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Abstract

Sexual transmission is the principal driver of the human immunodeficiency virus (HIV) pan-

demic. Understanding HIV vaccine-induced immune responses at mucosal surfaces can

generate hypotheses regarding mechanisms of protection, and may influence vaccine

development. The RV144 (ClinicalTrials.gov NCT00223080) efficacy trial showed protec-

tion against HIV infections but mucosal samples were not collected, therefore, the contribu-

tion of mucosal antibodies to preventing HIV-1 acquisition is unknown. Here, we report the

generation, magnitude and persistence of antibody responses to recombinant gp120 enve-

lope and antigens including variable one and two loop scaffold antigens (gp70V1V2) previ-

ously shown to correlate with risk in RV144. We evaluated antibody responses to gp120

A244gD and gp70V1V2 92TH023 (both CRF01_AE) and Case A2 (subtype B) in cervico-

vaginal mucus (CVM), seminal plasma (SP) and rectal secretions (RS) from HIV-uninfected

RV144 vaccine recipients, who were randomized to receive two late boosts of ALVAC-HIV/

AIDSVAX®B/E, AIDSVAX®B/E, or ALVAC-HIV alone at 0 and 6 months. Late vaccine

boosting increased IgG geometric mean titers (GMT) to gp120 A244gD in AIDSVAX®B/E
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and ALVAC-HIV/AIDSVAX®B/E CVM (28 and 17 fold, respectively), followed by SP and

RS. IgG to gp70V1V2 92TH023 increased in AIDSVAX®B/E and ALVAC-HIV/AIDS-

VAX®B/E CVM (11–17 fold) and SP (2 fold) two weeks post first boost. IgG to Case A2 was

only detected in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM. Mucosal IgG to

gp120 A244gD (CVM, SP, RS), gp70V1V2 92TH023 (CVM, SP), and Case A2 (CVM) corre-

lated with plasma IgG levels (p<0.001). Although the magnitude of IgG responses declined

after boosting, anti-gp120 A244gD IgG responses in CVM persisted for 12 months post final

vaccination. Further studies in localization, persistence and magnitude of envelope specific

antibodies (IgG and dimeric IgA) in anogenital secretions will help determine their role in pre-

venting mucosal HIV acquisition.

Introduction

Despite numerous recent advances in HIV prevention, a preventive vaccine remains a high

priority to prevent ongoing transmission of the virus [1]. Sexual acquisition occurs across the

genital and rectal mucosa surfaces following sexual activity with HIV-infected partners [2]. In

humans, innate mucosal immune factors have been associated with protection from HIV

infection, and mucosal HIV-specific antibodies exhibit viral neutralization and/or inhibition

of HIV infection [3–6]. Concentrations of IgG in cervico-vaginal mucus (CVM) and semen

are higher than IgA, whereas rectal secretions (RS) contain higher levels of secretory IgA than

IgG [7–9]. Furthermore, half of the antibodies in female genital secretions are produced sys-

temically by plasma cells in peripheral blood and transported, while more than 90% of intesti-

nal antibodies are locally produced in the lamina propria [10]. Studies in animal models have

demonstrated the successful generation of mucosal HIV-specific antibodies by immunizing

with HIV antigens either systemically, mucosally, or a combination of both routes [11–13].

The RV144 trial of a prime-boost vaccine regimen consisting of recombinant canarypox

priming immunogen, ALVAC-HIV (vCP1521), and bivalent AIDSVAX1B/E glycoprotein

(gp)120 (MN and A244) protein boosting demonstrated a modest 31.2% protective efficacy

against HIV infection at 42 months of follow-up; however, vaccine efficacy was 60.5% at 12

months after initial vaccination [14, 15]. Post hoc analysis revealed two factors correlated to

HIV infection risk: plasma IgG binding antibodies to variable loops 1 and 2 (V1V2) of gp120

envelope (Env) protein inversely correlated with HIV infection risk among RV144 vaccine

recipients, while plasma monomeric IgA binding antibodies to viral Envs directly correlated

with risk [16–19]. Additionally, a sieve analysis identified vaccine-associated genetic signatures

in the V2 region, further providing evidence that vaccination-induced immune responses

directed against the V2 loop were associated with protection conferred by the RV144 regimen

[20]. However, HIV-specific immune responses in anogenital secretions were not character-

ized because mucosal specimens were not collected in RV144.

In the current study, RV305 (ClinicalTrials.gov NCT01435135), we report the presence of

HIV-specific antibodies in anogenital secretions after intramuscular immunizations with

RV144 vaccine components. One hundred and sixty two HIV-uninfected RV144 vaccine

recipients were randomized to receive two late boosts of either a combination of ALVA-

C-HIV/AIDSVAX1B/E or AIDSVAX1B/E alone or ALVAC-HIV alone [21]. Antibody

responses in anogenital secretions were collected and assessed at five different time points

throughout the study. We demonstrate a strong correlation of antibody responses in ano-

genital secretions with those in plasma. Our results provide evidence that intramuscular

Anogenital secretion antibodies to gp120 in RV144 vaccine recipients

PLOS ONE | https://doi.org/10.1371/journal.pone.0196397 April 27, 2018 2 / 16

Infectious Disease (interagency agreement Y1-AI-

2642-12 with the US Army Medical Research and

Materiel Command and an F31 fellowship), and the

Bill & Melinda Gates Foundation (CAVIMC grants

OPP1032144 and OP1146996). The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript. The funder (Sanofi Pasteur and Global

Solutions for Infectious Diseases (GSID)) provided

support in the form of investigational products and

salaries for authors (Sanofi Pasteur: S.P. and J.T.;

GSID: F.S.), but did not have any additional role in

the study design, data collection and analysis,

decision to publish, or preparation of the

manuscript. The specific roles of these authors are

articulated in the ’authors contributions’ section.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: Faruk Sinangil is

employees of Global Solutions for Infectious

Diseases. James Tartaglia and Sanjay Phogat are

employees of Sanofi Pasteur. This does not alter

our adherence to PLOS ONE policies on sharing

data and materials. All other authors declare no

potential conflicts of interest.

https://doi.org/10.1371/journal.pone.0196397


immunizations induced anogenital IgG to gp120 that might have contributed to prevention of

HIV infection.

Materials and methods

Study design

In the RV305 clinical trial, 162 healthy HIV-uninfected vaccine recipients who completed all

vaccination series from RV144 [14] 6.0 to 8.3 years earlier (mean = 7.2 years since last RV144

vaccination) were randomized into three groups, each composed of 45 vaccine and 9 placebo

recipients, to receive two intramuscular immunizations at 0 and 6 months of one of three

booster options or placebo products. Group 1 received ALVAC-HIV/AIDSVAX1B/E or

ALVAC/AIDSVAX placebo, Group 2 received AIDSVAX1B/E or AIDSVAX placebo, and

Group 3 received ALVAC-HIV or ALVAC placebo (Fig 1) [21]. The protocol received

approval from ethics committees and institutional review boards of the Walter Reed Army

Institute of Research, the Thai Ministry of Public Health, the Royal Thai Army Medical

Department, the Faculty of Tropical Medicine, Mahidol University, the Faculty of Medicine,

Chulalongkorn University, and Siriraj Hospital. Written informed consent was obtained from

all participants.

Clinical specimen collection, processing and storage

Venous blood, CVM, seminal plasma (SP) and RS were collected and tested at study entry

(week 0), 2 weeks post first (week 2) and second boosts (week 26), and weeks 48 and 72. All

participants were HIV-uninfected throughout the study.

Venous blood collected in Acid Citrate Dextrose (ACD) tubes from each participant were

centrifuged at 800 g for 15 minutes to obtain plasma.

Fig 1. Specimen collection algorithm. Blood specimens were collected from each study participant to obtain plasma. Cervico-vaginal mucus (CVM) was

collected from consenting female participants. Seminal plasma (SP) and rectal secretions (RS) were collected from consenting male participants. Blood

contamination was tested on both CVM and RS using Hemoccult1 SENSA1 test kit (Beckmann Coulter, Brea, CA). All blood contaminated specimens

were excluded from the analysis. Blood contamination was not tested on SP.

https://doi.org/10.1371/journal.pone.0196397.g001
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Optional CVM was collected from 61 consenting female participants (Group 1: 21 vaccine

and 1 placebo recipients, Group 2: 17 vaccine recipients, and Group 3: 18 vaccine and 4 pla-

cebo recipients) (Fig 1) using Instead Softcup™ (Evofem, San Diego, CA). Participants were

asked to refrain from sexual activities for at least 72 hours prior to CVM collection. Wherever

possible, collections were timed to avoid menses. Softcups were inserted and removed by par-

ticipants and time of intravaginal retention was recorded ranging from 4.02 to 12.35 hours.

Secretions were processed by placing Softcups in 50 mL conical tubes and centrifuged at 500 g

for 10 minutes at +4˚C. To ensure that antibodies in secretions were not derived from blood

contamination, CVM was tested for the presence of blood using Hemoccult1 SENSA1 test kit

(Beckmann Coulter, Brea, CA). When possible, the participant was asked to provide another

sample when blood was detected in CVM. Secretions were suspended in two volumes of phos-

phate-buffered saline (PBS) (Life Technologies, Grand Island, NY) containing 1X Calbiochem

protease inhibitor cocktail set I (EMD Millipore Corp., Billerica, MA) to prevent antibody

proteolysis.

SP was isolated from semen collected from 81 male participants (Group 1: 21 vaccine and 6

placebo recipients, Group 2: 21 vaccine and 7 placebo recipients, and Group 3: 23 vaccine and

3 placebo recipients) (Fig 1) by masturbation without lubricants. Participants were asked to

refrain from sexual activities for at least 72 hours prior to semen donation and specimens were

kept at 2–6˚C during transport for processing. Specimens were kept for at least one hour at

4˚C± 2˚C prior to processing to liquefy semen. Semen was diluted 1:1 with PBS (Life Technol-

ogies, Grand Island, NY), mixed and centrifuged for 10 minutes (1,200 g) to separate cells

from SP. Supernatant was mixed with 10% extraction solution containing protease inhibitor

cocktail tablets (cOmplete™ ULTRA Tablets, Mini, Roche Diagnostics, Mannheim, Germany).

RS were collected from 26 male participants (Group 1: 10 vaccine and 1 placebo recipients,

Group 2: 6 vaccine and 2 placebo recipients, and Group 3: 7 vaccine recipients) (Fig 1) by plac-

ing Merocel1 Schindler ear packing sponges (Medtronic Xomed, Jacksonville, FL) anterior to

the dentate line for 2–5 minutes, avoiding sponge placement in locations containing fecal mat-

ter. Sponges were weighed before and after collection to determine sample weight. RS were

extracted three times with 0.8mL of PBS (Life Technologies, Grand Island, NY) containing

Calbiochem protease inhibitor cocktail set I (EMD Millipore Corp., Billerica, MA) and centri-

fuged at 2,300 g for 5 minutes at +4˚C. Supernatant was tested for blood contamination using

Hemoccult1 SENSA1 test kit (Beckmann Coulter, Brea, CA), and pooled for each participant.

All plasma and anogenital specimens were aliquoted and stored at<-80˚C until testing.

Recombinant proteins

Recombinant gp120 HIV-1 CRF01_AE A244gD protein (A244gD) with identical amino acid

sequence to the one used in RV144 was purified using Galanthous nivalis lectin columns as

described previously [22]. Subtype B Case A2 (Case A2) and CRF01_AE 92TH023 (92TH023)

gp70V1V2 scaffold proteins were synthesized as previously described [23].

Antibody binding ELISA assays

IgG and IgA antibody responses to A244gD protein [17], and gp70V1V2 92TH023 and Case

A2 [18, 24, 25] were assessed by ELISA as previously described [17]. Briefly, ELISA for all pro-

teins was performed in 96-well U-bottom Immulon 2HB plates (Thermos Scientific, Roches-

ter, NY) coated with 1 μg/mL of proteins in D-PBS (Sigma-Aldrich, Saint Louis, MO) at 4˚C

overnight. Plates were washed and serial two-fold dilutions of all secretions were added to

wells with initial dilutions of CVM and SP of 1:100 (gp120 A244gD) and 1:25 for gp70V1V2

scaffolds. The initial dilution for RS was 1:5 for all antigens. Plates were incubated at room

Anogenital secretion antibodies to gp120 in RV144 vaccine recipients
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temperature for 2 hours. Plates were washed and color was developed with horseradish pero-

xidase (HRP) conjugated either to goat anti-human IgG or goat anti-human IgA (Bethyl Labo-

ratories, Montgomery, TX) at 1:25,000 dilution and ABTS ELISA HRP substrate (KPL,

Gaithersburg, MD). Plates were read at an absorbance of A405 nm (Spectramax 340 PC ELISA

reader, Molecular Devices, Downingtown, PA). Human reference serum (Bethyl Laboratories,

Montgomery, TX) was used as a positive control.

Total IgG and IgA antibody specific to goat anti-human IgG-Fc antibody (Bethyl Laborato-

ries, Montgomery, TX) and goat anti-human IgA antibody (Bethyl Laboratories, Montgomery,

TX) were assessed on all anogenital secretions following above ELISA procedure.

Statistical analysis

Data analysis and graphs were generated using GraphPad Prism version 7.01 for Windows

(GraphPad Software, La Jolla, CA). Titers were expressed as the reciprocal of the highest dilu-

tions that yielded an absorbance value of A405 nm greater than 0.25 (2.5-fold the absorbance

of wells without capture antigen). The positive reciprocal titers were above the cut-off level

(0.5-fold the reciprocal titers of the initial dilution of specimens). Descriptive results are pre-

sented as medians with minimum and maximum ranges. Antibody concentration results are

presented as geometric mean titers (GMT) which were calculated with associated 95% confi-

dence intervals. Statistical comparisons were assessed using non-parametric Mann-Whitney U

tests. Correlation of antibody responses was assessed using Spearman’s Rank Correlation Coef-

ficient test. A 2-sided p-value of<0.05 was considered significant.

Results

Determination of total IgG and IgA concentrations in anogenital secretions

Total IgG and IgA concentrations in anogenital secretions were measured at study entry, and

2 weeks post first and second boosts (Table 1). Median (range) concentrations of total IgG in

CVM (602.6 (68.3–5,037.0) μg/mL) and SP (44.5 (11.5–154.1) μg/mL) were approximately

two-fold higher than those of total IgA (376.4 (7.1–1,576) and 22.1 (1.4–221.5) μg/mL, respec-

tively). Conversely, total IgG (29.5 (1.8–484.8) μg/mL) in RS was approximately five-fold lower

than total IgA (142.2 (2.0–3,677.0) μg/mL). Of 301 CVM and 117 RS samples collected, 44

(14.6%) and 17 (14.5%) were positive for blood contamination, respectively (Fig 1). Although

intravaginal retention time of Instead SoftCup ranged from 4.02–12.35 hours (median

hours = 6.07), it did not correlate with yield of collected CVM (p = 0.283).

Total IgG and IgA in samples without blood and blood-contaminated samples were com-

pared to determine if the presence of blood increased the concentration of antibodies in secre-

tions. We observed significantly higher concentrations of IgG in blood-contaminated CVM

(p = 0.018) and RS (p = 0.022) and of IgA in blood-contaminated CVM only (p = 0.048).

Although there was a trend in RS for higher IgA in blood containing samples, significance was

Table 1. Concentration of total IgG and IgA in anogenital secretions that did not contain blood.

Cervico-vaginal mucus

(CVM)

Seminal plasma (SP) Rectal secretions (RS)

No. of collected specimens 301 394 117

Median (range) total IgG (μg/

mL)

602.6 (68.3–5,037.0), n = 156 44.5 (11.5–154.1),

n = 238

29.5 (1.8–484.8), n = 65

Median (range) total IgA (μg/

mL)

376.4 (7.1–1,576.0), n = 156 22.1 (1.4–221.5),

n = 238

142.2 (2.0–3,677.0),

n = 65

https://doi.org/10.1371/journal.pone.0196397.t001
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not reached (p = 0.431). However, the number of matched RS samples used for the analysis

was small (N = 5–7). We excluded all blood-contaminated samples from analysis to avoid

inclusion of antibody responses normally found in blood. SP samples were not tested for

blood contamination.

HIV-specific antibody responses in anogenital secretions

HIV-specific IgG antibody responses were not detected in any secretions from placebo recipi-

ents at baseline (Fig 2), which could be due to the low number of samples collected (1–7 sam-

ples). IgA responses to all HIV antigen tested were not detected in any secretions of both

vaccine and placebo recipients.

IgG antibody responses to gp120 A244gD protein and gp70V1V2 scaffolds

in CVM

Responses to gp120 A244gD were measured in ALVAC-HIV/AIDSVAX1B/E (23.5%, 4/17),

AIDSVAX1B/E (21.4%, 3/14) and ALVAC-HIV (17.6%, 3/17) groups at week 0 (GMT: 61–

69) (Fig 2). ALVAC-HIV immunization did not increase HIV-specific antibody levels relative

to baseline responses (p = 0.657; Fig 3A). ALVAC-HIV/AIDSVAX1B/E and AIDSVAX1B/E

vaccinations induced significant increases in antibody levels that were similar in magnitude.

Fig 2. Percent of positive IgG responders to all HIV antigen tested in anogenital secretions. Percent of positive IgG responders to

gp120 A244gD (CRF01_AE), gp70V1V2 92TH023 (CRF01_AE) and gp70V1V2 Case A2 (subtype B) in CVM (A-C), SP (D-F), and RS

(G-I) are shown. Each time point is color coded; red, week 0; orange, week 2; green, week 26; blue, week 48; magenta, week 72. CVM and

RS were not collected from placebo recipient of groups AIDSVAX1B/E and ALVAC-HIV, respectively, at any time point. VAC = vaccine

recipients; PLB = placebo recipients; ALVAC/AIDSVAX = ALVAC-HIV/AIDSVAX1B/E group; AIDSVAX = AIDSVAX1B/E group;

ALVAC = ALVAC-HIV group.

https://doi.org/10.1371/journal.pone.0196397.g002
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Two weeks post first immunization (week 2), antibody responses to gp120 A244gD increased

significantly from baseline (p<0.001) in both ALVAC-HIV/AIDSVAX1B/E (GMT: 1,083)

and AIDSVAX1B/E (GMT: 1,745) groups. However, an additional boost did not increase the

magnitude of the response (GMT: 652 and 993, respectively) (Fig 3A). Although antibody

responses after the second boost were lower than post first boost, the magnitude was not sig-

nificant (p = 0.114 and 0.206, respectively). At week 48, GMT declined significantly in the

ALVAC-HIV/AIDSVAX1B/E (161, p = 0.011) and AIDSVAX1B/E (264, p = 0.002) groups.

GMT remained stable and approximately the same at week 72, GMT = 124 (p = 0.643) and

219 (p = 0.744), respectively. In general, positive responders at week 48 remained above cutoff

at week 72.

CVM IgG responses to gp70V1V2 92TH023 and Case A2 scaffolds in all vaccination groups

were at baseline level (GMT = 13) at study entry (Fig 3B and 3C). Following the first immuni-

zation, antibody responses to gp70V1V2 92TH023 were induced in both the ALVAC-HIV/

AIDSVAX1B/E (GMT: 154, p<0.001) and AIDSVAX1B/E (GMT: 228, p<0.001) groups, but

the responses were not significantly different between groups (p = 0.673, Fig 3B). As seen with

gp120, immunizations in the ALVAC-HIV group induced responses similar to study entry

and significantly lower than those in the other two groups (p<0.02). Additional boosting with

AIDSVAX1B/E or ALVAC-HIV/AIDSVAX1B/E did not further increase V1V2-specific

responses (GMT: 65 (p = 0.015) and 54 (p = 0.069), respectively). Antibody levels decreased

significantly but remained above baseline levels (week 0) in both groups at weeks 48 (GMT: 20

and 18; p<0.005) and 72 (GMT: 30 and 18; p<0.05).

CVM antibody responses to gp70V1V2 Case A2 scaffold were lower than those to

gp70V1V2 92TH023. Following the first boost, GMT of ALVAC-HIV/AIDSVAX1B/E and

Fig 3. IgG binding antibody responses to gp120 A244gD and gp70V1V2 scaffolds in cervico-vaginal mucus (CVM). Reciprocal titers of IgG binding antibody

responses to (A) gp120 A244gD (CRF01_AE), (B) gp70V1V2 92TH023 (CRF01_AE) and (C) gp70V1V2 Case A2 (subtype B) in CVM are shown along with numeric

depiction of geometric mean titers above panels. Each group is color coded; red, ALVAC-HIV/AIDSVAX1B/E (ALVAC/AIDSVAX); green, AIDSVAX1B/E

(AIDSVAX); blue, ALVAC-HIV (ALVAC). Error bars depict 95% confidence intervals. The cut-off level of responses (0.5-fold the reciprocal titers of initial dilution of

specimens) is shown by the dotted line. RV305 vaccine administration time points are indicated by black arrows (weeks 0 and 24). The non-parametric Mann-Whitney

U Test was used to assess within-group comparison of IgG responses between time points indicated by horizontal black bars. Comparisons reaching statistical

significance at the level of p<0.05 are shown. �p<0.05 to 0.001, &p<0.001.

https://doi.org/10.1371/journal.pone.0196397.g003
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AIDSVAX1B/E groups increased similarly from 13 and 13 to 30 and 35, respectively, and the

responses remained approximately the same after the second boost (GMT: 35 and 40) (Fig

3C). In both ALVAC-HIV/AIDSVAX1B/E and AIDSVAX1B/E groups, the responses

declined significantly and were close to study baseline levels at weeks 48 (GMT: 13 and 14;

p>0.48) and 72 (GMT: 13 and 14; p>0.48).

IgG antibody responses to gp120 A244gD protein and gp70V1V2 scaffolds

in SP

Prior to immunization, IgG antibody responses in SP to all antigens were at baseline level

(gp120 A244gD, GMT = 50; gp70V1V2 92TH023 and Case A2, GMT = 13). Boosting immuni-

zations did not induce the responses in the ALVAC-HIV group for all HIV antigens tested

(Fig 4A–4C). IgG responses to gp120 A244gD were detected after the first vaccination in both

ALVAC-HIV/AIDSVAX1B/E and AIDSVAX1B/E groups with GMT = 174 and 170, respec-

tively (Fig 4A). After the second boost, GMT did not increase further and were lower than post

first boost, 78 (p = 0.001) and 68 (p<0.001), respectively. Antibody responses declined in both

groups at weeks 48 (GMT: 55 and 50; p = 0.04 and 0.118, respectively) and 72 reaching baseline

levels (GMT: 50 and 50; p = 0.231 and 0.487, respectively) (Fig 4A).

IgG responses to gp70V1V2 92TH023 scaffold were also detected in SP after the first vacci-

nation with ALVAC-HIV/AIDSVAX1B/E and AIDSVAX1B/E groups (GMT: 38 and 37;

p<0.001) (Fig 4B). However, after the second boost, the responses did not increase and were

similar to study baseline (GMT: 14 and 15; p = 0.107). Antibodies in both groups were identi-

cal at week 72 to those at baseline. IgG responses to gp70V1V2 subtype B (Case A2) in SP were

undetectable in all groups (Fig 4C).

Fig 4. IgG binding antibody responses to gp120 A244gD and gp70V1V2 scaffolds in seminal plasma (SP). Reciprocal titers of IgG binding antibody responses to

(A) gp120 A244gD (CRF01_AE), (B) gp70V1V2 92TH023 (CRF01_AE) and (C) gp70V1V2 Case A2 (subtype B) in SP are shown along with numeric depiction of

geometric mean titers above panels. Each group is color coded; red, ALVAC-HIV/AIDSVAX1B/E (ALVAC/AIDSVAX); green, AIDSVAX1B/E (AIDSVAX); blue,

ALVAC-HIV (ALVAC). Error bars depict 95% confidence intervals. The cut-off level of responses (0.5-fold the reciprocal titers of the initial dilution of specimens) is

shown by the dotted line. RV305 vaccine administration time points are indicated by black arrows (weeks 0 and 24). The non-parametric Mann-Whitney U Test was

used to assess within-group comparison of IgG responses between time points indicated by black bars. Comparisons reaching statistical significance at the level of

p<0.05 are shown. �p<0.05 to 0.001, &p<0.001.

https://doi.org/10.1371/journal.pone.0196397.g004
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IgG antibody responses to gp120 A244gD protein and gp70V1V2 scaffolds

in RS

At baseline, IgG to gp120 A244gD was detected in one RS sample in the ALVAC-HIV group

but vaccinations in this group did not induce antibody responses (Fig 5A–5C). Following the

first boost (week 2), IgG responses to gp120 A244gD were detected in ALVAC-HIV/AIDS-

VAX1B/E and AIDSVAX1B/E groups (GMT: 13 and 15; p = 0.002 and 0.015, respectively)

(Fig 5A). A second boost did not increase these responses further. Rectal antibody responses

declined rapidly and were undetected in all groups at week 72. Low IgG responses to

gp70V1V2 92TH023 were detected in RS of ALVAC-HIV/AIDSVAX1B/E group at week 2

and AIDSVAX1B/E group at weeks 2 and 26 (Fig 5B). These responses were transient and

declined to baseline at week 48. IgG responses to gp70V1V2 Case A2 were undetectable in RS

(Fig 5C).

Correlation of IgG responses between plasma and anogenital secretions

Anogenital secretion IgG responses to HIV proteins tested showed similar patterns to plasma

responses [21]. We therefore, investigated the correlation of IgG responses in plasma and all

anogenital secretions collected at different time points after the first immunization until the

end of study (weeks 2, 26, 48 and 72). HIV-specific IgG titers in CVM showed a significant

positive correlation with those in plasma (p<0.001) for gp120 A244gD and both scaffolds,

(Fig 6A–6C). A significant correlation of IgG antibody responses for gp120 A244gD and

gp70V1V2 92TH023 was also found between SP and plasma (p<0.001) (Fig 6D and 6E). In

RS, only IgG responses to gp120 A244gD had a significant positive correlation with plasma lev-

els (p<0.001) (Fig 6F).

Fig 5. IgG binding antibody responses to gp120 A244gD and gp70V1V2 scaffolds in rectal secretions (RS). Reciprocal titers of IgG binding antibody responses to

(A) gp120 A244gD (CRF01_AE), (B) gp70V1V2 92TH023 (CRF01_AE) and (C) gp70V1V2 Case A2 (subtype B) in RS are shown along with numeric depiction of

geometric mean titers above panels. Each group is color coded; red, ALVAC-HIV/AIDSVAX1B/E (ALVAC/AIDSVAX); green, AIDSVAX1B/E (AIDSVAX); blue,

ALVAC-HIV (ALVAC). Error bars depict 95% confidence intervals. The cut-off level of responses (0.5-fold the reciprocal titers of the initial dilution of specimens) is

shown by the dotted line. RV305 vaccine administration time points are indicated by black arrows (weeks 0 and 24). The non-parametric Mann-Whitney U Test was

used to assess within-group comparison of IgG responses between time points indicated by black bars. Comparisons reaching statistical significance at the level of

p<0.05 are shown. �p<0.05 to 0.001, &p<0.001.

https://doi.org/10.1371/journal.pone.0196397.g005

Anogenital secretion antibodies to gp120 in RV144 vaccine recipients

PLOS ONE | https://doi.org/10.1371/journal.pone.0196397 April 27, 2018 9 / 16

https://doi.org/10.1371/journal.pone.0196397.g005
https://doi.org/10.1371/journal.pone.0196397


Discussion

Mucosal surfaces are a major route for HIV infection but the precise mechanisms by which

the virus penetrates mucosal barriers to establish infection are not completely understood.

Similarly, because no highly efficacious HIV vaccine has been developed, vaccinologists are

considering multiple potential mechanisms of protection including neutralization and non-

neutralizing functions [26, 27]. However, in order for vaccine-induced antibody-mediated

protection to occur at the mucosal surfaces, antibodies must be present at the time of viral

encounter. This study demonstrates the induction of HIV-specific antibodies by using immu-

nogens of the RV144 regimen as late boosts 6–8 years following RV144 immunization, includ-

ing responses to antigens that inversely correlated with risk in the RV144 trial [28].

Collection of vaginal and rectal secretions for the characterization of antibodies in vaccine

and natural infections has been technically challenging because samples collected using lavage

introduce dilution factors that were difficult to determine [29, 30]. In RV305, we used Mero-

cel1 sponges and Instead Softcup™ to collect undiluted RS and CVM, respectively, thereby

eliminating dilution factor differences. With regard to total immunoglobulins, in CVM and

SP, IgG was predominant with a mean concentration twice that of IgA, although the latter was

the predominant isotype in RS. Higher concentrations of IgG in CVM and SP, and higher IgA

concentrations in RS have been reported previously [7–10].

Low levels of residual antibody responses to gp120 A244gD were detected in CVM at week

0. It was reported previously that immunoglobulins in female genital secretions originate from

either local production or antibody transport from blood circulation to mucosal compart-

ments [10]. Following immunization, we detected IgG Env-specific antibodies in all secretions

Fig 6. Correlation of IgG responses in anogenital secretions and plasma. Spearman’s rank correlations of IgG responses for gp120 A244gD

(CRF01_AE), gp70V1V2 92TH023 (CRF01_AE) and gp70V1 V2 Case A2 (subtype B) at weeks 2, 26, 48 and 72 in matched CVM (A-C), SP (D-E)

and RS (F), and plasma of RV305 vaccine recipients are shown. Each group is color coded; red, ALVAC-HIV/AIDSVAX1B/E; green, AIDSVAX1B/

E; blue, ALVAC-HIV. Numeric values above each plot depict r- and p-values. Significant p-value<0.05, GMT = Geometric Mean Titer.

https://doi.org/10.1371/journal.pone.0196397.g006
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except the ALVAC-HIV alone where they were either very weak (CVM, gp120 antigen only)

or undetectable (SP and RS). Antibody responses in the ALVAC-HIV/AIDSVAX1B/E and

AIDSVAX1B/E groups were indistinguishable, suggesting that the AIDSVAX1B/E proteins

were necessary in driving the antibody response. It remains to be determined whether the

presence of ALVAC-HIV impacts the quality of antibodies generated in anogenital secretions.

Overall, antibody levels in CVM and SP in the ALVAC-HIV/AIDSVAX1B/E and AIDS-

VAX1B/E groups two weeks post first immunization were higher than those after the second

immunization, as previously reported for plasma [21], whereas in RS, responses were similar

between the first and second immunizations. Notably, IgG to gp70V1V2 Case A2, which cor-

related inversely to risk of HIV infection in RV144 [28], was only detected in CVM but not in

SP and RS. This difference could be related to the detection sensitivity, levels and quality of

antibodies in these samples. Antibody levels in both SP and RS were transient and dropped to

baseline levels at week 48. In CVM, antibody titers declined significantly at weeks 48 and 72

after the second immunization but remained above baseline indicating that HIV-specific

responses were more persistent in this compartment. Naturally, CVM contains higher concen-

trations of IgG than SP and RS [31] providing an explanation for the higher concentrations of

antigen-specific antibodies detected in CVM.

CVM contained the highest HIV-specific antibodies compared to SP and RS. Antibody

titers to gp120 A244gD were 6–14 fold higher than SP, and 83–163 fold higher than RS. Simi-

larly, CVM titers to gp70V1V2 92TH023 were 4–6 fold higher than SP, and 20–60 fold higher

than RS. Although the level and specificity of antibodies in mucosal secretions that are needed

to provide protection are unknown, higher levels of HIV-specific IgG antibodies in CVM may

provide better protection via this route of infection. Though intrarectal HIV transmission

could be due to microtrauma during sexual intercourse leading to direct inoculation of HIV in

the blood [32], vaccine development that generates higher levels of HIV-specific IgG and/or

secretory IgA antibodies in RS may provide additional protection.

Antibody concentrations in mucosal secretions positively correlated with those in plasma,

suggesting transudation of antibodies between systemic and mucosal compartments. It has

been reported previously that antibodies in female genital mucosa and intestine are derived

from the systemic circulation [10]. Neonatal Fc receptors (FcRn) on intestinal and genital epi-

thelium were shown to mediate trans-epithelial transport of IgG into the lumen of intestinal

and genital tracts where IgG could acquire antigens and form immune complexes [33–35].

Macrophages and monocytes expressing FcRs for IgG and IgA abundantly below human vagi-

nal epithelium might also mediate both IgG and IgA effector functions [36]. In CVM, there was

a positive correlation for gp120 A244gD and gp70V1V2 scaffold proteins. In SP, correlation

was detected for gp120 A244gD and to gp70V1V2 92TH023 but no correlation was found for

Case A2 scaffold. In RS, positive correlation was only observed for gp120 A244gD but not the

scaffold proteins. This is likely due to the low number of responders and magnitude of antibody

response (limit of detection of weak signals by ELISA) in RS. Taken together, correlation of

antibody titers in plasma and mucosal secretions indicates that systemic antibodies likely con-

tributed to the levels of IgG gp120-specific antibodies detected in anogenital secretions.

Monomeric IgA is predominantly found in plasma, whereas either dimeric or polymeric

IgA is found in mucosal compartments [37]. Monomeric IgA to gp120 has been detected in

plasma from RV144 vaccine recipients [38]. However, monomeric IgA cannot be transported

by the polymeric immunoglobulin receptor (pIgR), which only transports dimeric IgA (secre-

tory IgA) [39]. Though CVM and SP contain monomeric IgA generated by local production, it

cannot be transported from plasma to secretions explaining lack of IgA to gp120 in CVM and

SP following intramuscular administration with this vaccine. Dimeric IgA is the predominant

IgA form in RS [10] but we did not detect dimeric IgA to any antigen we tested. Anogenital
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secretions were not collected as part of the RV144 trial, so dimeric IgA levels in mucosal speci-

mens could not be evaluated. Naturally low IgG concentrations in RS and rapid decline of anti-

bodies to immunization antigens may pose a challenge in generating robust IgG responses to

HIV in the rectum. Developing vaccine regimens that induce dimeric IgA to HIV antigens in

secretions may increase protection of HIV-1 transmissions via the mucosal routes [40].

Preclinical trials in animal models revealed that mucosal immunization with HIV antigens

could induce both systemic and mucosal protective antibodies [41–45]. Other studies demon-

strated the generation of mucosal immune responses and protective anti-HIV antibodies by

systemic immunization and/or mucosal administration of HIV immunogens. Intramuscular

immunized macaques were completely protected from intra-rectal challenge with simian-

human immunodeficiency virus (SHIV) when vaccinated with a vaccine regimen consisting of

alphavirus replicon particles (prime) and trimeric envelope glycoprotein boosts. Mucosal

HIV-specific IgG or IgA was not detected in rectal or vaginal secretions [11]. Dimeric IgAs

delivered directly into the rectal lumen have been reported to prevent SHIV acquisition [46].

Another study demonstrated induction of vaginal gp120-specific IgA in mice following immu-

nization with DNA prime and gp120 boost vaccine via either intranasal or intramuscular

administrations [13]. Monkeys immunized with HIV gp41 antigens by both intramuscular

and intranasal administrations were completely protected from intravaginal challenge with

SHIV and elicited gp41-specific vaginal IgAs with HIV transcytosis-blocking properties and

vaginal IgGs with neutralizing and/or antibody-dependent cellular-cytotoxicity (ADCC)

activities [12]. It is apparent that the development and optimization of mucosal collection pro-

cedures to characterize antibodies induced by HIV vaccines at mucosal surfaces and establish-

ment of correlates of mucosal protection are essential for evaluating vaccine candidates

advancing to efficacy trials.

The following shortcomings in this study must be considered. First, participants had highly

variable rest intervals from the last RV144 immunization to RV305 boosting which was much

longer than ideal for a vaccine regimen to maintain antibody responses. Second, sample size,

particularly for RS collections, was small. The RV306 trial (ClinicalTrials.gov NCT01931358)

immunized Thai HIV-uninfected with RV144 regimen plus ALVAC-HIV/AIDSVAX1B/E

or AIDSVAX1B/E boosts at week 48, or ALVAC-HIV/AIDSVAX1B/E at week 60 or 72.

Humoral immune response assessments of the trial with bigger sample size of mucosal collec-

tion will help elucidate HIV vaccine-induced immune responses in mucosal compartments.

Third, functional characterizations of antibody neutralization activity, binding affinity, avidity,

and other effector functions such as ADCC, antibody-dependent cell-mediated virus inhibi-

tion (ADCVI), antibody-dependent cellular phagocytosis (ADCP) are not reported here and

remain ongoing.

We showed that mucosal collection methodologies were successful in collecting and charac-

terizing IgG and IgA immunoglobulins from anogenital secretions and that the RV144 regi-

men induced IgG antibodies to gp120 and gp70V1V2 scaffolds derived from CRF01_AE

(92TH023) and subtype B (Case A2). Absence of IgA gp120 specific responses suggests that

protection of mucosal surfaces in RV144 is likely IgG-mediated. The presence of HIV-specific

IgG mucosal antibodies might have contributed to the modest protective effect against HIV

acquisition in the RV144 trial in a population with mostly heterosexual transmission. Presence

of IgG in CVM and rectal fluid could prevent HIV acquisition by several mechanisms but the

protective role of IgG in seminal fluid is unclear. Immunoglobulins induced by HIV vaccines

that are localized at the vascular epithelium of anogenital surfaces could be protective by

sequestering and neutralizing viruses that penetrate the epithelial barrier. Collection and char-

acterization of mucosal secretions would advance our understanding of the immune responses

at mucosal surfaces to design and select efficacious HIV-1 vaccines in the future.
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