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Abstract

Clonal deconvolution of mutational landscapes is crucial to understand the evolutionary dynamics of cancer. Two limiting
factors for clonal deconvolution that have remained unresolved are variation in purity and chromosomal copy number
across different samples of the same tumor. We developed a semi-supervised algorithm that tracks variant calls through
multi-sample spatiotemporal tumor data. While normalizing allele frequencies based on purity, it also adjusts for copy
number changes at clonal deconvolution. Absent à priori copy number data, it renders in silico copy number estimations
from bulk sequences. Using published and simulated tumor sequences, we reliably segregated clonal/subclonal variants
even at a low sequencing depth (∼50×). Given at least one pure tumor sample (>70% purity), we could normalize and
deconvolve paired samples down to a purity of 40%. This renders a reliable clonal reconstruction well adapted to
multi-regionally sampled solid tumors, which are often aneuploid and contaminated by non-cancer cells.
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Introduction
Genetic diversification during tumorigenesis and disease pro-
gression is governed by Darwinian principles acting on the level
of single cells. A concerted effort has been dispensed in recent
years to unravel the mechanisms of evolutionary dynamics in
cancer. Next-generation sequencing across cancer types has
confirmed that intratumor heterogeneity through phylogenetic
branching is a common scenario [1], although the relative con-
tributions from clonal selection versus neutral evolution in this
process remain a matter of debate [2, 3]. We recently demon-
strated that intratumor genetic heterogeneity can result as a
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product of different evolutionary trajectories specific to the spa-
tiotemporal localization of cells residing in a tumor [4]. Although
all such cells are popularly believed to be neutrally evolved
progenies of a common ancestor, depending on oncogenicity of
the mutations acquired, some daughter cells observe a greater
fitness advantage than those with neutral mutations. This pat-
tern of divergent evolution can be observed by interrogating
bulk sequencing data from tumors. As the genetic landscape in
solid tumors often varies geographically within the same can-
cer, comprehensive reconstruction of tumor phylogeny requires
multi-regional analysis and subclonal deconvolution [5, 6]. Such
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a deconvolution process leverages the relative abundance of a
mutation across samples represented by variant allele frequen-
cies (VAFs) [7]. Besides being very loosely defined, designation of
clonality of a mutant variant depends on when in tumor devel-
opment it emerges, its effect on cellular fitness, and on the spa-
tial architecture of the tumor. A subclonal mutation is sugges-
tively defined as any lesion that emerges out of a clone and does
not observe extensive positive selection [8]. However, subclonal
populations do accumulate mutations in known ‘driver’ genes,
sometimes even emerging as events of convergent evolution [9,
10]. A subclonal lesion thus may represent itself in a fraction of
the tumor cells, and its relative abundance often vary among
samples even if these are acquired from a tumor at the same
time. Hence subclonal mutations may become regionally fixed
(present in all tumor cells) and thus appear clonal. Systematic
bioinformatic approaches are critical to resolve such complex
scenarios.

Clonal deconvolution is generally attempted using unsuper-
vised clustering. It determines subclonal populations with distri-
butional assumption on the variant read count [7]. Most methods
assume that in a repertoire of clones and subclones, the relative
abundances of variants resemble a binomial or beta-binomial
admixture [11–13]. Thus, a Dirichlet finite mixture can segregate
several clonal populations with distinct shapes and scales. Fol-
lowing this dogma, one can expect the clonal mutations to be
distributed with markedly higher mean relative frequency than
subclonal progenies. However, even with a modest rate of silent
substitutions, many passenger mutations accumulate in sub-
clonal populations within a few generations presenting a gradu-
ally regressing heavy tail of private mutations [13]. Furthermore,
samples collected from a tumor at different locations or stages
of progression can contain a remarkably varied proportion of
normal cells from adjacent non-cancerous tissue. As a result, the
VAF distribution of clonal mutations of one sample can mimic
that of subclonal mutations of another, purer sample. Variants
can also end up with higher (or lower) than expected relative
abundance if residing in chromosomal regions affected by copy
number changes. As copy number alterations can appear as both
clonal and subclonal lesions, they can significantly complicate
clonal deconvolution based on VAF distributions [14].

Here, we intended to solve the problem of how VAF values
are influenced by purity and copy number with an analysis
suite for clonal deconvolution named CRUST (Clonal Reconstruc-
tion of tUmors with Spatio-Temporal sampling). It can classify
clonal and subclonal mutations from bulk sequencing data of
multi-sampled tumor tissue. CRUST will probabilistically rescale
VAFs from samples with purity contrasting against the sample
with the highest purity. The program is additionally built to
integrate data from precise copy number estimations such as
those from single nucleotide polymorphism (SNP array) data
and produce allelic composition specific clonality predictions.
In absence of SNP array data, CRUST can estimate copy number
profiles given sequencing summaries (allelic frequency data
corresponding to alternate and reference allele) from tumor
and constitutional genome. While these processes need to have
mathematical rigor by parameterizing stochastic assumption on
the distribution of clonal variants, we also recognized the need
of a semi-supervised algorithm to reconcile a purely traditional
data driven approach and a user driven heuristic pattern recog-
nition for clonal deconvolution. The user thus will be able to
actively curate the semi-supervised clustering process prior to
the deconvolution based on visual input. CRUST also allows
sample specific user driven readjustments in deconvolution
post analysis. We were able to demonstrate in clinical samples

and in simulated tumor biopsies that in presence of at least
one relatively pure sample, without user intervention, CRUST
can rectify clonality estimates for samples with compromising
purity that would otherwise be heavily biased towards a predic-
tion of subclonality. Furthermore, we demonstrated that CRUST
increases the resolution of clonal deconvolution for aneuploid
tumors by taking the influence of chromosomal copy numbers
into account. With curation provided by the user and proper
consideration to the temporal fluctuations in appearance of
each genetic lesion, CRUST can thus help reconstruct the most
likely phylogenetic history of a tumor.

Results
A semi-supervised approach to clonal deconvolution

The primary functionality of CRUST is in clonal deconvolution
from a substrate of sequencing summaries of single nucleotide
variants. As a first example, we demonstrate this on a
hypothetical tetraploid tumor where mutations are present
in either one or three out of the four available homologous
chromosomes (Figure 1A). The simulated tumor is represented
by eight biopsies (inbuilt data test.dat). With a set of samples
from the same tumor obtained at different locations and/or
time points, CRUST deconvolves each variant to a predicted
clonal or sub-clonal status, calibrating clonality assignment
against given parameters on allele-specific copy number status
and sample purity (Figure 1B and C; see section Methods:
Quick user guide). It realigns the frequency distribution across
samples with probabilistic quotient normalization. Hereafter,
the distribution is queried to fit into an optimum number
of clusters based on statistics comparing loss of information
(Supplementary Figure 1). With the copy number analysis,
sequence variants from a single tumor are analyzed separately
for each allelic configuration (1 + 1, 1 + 2, 2 + 0, etc.), where
CRUST visualizes the predicted clonal/subclonal assignments
for all spatiotemporal samples. The subclonal estimation
process is based on semi-supervised cluster determination. It
verifies the optimal solution first without user input; next, the
user is given opportunity to override the unsupervised solution
after visual inspection of the expected subclonality (Figure 1D I-
II) to retain provision for a biologically derived deconvolution
assessment, if needed. In addition, subclonality assignment
can be altered for specific samples post-prediction, a feature
useful in presence of compromising purity or inter-sample
heterogeneity with respect to the complexity of chromosomal
alterations (e.g. chromothripsis and whole genome doubling). In
this hypothetical case, CRUST thus correctly assigns mutations
present in 1/4 and 3/4 alleles to both clonal and subclonal states,
while a cluster-based deconvolution without accounting for copy
number may assign all mutations present in 1/4 alleles to the
subclonal stratum.

Performance testing of scaling with simulation

To assess the accuracy of CRUST-based deconvolution across
varied purity and sequencing coverage, we simulated tumor
samples under three distinct assumptions (Figure 2A; Supple-
mentary Figure 2). Here, the frequency distribution of variants
queried from low-depth calls were left-tail heavy although
the pure distribution is expected to follow a beta-binomial
distribution. Extending from a one-parametric power law
function [13], we modeled the reduction in variability biased
towards the left tail with a log-exponent function and simulated
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Figure 1. Clonal deconvolution of a simulated tumor genome. A tetraploid tumor is simulated where all samples adhere to an allelic composition of 3 + 1 (or 1 + 3) (A).

This makes the expected VAF distribution bimodal with corresponding peaks at frequencies 0.25 (i.e. 1/4) and 0.75 (i.e. 3/4). There are eight samples representing different

biopsies. CRUST first displays a dot plot of the VAFs pertaining to all samples (B). Given provision for a purely estimation driven approach, it predicts clonality from the

optimum number of clusters determined without supervision. This results in a deconvolution independent of the user suggested input (C). A user can decide to opt for

a semi-supervised approach instead if the optimum number of clusters predicted is dissimilar to a biologically expected deconvolution, for example prior knowledge

from single cell karyotyping or sequencing. In this example, the default optimization is given with four clusters as seen above (two clonal and two subclonal). In (D

I) however, the user chooses to fit a 2-cluster deconvolution resulting in a prediction of one clonal and one subclonal cluster. The predictions can also be modulated

post-hoc for individual samples (D II). Over the default optimum prediction, for Sample_6 a user has here chosen to fit a 3-cluster deconvolution that picks up two

clusters attributed to the clonal population (at allelic compositions 1 + 3 and 3 + 1) and one subclonal. It is to highlight that first; the initial estimate of clonal clustering

is important and second; given enough noise in a real sample one can envisage that the unsupervised prediction may result in over clustering. In such cases one still

can change clonality assignment post-hoc and assess the feasibility of the deconvolution.

an admixture of clonal and subclonal variants assuming a
balanced background copy number. The model assumptions
indicated what the varying purities could affect; first, the
mean i.e. the cluster centroid of the VAF distribution; second,
variance i.e. the scale of the distribution and lastly, both
mean and variance. Accuracy of prediction was measured
by comparing expected clonality based on the simulation
assumption and the predicted clonality inferred by CRUST
with the Jaccard index. For all three-model assumptions, 1500
simulations were performed, respectively, to generate two
samples in each iteration. Purities were sequentially modified

for each iteration to have produced 100 variants for each sample
resembling an impure pre-treatment biopsy and a much purer
metastatic sample. When only the variance of the distributions
were varied, the deconvolution and prediction accuracy broke
down fastest and the departure was statistically significant
(Figure 2B) suggesting subclonal clusters can retain the same
centroids while increasing in variance but the VAFs overlap
between clusters making it virtually impossible to segregate
them. CRUST scaling maintained a concordance of ρ > 0.7 in
presence of at least one representative sample (purity >0.7)
given that the difference in purity between samples was less
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than 30% of the maximum. Hence, theoretically a sample
with 40% purity can be confidently rescaled given another
available sample that is 70% pure. This simulation draws
sequencing coverage randomly for any given variant between
50× and 300×. Hence if we would like to analyze a sample
with low purity (<40%) but sequenced with consistently high
coverage (>100×), CRUST is still able to rescale the data given a
corresponding purer sample (tested with AML samples later). In
simulations with a larger than 30% departure in purity between
samples, the concordance decreased drastically (ρ < 0.4).

Next, we compared CRUST against some of the contemporary
and frequently used clustering algorithms (PyClone, sciClone,
MAGOS) [11, 12, 15]. First, we compare against MAGOS and sci-
Clone with varying sequencing coverage as the authors of the
former paper claim that both outperform PyClone in moderate
to low covered sample [11]. All tumor biopsies were simulated
as containing two samples with varied PURITIEs drawn from a
lognormal-binomial mixture. At sequencing coverage of 300× all
three algorithms were able to maintain a τmedian (median Jaccard
index that varies between 0 and 1) of 0.95 with CRUST leading
(τmedian = 0.99, Figure 2C). This pattern remained consistent
throughout 100× and 50× simulations and all comparisons with
CRUST were statistically significant at the 0.001 level. At 30×,
CRUST had a lowered τmedian of 0.83. The interquartile distances
between the τmedian estimates also markedly increased at 30×
(range: 0.037–0.11). At lower coverages (≤50×), sciClone failed
to predict the correct number of clusters often predicting as
many as six clusters instead of four although CRUST and MAGOS
predicted the simulated clonality status more accurately (statis-
tically significant with two-tailed P-value <0.05, Mann–Whitney
test) with at least 50× coverage (Figure 2C) [11, 12]. Addition-
ally, CRUST was compared to PyClone on the inbuilt simulated
tetraploid tumor described in Figure 1. As PyClone requires all
variants to be present across all samples to not get filtered out,
we declared negligible alternate allele count for those absent.
PyClone determined 21 different clusters over all 116 distinct
variants Supplementary Figure 3A. This apparent over-clustering
could have been remedied by looking into the similarity indices
of the clusters, represented in Supplementary Figure 3B. Four
main subclusters are apparent in the heatmap, which showed
a near perfect overlap (ρ = 0.92) with the two clonal and two
subclonal clusters determined previously (Figure 1).

Illustration of the impact of scaling
for correct deconvolution

As an example of the importance of scaling, we extracted from a
published dataset on childhood cancer [4], three neuroblastoma
tumor tissue samples with varied purity (55–90% tumor cells)
from a patient, two from the primary tumor (NB12, P1 and P2)
and one from metastatic relapse (R) (Figure 3A). Available copy
number data and whole exome sequencing summaries were
filtered for variants at a 1 + 1 allelic composition and sequenced
at a depth of at least 100×, resulting in 32 variants. Rescaling
the VAFs of two samples (P2, R) against that with the highest
purity (P1), had a major impact on the subclonality prediction of
the relapsed sample R (Figure 3B and C I-II). If unscaled, almost
all variants shared among the three samples were predicted to
be subclonal in sample R, contradicting their status as clonal
(present in all tumor cells) in the other two samples (Sup-
plementary Table 1; Scaling). For example, the unscaled data
predicted that an SIAH1 mutation was clonal in the primary but
subclonal in the relapse, which was rectified post scaling result-
ing in a prediction of clonal mutation across all samples. Only

one mutation, in ST8SIA2, exhibited changed clonality status
between two samples, i.e. the two regions of the primary tumor
(Figure 3C III-V). This was indicative of a regional clonal sweep
at geographic transition between these regions, an event cor-
roborated by copy number profiling, which showed a subclonal
copy-number neutral imbalance of chromosome 4 in P1, which
transited to clonality in P2 (Supplementary Figure 4).

Illustration of the importance of accounting
for allelic copy numbers

As an example of how CRUST improves deconvolution by
accounting for copy number variations, we then analyzed
four different patient samples (NB22; Figure 3A) comprising of
two primary (P1, P2) and two metastatic tumor samples (M1,
M2), [4]. CRUST is inherently dependent upon variant specific
allelic composition information. Best practice is to assimilate
sequencing summaries with separately obtained SNP array for
a precise allelic copy number estimate. CRUST also contains a
function to approximate copy numbers from tumor sequencing
compared to germline variants (polymorphisms) called from the
constitutional genome. To identify distinct aneuploidies across
samples it graphically presents segmental allelic imbalance
and average log-relative coverage as done elsewhere [16]. We
compared the segmental plots generated from SNP array data
and that estimated by CRUST (Figure 4). The allelic imbalances
estimated from exome sequences closely resembled those
obtained from the SNP array, but with slightly less fidelity
(Supplementary Table 1; phs000159_seq). The 1q gain, 6p gain,
whole chromosome 7 gain and, 17q11 loss and distal 17q gain
were clearly identified with the estimates (Supplementary
Figure 5, Supplementary Table 1; phs000159_iontorrent). Overall,
the CRUST-based copy number estimation resulted in only a
small number of discrepancies (2.7%) in the estimated allelic
compositions compared to the available array-based estimates
(Supplementary Table 1). [4] These were removed prior to further
deconvolution (Supplementary Table 1; NB22_copynumber).

To elucidate the geographical makeup and temporal evo-
lution across NB22 biopsies, VAFs were then scaled against a
diploid background and purities were calculated with allelic
copy numbers considered. This revealed a varied tumor archi-
tecture across samples with evidence of polyclonal seeding of
the metastatic sites, well in accordance with previous anal-
ysis of this case based on copy number alone (Figure 3D-G)
[4]. Disregarding the copy number information, we reanalyzed
the data assuming a balanced copy number state (1 + 1) for all
chromosomes. The resulting deconvolution failed to pick up
between-sample variations in clonality with considerable loss
of resolution at backtracking of clones into geographic domains
(Figure 3F). By integrating copy number and sequencing data,
CRUST thus revealed details in the evolution of this tumor that
would have had passed unnoticed if copy number data were not
considered (Figure 3F-G).

CRUST resolves clone topographies
in published datasets

We extracted publicly available whole exome sequencing (WES)
data on 20 multi-regionally sampled local primary non-small cell
lung cancer (NSCLC, adenocarcinoma) from the initial release of
the TRACERx project [17]. Deconvolution with CRUST, including
copy numbers of mutated alleles in clone size estimates, made it
possible to infer clonal topographies for all included samples at
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Figure 2. Evaluation of efficacy of CRUST with simulation. In (A) simulations of scaling with varying sample composition are shown. Each iteration generates two

samples, say X and Y with purity Tx and Ty, respectively. Assuming Tx > Ty, CRUST rescales the variants in Y based on those in X. Simulations are performed to see

how well the scaling works when Tx and Ty are varied. Three parametric beta-log normal models are in effect to generate simulated samples. The top panel shows

changes in purity that only affects the mean of the VAF distribution. The middle shows changes in purity affecting the variance (ergo spread) of the VAF distribution

and the lower most panel shows when it dynamically affects both mean and variance (referred as Meanvar). The measured statistic is polychoric correlation among

predictions and its scale for all three simulations is the same, as is indicated at the bottom. In (B-I), average marginal concordance is estimated with geometric mean for

all three methods and tests are performed between pairs. Only significant deviations are marked with corresponding P values. In (B-II) the trend of change in average

concordance with varying levels of purity between the three algorithms is depicted. A comparison across deconvolution methods was done with simulation of varying

sequencing coverage (C). Samples are drawn with varying purity for four sets of coverage at 300×, 100×, 50× and 30×. Ordinal cluster similarities were assessed between

CRUST (CS), MAGOS (MG) and sciClone (sC) with Jaccard coefficient (τ ). The four combined heatmap and violin plots correspond to four coverage settings denoted in

the x-axis. Each combination represents summary statistics obtained as median τ for paired purities. Each cell in the heatmap reflects that obtained from a paired

simulated sample denoted in the joint y axis purity. The leftmost y axis annotation denotes purity for sample 1 (Tx) and the inner annotation denotes that of the

second sample (Ty). The highest Tx was 0.95 and the lowest was set at 0.5. For Ty, the highest by default was chosen to be 0.2 lower than that of the highest Tx, hence

0.75 and the lowest was set at 0.25. The violin plots are drawn correspondingly under the heatmaps on the lower panel denoting the dispersion and central tendency

of the estimates with significant p values of the paired association tests marked by grey points.
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Figure 3. Tracing clonality trajectories across samples. Multiple samples with varied purity from each of two neuroblastomas (NB) were used as examples. NB12 is

represented with three samples (A), two primary tumor biopsies (P1, P2) and one relapse (R). The primary sample was ∼90% pure whereas the relapse sample contains

only 55% tumor cells as estimated by previous studies [4]. Hence, a deconvolution without rescaling the variant allele frequencies (VAFs) results in all shared variants

(linked by grey lines between R and P1) being classified as subclonal in R (original sample specific VAFs are on the left, clonality predictions are on the right, B).

Post-scaling (C), the relapsed variants re-adjust (C-I), and the predictions reflect a reasonable nature of the clonality (C-II). It is worth noting that in both analyses, the

optimum cluster number is unchanged. This indicates that a traditional subclonality reconstruction algorithm would fail to account for the noise in the relapsed sample

if analyzed in conjunction with the primary samples. The next three panels demonstrate how scaling impacts the predictions. In panel (C-III), an ST8SIA2 mutation

changes clonality status between P1 and P2, in concordance with a clonal sweep between these regions (see Supplementary Figure 4) [4]. Panels C-IV and V show a

SIAH1 exonic variant that is present in all three samples. In R, it is classified as subclonal while unscaled, but the prediction is overturned to be clonal post scaling.

Deconvolution of the copy number aberrant neuroblastoma NB22 (D), based on samples from the primary tumor (P1, P2) and a metastatic lesion (M1, M2). This tumor

contained several copy number changes that required consideration for accurate deconvolution. CRUST was used to detect the segmental copy number alterations of

all variants, which were classified in two allelic composition make-ups, balanced 1 + 1 segments, and unbalanced 1 + 2 segments. These were deconvolved separately.

Predicting clonality status without consideration of the copy number aberrations results in two predicted clusters (E I), whereas considering allelic composition results

in five clone/subclone clusters across all four samples (E II). This deconvolution would not have been possible without copy number data taken into account. Estimated

clone sizes are depicted below with purities of each cluster (E III). Inferring tumor evolution from deconvolution (F-G) shows how starting from an unknown most recent

common ancestor (MRCA) one of the primary clones (in grey) shrinks whilst another subclone (in light purple) expanded at metastatic sites. Clone sizes estimated from

the set of variants with two different allelic compositions indicated a major clone size (1 + 1 in dark green and 1 + 2 in light green) of about 92% (mean) indicating the

aberrations carried forward from an MRCA. The bottom panel in (F) devoid of copy number data lacks resolution to detect any such change.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab292#supplementary-data
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Figure 4. Estimation of copy number with CRUST. The segmental copy number estimates generated with CRUST are compared with SNP array profiles from the same

tumor (NB22). We generated chromosome-wise plots of estimated segmental allelic imbalances against corresponding average log transformed relative coverages. In

the top panels (A) the plots are generated with well-established analysis tool TAPS from SNP array data [16]. In the lower panel (B) the same plot is generated with

data estimated with CRUST. The down-right panel includes three figures, from top to bottom representing the estimated relative coverage, allelic frequencies and of

segmental copy number. As demonstrated by TAPS, clones with different allelic compositions would show up at unit-separated distinct clusters along a fixed tangent

in the allelic imbalance plots and the corresponding subclones would appear with a slight departure in the y- and x-axes. The allelic imbalance plots generated with

CRUST retained the copy number specific cluster structures. We recommend the users to consult these plots to verify the CRUST estimated allelic compositions.

a level of detail not provided in the original publication (Supple-
mentary Figure 6). Subclones could be distinguished from clones
in all tumors and about 15% (median) of all variants in each
tumor were predicted to be subclonal. All 20 tumors presented
evidence of topological genetic diversity; i.e. variants were pre-
dicted to have changed clonality status (clonal crossover, clonal
to subclonal and vice versa) between different samples of a
tumor given that the allelic composition remained unchanged,
indicative of clonal sweeps across the primary tumor space.
Some tumors were found to have an exceptionally high number
of subclonal and crossover mutations, in particular CRUK003
(71%), CRUK004 (73%) and CRUK0018 (55%). This finding was well
in accordance with the high proportion of branch mutations
previously reported in these tumors (71, 76 and 45%, respectively)
[17].

The relative proportion of genes predicted to be globally
clonal or subclonal were sometimes different between CRUST
and the original analysis (Figure 5A) [17]. For each patient,
approximately 3% (median) of the quality-controlled variants
(i.e. 1% of all variants) were responsible for clonal crossover.
These belonged to about 5.6% of all annotated genes retained
post quality control. Most of these crossover genes detected

by CRUST (91%) were found to be absent from the previously
published phylogenetic analyses [17]. A majority (18 of 31) of
those retained in the original analysis were in fact predicted to
concur between CRUST and the original analysis as subclonal
driver mutations (e.g. TP53, KRAS, PIK3CA, CDKN2A, ATM, etc.),
and the proportion of variants discarded from the original study
resembled the proportion of crossover variants detected by
CRUST (Supplementary Table 2). This indicates that CRUST adds
value by resolving shifts in clonality status between samples.

We then compared the proportion of driver mutations pre-
dicted by CRUST to be truncal with that suggested previously
[17]. The original analysis included 100 patients whereupon
inferences were drawn with the constructed phylogenies. The
CRUST analysis with 20 individuals retained approximately a
third of the original set of annotated genes. When only this
subset of 20 patients were considered, 63 genes in the pub-
lished study were annotated as driver of which 31 (49%) were
annotated as ‘subclonal driver’ in at least one patient. Post
quality control, CRUST retained 56 of the said 63 driver genes
among which 21 (38%) were subclonal in all samples along
with 18 (32%) having undergone clonal crossover bringing the
totality of subclonal drivers to 70%. Of these 18 crossover genes,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab292#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab292#supplementary-data
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Figure 5. TRACERx Clonal geography. A comparison is made between clonality prediction from CRUST and that previously published (A). The bar chart shows the

number of globally clonal and subclonal genes identified across all 20 samples in the two respective analyses. A non-parametric two tailed z-test is performed to denote

significance difference (P < 0.0025) between them, highlighted by star. In B phylogenetic trees of the two tumors, CRUK0046 and CRUK0050 are depicted along with the

tentative sample specific clonal geography in the corresponding radial diagrams. The stems are in red with some of the noteworthy genes accompanying in black. Each

subsequent branch is in black and the corresponding branch length is in proportion to the number of genes in each branch. The three variants corresponding the gene

MECOM are highlighted for CRUK0046 as it depicts convergent evolution. The clonal / subclonal population nodes in the tree carry forward their colors in the respective

clonal geography diagram. C depicts comparison of nested phylogenies between CRUST and the published analysis for three tumors, CRUK0001 (C-I), CRUK0003 (C-II),

and CRUK0005 (C-III). Each sample has its own phylogenetic tree, and all samples from a tumor are combined to build a consensus tree. If nodes and branches that are

present in the consensus tree are absent from a sample-specific tree, they are greyed-out in the sample tree. Accompanied by the CRUST-predicted consensus trees, the

corresponding published tree (s) is provided alongside. The clonal and subclonal populations are represented by filled and hollow circles, respectively; clonal crossover

events are denoted only in the consensus trees with colored bars alongside the clone (s) and the subclone (s) where the variants appeared. Each color of the crossover

bars represents a unique cross over pair between the corresponding clone and subclone i.e. a variant that belongs to different clonal/subclonal clusters in different

samples. The largest clonal population in each sample is assumed to represent the stem of the phylogeny. Please refer to the original publication for color codes of

published trees.
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12 were present subclonally at least in one of the other 80
patients analyzed in the previous study. This was in line with
the original finding, as 75% of the tumors were observed to have
acquired driver mutations late indicative of temporal fluctua-
tions in evolution. The lacking spatial resolution of the previous
study meant only nine driver genes were inferred to have both
clonal and subclonal status in different patients. One such gene
was PIK3CA, for which crossover was confirmed by CRUST. This
led us to speculate that crossover variants if seen in genes of
lesser biological impetus had been misclassified as ambigu-
ous observation previously. Omitting these might deprive the
analyses of spatial heterogeneity as shown in several of the
tumors (CRUK0001, CRUK0005, CRUK0051), and miss the pres-
ence of regional clonal sweeps (CRUK0003, CRUK0029, CRUK0050,
CRUK0094).

To understand the impact of copy number consideration in
clonal deconvolution, tentative clonal geographies were con-
structed for CRUK0046 and CRUK0050 (Figure 5, B). These tumors
were selected as they had adequate number of samples (4 and 5)
coupled with relatively simple ploidy profiles (up to tetraploid).
In CRUK0046, we found several genes (FOXN2, GAS1, etc.) in the
stem of the phylogeny that are of suggested importance for
lung cancer initiation, resistance, and metastasis [18, 19]. Even
more interestingly, we noticed convergent evolution in different
sites on the gene MECOM, commonly shown to be harboring
structural aberrations in NSCLC [20, 21]. CRUK0050 on the other
hand had mostly undergone linear evolution except for one
monogenic branching. Here, the tree stem encompassed several
well-known mutations in lung cancer such as STK11 (prognostic
marker, aids drug resistance with fusion partner LKB1, [22, 23],
PTPN13 (tumor suppressor in lung adenocarcinoma) [24], NOVA1
(promotes telomerase activity in NSCLC) [25], ANXA2 (influential
on lung cancer cell survival, apoptosis, as well as a construct of
EGFR- fusion gene) [26–28], RYR2 (associated with high NSCLC
mutation burden in conjunction with exposure to high air pol-
lution) and KLF4 (regulates lung cancer initiation) [29]. In both
tumors, the stem harboring most influential aberrations allude
to these being early events in initiation.

To further understand the prevalence of crossover variants
and their subsequent effect on the tumor clonal landscape, we
finally constructed cross-sample phylogenies of the tumors
and compared them with the previously published phyloge-
nies. Three interesting cases (CRUK0001, 0003 and 0005) are
highlighted in Figure 5C. For CRUK0001, the published and
CRUST-inferred phylogenies were essentially the same, despite
crossover variants being present across two different clone–
subclone pairs. In CRUK0003, the crossover events resulted in
subclonal diversification. The published results identified the
distinct clones and subclones correctly, but the nesting structure
was quite possibly different lacking the reinforcement from the
three pairs of crossover events. CRUK0005 demonstrated how
crossover events may aid in untangling ambiguity in phylogeny
reconstruction. The published results included two possible
tree structures for this tumor as the nested clones could be
placed in different hierarchies. There were three distinct sets
of crossover events detected by CRUST, which again pointed
towards a greater degree of subclonal diversification than
previously detected. This was consistent with one of the two
phylogenies originally suggested. We conclude that CRUST adds
significant detail by adding a component of cross-sample spatial
resolution to solid tumor evolution, but that sample specific
purity estimates were unavailable in this (as in most) public
datasets, possibly hampering the detection of false positive
crossovers.

CRUST deconvolution across platforms is stable
but coverage dependent

We finally turned to a case of acute myeloid leukemia (AML),
with samples available from presentation and relapse [30]. We
selected a case (AML31) that had two biopsies sampled (primary
and relapse) that were sequenced on several different platforms.
The VAFs needed to be normalized as the samples varied greatly
in purity (90.7 and 36.2%, respectively). Post scaling, CRUST was
able to identify a single clonal population existing in both the
primary and the relapse samples while analyzing whole genome,
whole exome, and a custom-made mutation panel (Supplemen-
tary Figure 7A-C). The predictions concurred with that obtained
from sciClone. However, a custom ion torrent assay resulted
in a clonal/subclonal separation in disagreement with others
(Supplementary Figure 5D). While investigating the respective
total coverage provided by all four technologies, we noted for
the whole ‘platinum list’ of SNVs declared by the original authors,
that the ion torrent assay had a median coverage of <50× for
both samples (Supplementary Figure 7E). To increase robustness,
we therefore extracted only SNVs called at a minimum depth
of 15× in ion torrent for both samples resulting in 33 SNVs
(Supplementary Table 1; phs000159_iontorrent), with increased
median coverage of 79× and 88×, respectively, for the primary
and the relapsed sample. Thereafter, the remaining variants
in the primary sample attained a similar distribution as that
observed by the other three technologies and scaling resulted
in variants in the relapsed sample undergoing a similar mag-
nitude of displacement, whereupon the centroid of the relapse
sample VAFs realigns itself with that of the primary sample. This
inferred a single clonal population, consistent with assessment
by the other techniques (Supplementary Figure 7F). In all, this
cross-platform analysis confirmed the result from simulations,
indicating that sequencing depth is a limiting factor for decon-
volution with CRUST.

Discussion
Parameters based on clonal deconvolution and tumor cell phy-
logeny have been shown to carry prognostically essential infor-
mation in a range of cancer types [31–33]. Such phylogenetic
reconstruction of tumors has mostly relied on bulk sequencing
data, although this is about to change with the advent of single
cell analysis. However, because single cell DNA sequencing data
are still limited by a high cost and a relatively low resolution, we
anticipate more studies will take place where bulk sequencing
is used to investigate cancer cell evolution based on multiple
samples from the same tumor. Distinguishing clonal from sub-
clonal mutations is a critical step in all studies where tumor
phylogenies are deduced from such data.

Here we presented a parametric semi-supervised method of
clonal deconvolution developed to interrogate variant clonality
in multi-regional/temporal samples of a tumor. In compari-
son with most available tools for clonal deconvolution, CRUST
has several major features including a robust normalization for
purity, an inbuilt assessment and integration of copy number
alterations, and a possibility to take à priori biological knowledge
into account through user supervision. While it determines clon-
ality with stochastic algorithms, depending on sequence quality
variation between samples or technical artifacts, sometimes
no mathematical model can adequately harmonize spurious
signals. As the variance of each clonal subcluster inflates with
compromised quality of sampling/sequencing, CRUST expands
on the prediction with a non-parametric test indicating the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab292#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab292#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab292#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab292#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab292#supplementary-data
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probability of a variant belonging to a certain cluster that com-
pensates for hard thresholding. Because copy number profiles
are not always available by a dedicated method such as SNP array
for sequenced tumors, CRUST can estimate copy numbers from
sequencing datasets. However, there remain risks of detecting
spurious signals if copy numbers are solely estimated by this
approach. Hence, a dedicated estimation should always take
priority and we would recommend strict monitoring of sample
quality, purity, sequencing technology variation, variable cover-
age across chromosomes, unstable GC content scaling and other
factors. Another quality issue arises from low sequencing depth,
leading to allele frequencies unsuitable for scaling. Nevertheless,
even at 50× coverage with at least one sample with 70% purity,
the clonality determination was accurate in simulations free of
artifacts.

CRUST builds upon unsupervised hierarchical clustering with
an admixture model or purely bootstrapped agglomerative clus-
tering with optimal cluster determination. This is in signifi-
cant contrast to its predecessors such as sciClone that uses
Bayesian mixture models to determine prior probabilities of
clusters assuming a copy neutral background. Unfortunately,
this means sciClone is not optimal for multiregionally or tem-
porally sequenced samples where the tumor genome evolves
over time [12]. MAGOS has a similar limitation where it removes
all variants that do not belong to the same copy number seg-
ments [11]. PyClone on the other hand clusters the probability
distribution of estimated cancer cell fraction taking into account
the copy number profiles but tend to over cluster in certain
situations [15]. There are other tools that performs clonal decon-
volution such as EXPANDS that does not deconvolve variants
independently across samples or PhyloWGS that uses Monte
Carlo Markov Chain to create decision tree [34, 35]. However,
none of these algorithms allow adjustments based on user input
based on available prior knowledge. Depending on departure
of allelic composition on log transformed relative coverage one
can determine the possible admixture of clonal and subclonal
clusters. With this CRUST adds value to the deconvolution by
independently analyzing variants across samples with respect
to their corresponding allelic compositions. The result of this
was delineated in the TRACERx analysis where CRUST was able
to unravel previously unresolved ambiguity in the phylogenetic
structures as well as underline new events that strongly cor-
roborates the original conclusion. In addition, it was able to
identify further evidence of varying evolutionary trajectories. In
neuroblastomas, CRUST identified regional clonal sweeps that
was previously demonstrated as typical of high-risk variants of
the disease [4]. While with the AML samples sequenced more
than half a decade apart with varied technologies with varied
coverage, CRUST was able to build a consensus deconvolution
from each data set individually.

Through CRUST, we have demonstrated how a semi-
supervised model can yield biological insight with a purely
mathematical framework to determine clonality of mutations.
CRUST not only delivers a high-resolution spatio-temporal
clonal deconvolution of multi-sampled tumors, but also provides
users a much-needed means for manual curation. The sequence
of somatic mutation can thus be traced more accurately across
multiple samples from a tumor especially in cases with a large
burden of chromosomal gains and losses.

Methods
Quick user guide

Clonal deconvolution can be performed with CRUST follow-
ing a minimal number of steps. The argument data needs to

contain at least two columns specifying sample ID and the VAFs.
Annotation for the variants are optional but is required to be able
to create variant specific plots of the deconvolution. If sample
(s) need to be scaled, an additional column should be provided
with the purities for each sample. The allelic composition of each
variant corresponding to each sample should be available to the
user. Here we will assume that SNP array data is not available to
the user. Hence, it needs to be estimated and we will provide a
protocol for a sample analysis:

• First make sure the.vcf file contains calls from the consti-
tutional DNA that enables CRUST to estimate copy num-
ber profiles. Each.vcf file should only have summaries for
one tumor sample and one corresponding normal tissue
sample. For each tumor sample, this analysis needs to be
performed separately.

a) Sample specific allelic composition can be estimated
with the function AlleleComp. This function estimates
allele specific copy numbers using sequencing inputs
from constitutional genome. It is usual practice for vari-
ant callers to remove all SNVs with the ‘REJECT’ flag
(that includes all inherited variants) to produce the final
.vcf file. CRUST requires these variants to estimate copy
number. Input for this function requires the allelic depth
(AD) identifier usually present in the FORMAT argument
of the .vcf file. There are two compatible methods for this
estimation that can be selected at user’s discretion.

b) A summary of the estimates can be visualized with
allelic imbalance and copy number summary statistics if
the estimation was performed with the ‘naive’ method.
The View_summary function can generate this.

• The data thus obtained can be merged with the original data
file containing sequencing summaries. As each distinct
allelic composition have a distinct VAF distribution, the data
needs to be analyzed separately for each allelic make up.

a) Before deconvolving, the VAFs need to be scaled accord-
ing to the corresponding purities with the seqn.scale
function.

b) The scaled VAFs now can be used for deconvolution with
cluster.doc

I. User is here asked to provide a postulated clonal/-
subclonal composition of the variants from visual
inspection of the dot plot

II. A measure of clustering accuracy in terms of
Bayesian information criteria or Smin statistics is
provided to the user along with the best (statistically)
suggested clonal deconvolution, which the user is
free to retain or override (Supplementary Figure 1).

• Depending on biological agreement and objective plausi-
bility, the user can choose to fit different deconvolution
structures with cluster.doubt

• Variant specific plots of the deconvolution can be obtained
with the function variant.plot. It is also possible to auto-
mate this process and obtain plots for all variants with
variant.auto.plot

• The clonality estimates thus obtained can be used to esti-
mate clone sizes and to formulate phylogenies. We esti-
mated clone sizes for the example dataset named Neurob-
lastoma [36] provided along with CRUST.

Requirements: CRUST was built with R 4.0.0 and depends
on several bioinformatic packages as well as mathematical and
data processing packages (please refer to dependencies in pack-

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab292#supplementary-data
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age description). For successful installation, Rtools40 as well as
devtools (≥2.4.0) is also required.

Phylogenetic analysis: We recommend performing phylo-
genetic analysis with the CRUST output using DEVOLUTION
(https://github.com/NatalieKAndersson/DEVOLUTION), a phylo-
genetic reconstruction algorithm specifically built to handle
multiple samples. The clone size estimates along with the pro-
genial nesting inferred by DEVOLUTION can be used to create a
tumor evolution map with tools like clonevol or Evofreq.

Study design and data preparation

Clinical samples included here were fresh frozen tumor biop-
sies analyzed as a part of a larger study [4]. The DNA was
extracted with the AllPrep DNA/RNA/Protein Mini kit (Qiagen);
segmental aberrations were analyzed using the Cytoscan HD
platform (Thermo Fisher Scientific/Affymetrix). Whole exome
sequencing of neuroblastoma samples were performed by SciL-
ife lab (Stockholm, Sweden; Illumina) on NB12 (two primary
and one metastatic relapse sample) and NB22 (two primary
and two metastatic relapse samples). Subsequently a targeted
resequencing on all NB22 samples and the two NB12 primary
samples were performed based on the variants identified by
exome sequencing at SciLife lab (Uppsala, Sweden) using the
AmpliSeq technology for design and Ion Torrent for sequencing
(both from Thermo Fisher Scientific). Further details on human
sample collection, preparation, relevant technologies, quality
control measures and basic bioinformatic analyses are described
elsewhere [4].

Baseline normalization of VAFs

Human tumor samples are often contaminated with non-
neoplastic cells, e.g. local epithelium, fibroblasts, endothelium,
pericytes and immune cells. Even though these cells are
expected not to carry the clonal somatic mutations present
in the tumor cells, they can affect the VAFs of such variants
by a dilution effect. A quantitative measure of sample purity
is given by the tumor cell fraction. It can be estimated from
either SNP arrays, sequencing or methylation data [37–39].
Given that purities may vary among samples of a tumor
procured at different sites or time points, variants may be
present with altered VAFs even though the relative abundance
of them among neoplastic cells are identical in the respective
samples. On the contrary, they can also appear to be identical
despite being influenced by selection or genetic drift that
significantly changed their relative frequency among tumor
cells. A normalization strategy can realign the VAFs of a variant
from several different samples, given a common baseline such
as the purity.

It is customary to avail an integral normalization in presence
of a k-dimensional reference space to transform the n-k dimen-
sional scalable space, assuming the total integral uniformly
influences dilution of all signals in the space. In its stead, we
incorporated probabilistic quotient normalization of VAFs based
on sample specific purities, as quotient normalization assumes
that changes in unique elemental signal dilution affects only the
signal of that element in the complete spectrum and dilution in
global signal of a spectrum influences that of the overall spec-
trum [40]. This normalization algorithm is carried out between
spectra where,

a. Integral normalization is performed on the scalable spectra.

b. Median spectra of the reference sample are calculated; lack-
ing a reference spectrum, a control sample can be obtained
from the scalable spectra but is advised against.

c. Quotients are calculated for the scalable spectra scaled
against that of the reference.

d. Scalable spectra are normalized with the median of the
quotients.

As the reference spectrum is same as the purity and VAF
combination for the highest quality sample, it is assumed to be
devoid of (detectable) signal dilution. Hence, we realign VAFs of
all other samples against their corresponding purity scaled with
the departure in purity between that sample and the purest one.

Cluster detection and assignment

We use VAFs as the metric for clustering as is popularly used in
the clonal deconvolution literature. VAF is defined as the relative
frequency of read count pertaining to a single variant and is
calculated by

v = falternate

/(
freference + falternate

) (1)

where f denotes read depth of an allele, alternate allele is the
mutate allele of a presumed biallelic variant, and the reference
allele is the wild-type allele.

We take a set of N variants that may be observed in S samples
procured from a tumor. Given the set of S samples, VAF of the ith

variant can be represented by vi for a set of k VAF values where
i, k ∈ N

+ and vi ∈ [0, 1] obtained from Equation (1). Hence, we find

a K dimensional matrix V = [
∼
v1,

∼
v2, . . . ,

∼
vk]. To determine clonality

of the variant space V, we employ two different techniques: first,
parametric stochastic modeling with Gaussian finite mixture
modeling [41] and second, bootstrapping estimated cluster sta-
bility modeling [42]. Here, V can be interpreted to be a random
sample of K independent identically distributed random vari-
ables. A joint probability function defined with a finite mixture
model of C components takes the form

f (vi, θ) =
C∑

j=1

αjfj
(
vj, ϕj

)
(2)

Where the parameter space of Equation (2) is defined by θ =
(α1, α2, . . . , αC−1, ϕ1, ϕ2, . . . , ϕC), α1, α2, . . . , αC−1 are the weights of the
C mixture components given

∑C
j=1 αj = 1, αj ∈ R

+; and marginal
density function of vj is fj(vj, ϕj) with parameter ϕj. Applying the
assumptions of a gaussian mixture model, the marginal density
of each mixture component follows a multivariate normal dis-
tribution N(μj, �j). As each of the mixture component represents
an ellipsoidal mutually exclusive cluster, these are centered
at μj and the shapes are defined by the variance–covariance
matrices �j, respectively. Henceforth, Bayesian information cri-
teria is computed with penalized log likelihood (loglikelihood at
maximum likelihood estimate—penalty) so that with increasing
likelihood in proportion to increasing number of mixture com-
ponents, information loss is incorporated with the logarithm of
the number of estimates. Thus, CRUST determines the optimum
number of mixtures. Decided the ideal clustering parameter, the
algorithm performs hierarchical multifactor analysis to obtain
cluster centroids [43]. With the centroids determined, sample
points are assigned to clusters with supervised k-means clus-
tering [44]. To elaborate on the features of the data we include
a provision for multivariate mixture component. This method

https://github.com/NatalieKAndersson/DEVOLUTION
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can be utilized on such data with dimensionality reduced sample
space, although for univariate samples of VAFs the first principal
component and the original vector are identical.

In addition, the stability of the clusters can be assessed
with strength of the clustering method [42]. This technique
relies on bootstrap resampling and iterative clustering. As the
resampling is performed B times, the minimum mean Jaccard
index is observed and scaled over the B resamplings. With an
increase in the number of predicted clusters over the number of
true clusters, the stability (defined by Smin) decreases affecting
the Jaccard index as a given independent cluster is split in
random sub-clusters. We leverage Smin to obtain the number of
clusters devising partitions closest to true separation in VAFs.
The optimum number of clusters thus observed is used to fit a
k-means clustering algorithm with the centroids obtained from
the B resamplings.

Clonality determination

In absence of clone size estimates corresponding to a specific
variant, a cluster-wise detection of subclonality by available
algorithms often lacks prediction of clonality. If the longitudinal
sequence in which a variant appears in the tumor is not appar-
ent, then we cannot distinguish a clonal event from a subclonal
one. We conceived a metaheuristic process to determine the
clonality of identified clusters. First, an iterative unsupervised
density-based neighbor joining algorithm is used to cluster the
VAFs by varying epsilon boundaries from 0.1 to 0.3. The epsilon
boundaries define the minimum margin around the cluster cen-
troid, which passively characterizes the distance between the
centroids at initiation. In a diploid, balanced copy number state,
the separation between centroids of a clonal and a subclonal
cloud is expected to lie in this range [13]. An emergent feature of
this unsupervised clustering with the prediction obtained from
the algorithm above is that a pairwise contingency comparison
of the two produces a matrix (M) spanned with either mutually
orthogonal vectors or that belonging to same subspace i.e.If

Mn,k =
[ ∼
m1,

∼
m2,

∼
m3, . . . , m̃k

]
,

where n is the optimal number of predicted (or user defined)
clusters and k is that obtained from the density-based algorithm;
then,

either m̃i ⊥ m̃j or m̃i � m̃j � basis Sl∀i, j; 0 ≤| Sl |≤ n.
This property ensures that a set of predicted clusters is

reduced to a set of vectors belonging to the basis of a d dimen-
sional space that spans the vector space defined by the n clus-
ters. The orthogonal vectors and corresponding clusters are lin-
early independent as the linearly dependent clusters are merged
to reduce the matrix to have d rows. Hence, we obtain a set
of clusters with cardinality d ≤ n. The clonality is assigned
sequentially thereafter with a reductionist assumption that the
subclones in a sample are represented in the left heavy tail of the
VAF distribution if noise corrected [13]. This is justified by largely
late-arriving subclonal events and stronger signal dampening
experienced by rarer variants [45].

Estimation of allelic composition

Somatic copy number alterations are notoriously capable of
modifying the relative abundance of a variant from sample to
sample. Since subclonal copy number events can often occur

during cancer progression, stratification of VAFs by allelic com-
position produces a better clonality prediction. CRUST strati-
fies variants according to baseline copy number at start and
performs separate analyses for each stratum. In the absence
of SNP array or other specific copy number data, the allelic
composition is estimated from two separate standalone pro-
cesses that enquires somatic tumor variants along with poly-
morphisms in the constitutional genome [46, 47]. These predict
variant specific copy number by modeling mean relative depth
ratio and segment specific B allele frequency for each estimated
segmental copy number alteration, adjusting for cellularity, and
overall tumor ploidy. Estimation of allelic segmentation from
bulk sequencing data is known to contain several sources of bias.
GC content is one such major source of bias, which induces an
undulating pattern in allele frequencies [48]. As a measure of
quality control, prior to copy number estimation, CRUST normal-
izes the B allele absolute frequencies against small segmental
GC content with penalized lasso regression [49]. Additionally, it
rescales the same against aggregate allele frequency to account
for technical artifacts. Subsequently, segmental copy numbers
are estimated with copynumber or falcon [47, 50].

CRUST visualizes segmental copy numbers by estimating
allelic imbalance ratio and average log relative coverage ratio.
To this end, both are estimated over genome-wide dynamically
created chromosomal segments. A principal component analysis
is then leveraged for distance-based pruning to discard outlying
variants in each segment. Allelic imbalance ratios are calcu-
lated with mirrored B allele frequencies as described elsewhere
[16]. As median log ratio is assumed to reflect segmental copy
number and allelic imbalance ratio dictates the relative state
of segmental zygosity, the unknown states of segmental copy
number are reflected in the cluster positions of the segments.
Presence of a subclonal copy number event is thus indicated
by departure of a smaller segmental cluster from its parental
cluster.

Calibration on simulated data

We presume the apparent alteration in representation of a vari-
ant in samples from the same tumor, given the same copy num-
ber state, is due to variation in the purities in each sample. The
following stochastic modeling of the variability in variant abun-
dance generated synthetic sample data closely resembling that
of a solid tumor. Leveraging the heavy tailedness of log-normal
distribution, a random variable with varying parameters drew
sample points representing departure in VAFs from the true
distributions due to fluctuating purities. We varied the mean of
the distribution according to the logarithm of the re-centered
true mean and re-scaled empirical variance in three separate set
ups. Assuming a 100% purity and copy-neutral (disomic) ploidy
status, true mean of VAFs for the clonal variants was assumed to
be at 0.5 and that of the subclonal variants at 0.25 [51]. First only
mean then only variance and subsequently both mean and vari-
ance dynamically were used to affect the simulations by chang-
ing the nature of variability in the data (Supplementary Figure
2A). Changing purity of the samples would always affect the
mean of the VAFs as allele frequencies would converge towards
the left tail. Whereas sequencing artifacts may not change the
centroid of the clonal or subclonal clusters but introduce intra-
cluster dispersion, which makes the distribution heavy tailed.
To mimic this, we altered the variance keeping mean unchanged.
The samples were drawn with these three different strategies
to compare how restructuring the clonality of the variants may
affect the deconvolution efficacy. For all iterations, the purities
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were sequentially varied from 0.95 to 0.5. We used polychoric
correlation estimates computed between scaled and unscaled
predictions to measure level of concordance [52].

As sequencing depth contributes immensely towards
reduction of the baseline noise in signals, the following
adaptation describes a probabilistic model conceived for the
above-mentioned simulation. VAFs from a well-covered region
can be reliably estimated with a beta distribution [12], thus
a beta-binomial process with beta priors can be used for
simulation [53]. To incorporate a log normal deviation based on
purity, we rendered a convolution instead. A joint distribution
of beta-log normal was used for this [54], the probability density
function of which is thus defined by,

f(x) = exp
(

−σ2

2(logx−μ)
2

)/
xσ

√
2πB

(
a, b

) �

(
logx −μ

σ

)a−1

(3)

�

{
1 −

(
logx −μ

σ

)}b−1

, x ∈ R
+

It jointly varies on the aggregates of the parameters of the
two marginal distributions (a, b, μ and σ ). The re-parameterized
cumulative density function given by F(y) was inversed to obtain
a canonical population of VAFs with subclonal mutations. A
standardizing transformation on x in Equation (3) gets us,

F(y) = I[�(y)]
(
a, b

)
, y ∈ R (4)

Where y = logx−μ

σ
. This method produces the prior distribution

of a hypothetical sample. For a true clonal population, we center
the marginal beta parameters with mean 0.5 (0.25 for subclonal)
and variance 0.001. If these are denoted as a random variable B ∼
β (a,b) then, a closed form of the beta-log normal variable is given
by X = eσ�−1(b)+μ. Provided an expected sequencing coverage of λ,
if nsmdenotes the number of reads for a mutation M of sample S,
then Nsm ∼ Poisson(λ). Presuming the variants are all biallelic, we
can further estimate the read count r of an allele of the mutation
following rsm ∼ Bin(nsm, f(x=sm)). Hence, the VAF for that allele is
rsm
nsm

. This process progressively aggregates noise as the coverage
downsizes and the purity degrades (Supplementary Figure 2B).

Performance testing of scaling with simulation

We simulated an admixture of clonal and subclonal variants
assuming a balanced background copy number. A parametric
setup for the sample generation was favored under the assump-
tion that sample purity indirectly affects the observed distri-
bution of the relative abundance of variants. Three separate
parametric assumptions were tested to obtain mutual concor-
dance in prediction. All formulations are described in Methods
and will here be referred to by the mean, variance and meanvar.
For all three assumptions, 1500 simulations were performed,
respectively, to generate two samples in each iteration. Purities
were sequentially modified for each iteration to have produced
100 variants for every single sample. Sequencing coverages were
also varied between 50× and 300× for simulating VAFs for each
variant and were drawn randomly. As means vary, the clonal
distribution and the subclonal tails are linearly translated on
the x-axis, which does not affect the clustering if the respective
centroids are not too close. We simulated the samples so that
the mean and variance parameters (or, for beta distribution:
scale and location) are directly affected by the purity and not
the outcome sample. Therefore, the changes in purity does not

linearly transform to changes in observed VAF distribution; it is
instead the population distribution that changes, and samples
are drawn from it. When variance was changed, the deconvo-
lution and prediction accuracy broke down fastest as the two
VAF distributions could retain the centroids while the range
increased making them overlap. Hence the VAF distributions
overlap between clusters making them virtually impossible to
segregate.

Next, we compared CRUST against some of the contem-
porary and frequently used clustering algorithms, i.e. MAGOS
and sciClone [11, 12]. We refrained from comparison against
another popular method PyClone as both MAGOS and sciClone
reliably outperforms it [11]. As these methods predominantly
are clustering algorithms, there were certain assumptions we
had to consider for the sake of contrast. Although CRUST is
built to handle non-recurring variants that can appear in a
(or disappear from) samples extracted in different stages of
progression from a tumor, sciClone and MAGOS operate under
the assumption that each ascertained mutation is present in
all analyzed samples. Therefore, we used this as a basis for the
subsequent comparisons. We also operated with the presump-
tion of samples being copy neutral and clonally consistent; i.e.
subclonal populations do not undergo clonal sweep or fixation.
For these comparisons we also refrained from the user driven
inputs. Each simulation produced two admixture samples for
every run of the procedure. Coverages were varied to generate
four distinct sets of observations at 300×, 100×, 50× and 30×
depth. Among the two samples included in each observation,
the first was consistently drawn with a purity higher than that
of the second, sequentially reducing both with every iteration.
The purities were thus progressively lowered from 0.95 to 0.5 for
the first sample whereas the other one was continually initiated
with a departure of 0.2 in purity from that of the former and was
successively lowered until 0.25. Hence the theoretically lowest
quality of sample was restricted with a paired purity of 0.5
and 0.25 with 30× coverage. At each combination we drew 10
observations consisting of a pair of 10 samples with 500 variants
each. A sample thus drawn consisted of one clonal and one
subclonal population.

We measured the performances of each method with the Jac-
card index (τ , also known as Tanimoto similarity index) to quan-
tify cluster agreement by creating a contingency table between
the original population assignments and the predictions [55].
This statistic varies between 0 and 1, 1 indicating the highest
possible concordance and can be interpreted similar to a corre-
lation coefficient. We discarded CRUST’s internal prediction on
variant clonality justifiably compromising information in sake
of ordinality and generalizability of the classifications. Here it
is worth mentioning that sciClone has previously shown to per-
form reliably given at least a coverage of 300× [30]. Furthermore,
MAGOS has been shown to perform almost as good if not better
at 300× [11].

Deconvolution on hematological tumor patient samples

We further assessed constraints due to sequencing depth using
publicly available data from an acute myeloid leukemia patient
(AML31; dbGaP: phs000159) consisting of two temporally sepa-
rated samples corresponding to the primary (90.7% pure) and
relapsed tumor tissue (36.2% pure). These samples were queried
with deep whole genome sequencing (up to ∼312×), exome
capture (up to ∼433×) and further ultradeep targeted sequencing
with custom capture assays (>2000×). To ensure quality, we
extracted summary statistics on a putative ‘platinum list’ of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab292#supplementary-data
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SNVs (consisting 1343 high-quality validated sites) 8. Subse-
quent pruning with read count (>10) resulted in a total of 37
variants. Statistics from four assays were used for testing: whole
genome sequencing, exome capture, custom capture, and cus-
tom ion torrent platform, each providing varied coverage (Sup-
plementary Figure 7). Although the purpose of this analysis was
to observe the capability of CRUST to successfully deconvolve
the AML31 samples, we performed all the steps using the system
inputs and did not specify any user driven subjective input so
that one can compare the results with the original deconvolution
performed with SciClone.

Deconvolution and phylogenetics of TRACERx tumors

To observe the effect of normalization and inclusion of allelic
composition on the predicted clonality status in a large-scale
mutational landscape of a typical solid adult tumor, we turned
to publicly available data. However, since procuring multiple
tissue biopsies from several regions or at separate time points
from human tumors are not part of standard care there are only
a handful of dedicated studies set up for such investigations. The
TRACERx [56] study is one such endeavor where initially upwards
of a hundred non-small cell lung cancer (NSCLC) patients
were biopsied for tumor tissue, some multi-regionally [17]. We
extracted WES data on 20 of these tumors along with their
copy number profiles for which at least three viable regional
samples were sequenced with at least one mutant variant
present in more than one sample. Here, the aim was to select a
tangible cohort that reflect a diverse genetic signature without
having to re-analyze the whole TRACERx dataset. We extracted
sequencing summaries on a total of 21 000 variants (median:
911) from the twenty patients averaging 260 single nucleotide
variants (SNVs) per sample. Only 9400 variants passed the
quality control.

Copynumber summary data were procured directly from the
published study and were linked to each variant to obtain allelic
composition. All 20 tumors were subjected clonal deconvolu-
tion performed with CRUST where all multiregional samples
were analyzed in tandem (Supplementary Figure 8). Each unique
allelic composition warranted a distinct run. Due to unavail-
ability of sample purity data, we were unable to normalize the
VAFs. The clonality determination was supervised in accordance
with the allelic compositions and in case of VAFs clustering too
close to be clustered across samples, all variants were presumed
clonal. Next, clone sizes corresponding to each variant’s VAF
were estimated as follows [57]

ˆTCF = Base ploidy × VAF
VAF × (

Base ploidy − CNmutant − CNwildtype
) + CNmutant

(5)

Clone size =
VAF ×

((
CNmutant + CNwildtype

) × ˆTCF + 2
(
1 − ˆTCF

))
M

(6)

The base ploidy was determined as that of the clonal variant
with the least total copy number; CNmutant is the copy number of
the mutant allele and CNwildtype is that of the wild-type allele, M
is alleles harboring the variant. We reconstructed the clonal or
subclonal clusters based on these clone sizes. From top down, all
clone sizes within 15% of each other were aggregated (separately
for clones and subclones). The median clone size of each such
aggregate were made to reflect the size of that population. The
clone sizes needed to be scaled up as the estimates reflected

the effect of purity. For each sample, a scaling constant was
determined as follows:

Scaling constant = 1
Max.of clone sizes of all clonal variants

Clone sizes of all clonal as well as subclonal variants were
multiplied with the scaling constant of the corresponding sam-
ple.

Additionally, we created spatially nested phylogeny of
some of the tumors as done in the published study [17]. To
this end clone sizes (for several clonal/subclonal clusters)
corresponding to each allelic composition were aggregated
under the assumption that variants with similar VAF and allelic
composition belong to the same population. In case more than
one such aggregate (with different copy number or from different
samples) were seen to have similar clone size (i.e. within 10%
of one another), they were inferred to belong to the same
population. All such calculations were separately formed for
clonal or subclonal clusters (see Supplementary Table 2; clonal
nesting). The population nesting pattern thus discovered were
used to build phylogenies.

Key Points
• CRUST is a new computational tool that simultane-

ously calculates allelic compositions, predicts clonal-
ity of sequenced variants and helps detect underlying
evolutionary processes in a bulk sequenced tumor.

• Consideration of changeable allelic composition
across samples in a tumor aids proper subclonal
reconstruction, which if absent jeopardizes
phylogenetic analysis.

• Multiregional sequencing aids in uncovering spatial
inclination of solid tumor evolutionary trajectories
increasing the genomic and etiological resolution.

Software availability
CRUST depends on R (>4.0.0) and is available for download
from GitHub repository https://github.com/Subhayan18/CRUST.
We recommend installation from the precompiled repository.

Data availability
WES data on the twenty TRACERx tumors were extracted
from cBioPortal (http://www.cbioportal.org/study/summary?id=
nsclc_tracerx_2017). The SNP array summary of the TRACERx
tumors were available in supplementary tables of the corre-
sponding study [17]. AML samples are part of the Whole-Genome
Sequencing of Acute Myeloid Leukemia study and is available via
dbGaP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/stu
dy.cgi?study_id=phs000159.v8.p4). The neuroblastoma samples
are part of a previous study [4]. Simulated data are generated
with randomized seed using R and the test data sets are included
in the package build.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab292#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab292#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab292#supplementary-data
https://github.com/Subhayan18/CRUST
http://www.cbioportal.org/study/summary?id=nsclc_tracerx_2017
http://www.cbioportal.org/study/summary?id=nsclc_tracerx_2017
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000159.v8.p4
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000159.v8.p4
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Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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