocation

1 (Pvt1)

C57BL/6 tumor-bearing mice Pvt1 augments the expression of Arg1 and

ROS in G-MDSCs and decreases T-cell

mediated antitumor reactions

(130)

Metastasis-associated lung

adenocarcinoma transcript 1

(MALAT1)

Lung cancer MALAT1 negatively controls MDSCs and

functions as a regulator of MDSCs

differentiation

(131)

RUNX1 overlapping RNA (RUNXOR) Lung cancer RUNXOR moderates MDSCs

immunosuppression by regulating RUNX1

(132)

CCAAT/enhancer binding protein β

(C/EBPβ)

C57BL/6 tumor-bearing mice Lnc-C/EBPβ controls immune suppressive

function and differentiation of MDSCs

(132)

CCAAT/enhancer binding protein β

(C/EBPβ)

C57BL/6 tumor-bearing mice Lnc-C/EBPβ moderates differentiation of

MDSCs through downregulation of IL4i1

(133)

AK036396 Lung cancer AK036396 stops maturation and accelerates

immunosuppression of PMN-MDSCs by

increasing the ficolin B stability

(134)

HOTAIR, HOX transcript antisense RNA; TAM, Tumor-associated macrophages; RNCR3, Retinal non-coding RNA 3; Pvt1, Plasmacytoma variant translocation 1; MALAT1,

Metastasis-associated lung adenocarcinoma transcript 1; RUNXOR, RUNX1 overlapping RNA; C/EBPβ, CCAAT/enhancer binding protein β.

have a role in controlling the differentiation of MDSCs. After
using MALAT1 siRNA in PBMCs, the proportion of MDSCs
was meaningfully augmented as a consequence. These findings
indicate that inhibition of MALAT1 promotes the quantity of
MDSCs by controlling their differentiation (131).

RUNX1 Overlapping RNA (RUNXOR)
RUNX1 overlapping RNA (RUNXOR) is introduced as an
intragenic lncRNA and is about 216 kb in length. RUNXOR
regulates the RUNX1 gene, which is introduced as a tumor
suppressor and main regulator of hematopoiesis genes.
Meanwhile, the effect of lncRNA RUNXOR on the MDSC
development is uncertain (150). Tian et al. revealed the
overexpression of RUNXOR and downregulation of RUNX1 in
patients with lung cancer. Also, they showed that the expression
of RUNXOR increases in MDSCs. After knockdown of
RUNXOR, the Arg1 expression in MDSCs was downregulated.
Moreover, it is indicated that after using siRUNXOR, the
expression of RUNX1 is reestablished in MDSCs, and RUNX1 is
negatively associated with the MDSCs proportion from patients
with lung cancer. These findings presented that RUNXOR can
influence the activity of MDSCs by regulation of RUNX1 (132).

CCAAT/Enhancer Binding Protein β
The family of CCAAT/enhancer binding proteins (C/EBPs)
transcription factors has vital activities in the expansion and
differentiation of several types of cells such as granulocytes.
C/EBPβ is informed to be essential for the maturation
of monocyte and eosinophil, and currently, for neutrophil
differentiation. The C/EBPβ was overexpressed according to
the development of granulocytic differentiation (151, 152).
LncRNA called lnc-C/EBPβ was described by Gao et al. (132)

They confirmed that lnc-C/EBPβ controls numerous transcripts
in MDSCs to regulate MDSC differentiation and suppressive
activity in inflammatory and tumor milieus. Expression of
lnc-C/EBPβ via MDSCs, negatively controls MDSC function,
signifying that lnc-C/EBPβ has a negative feedback function
in avoiding over-suppression of MDSCs on immune reactions
(132). Moreover, it is revealed that lnc-C/EBPβ can increase
polymorphonuclear MDSCs (PMN-MDSC) but inhibit the
differentiation of monocytic MDSCs (Mo-MDSC). lnc-C/EBPβ

can downregulate interleukin 4-induced gene-1 (IL4i1) to affect
theMDSC differentiation by attaching with C/EBPβ LIP andWD
repeat-containing protein 5 (WDR5) (133).

AK036396
As the largest group of MDSCs, PMN-MDSCs indicate a
fundamental role in increasing the immune escape of numerous
cancers. Tian et al. recognized that lncRNA AK036396 and
its target Ficolin B (Fcnb) were most abundant in PMN-
MDSCs, compared with other myeloid cells. They detected
the regulatory mechanism of lncRNA AK036396 in the PMN-
MDSCs. Downregulation of LncRNA AK036396 decreased
Fcnb protein stability in an ubiquitin-proteasome system-
dependent mechanism. They revealed that the downregulation of
lncRNA AK036396 stimulated the maturation and reduced the
suppressive activity of PMN-MDSCs. Moreover, the expression
of human M-ficolin, which is an ortholog of mouse Fcnb, was
augmented and associated with arginase1 expression (134).

CONCLUDING REMARKS

MDSCs are immature immunosuppressive cells that are involved
in a wide spectrum of diseases and in particular in cancer.
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The development of MDSC-targeted approaches to improve
immunotherapy appears to be a high priority and might bring
new results in the field of immunotherapy. One considerable
challenge is the complexity of factors that are found to play
a critical role in regulating MDSC function and expansion.
Increasing evidence suggests that miRNAs and lncRNAs are
implicated in the pathogenesis of diseases or are at least linked to
the disease state.Moreover, the aberrantly expressedmiRNAs and
lncRNAs were significantly associated with MDSC development
and function. In addition to intracellular regulation, miRNAs
and lncRNAs can show intercellular impacts via exosomes (153).
Exosomes are released by diverse cell types, including cells with
a myeloid lineage, such as MDSCs. Inadequate evidence on
MDSC exosomes reveals that they can exert effects related to
immunosuppression and the elevation of tumorigenesis (154). It
is presented that exosomes were secreted more plentifully from
tumor MDSCs, apparently due to the fact that MDSCs in the
TME are in a more stressful environment (155). Furthermore,
tumor exosomes have been informed to carry genetic materials
and proteins capable of suppressing the immune cells functions
and stimulating the activation and expansion of MDSCs in
vitro and in vivo (156). It is shown that upregulation of miR-

10a and miR-21 in hypoxia-induced glioma-derived exosomes
has a powerful impact in MDSC induction. Hypoxia-inducible
miR-10a and miR-21 expression in glioma-derived exosomes
increased the expansion and suppressive activities of MDSCs.
These findings demonstrate that exosomes have a prognostic
value, promising positive inputs for new therapeutic directions
in the cancer treatment. The promise of targeting miRNAs
and lncRNAs, by either antagonizing or restoring function,
might provide novel strategies to re-educate immunosuppressive
or hyperactive milieu of disease associated with MDSC
development, including cancer. Given the heterogeneity of
human MDSCs and limitation in clinical application, it is
reasonable to predict that more information is urgently needed,
and new ideas and questions are proposed for future inquiry.
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