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Abstract: Biomaterials and their applications are perhaps among the most dynamic areas of research
within the field of biomedicine. Any advance in this topic translates to an improved quality of life for
recipient patients. One application of a biomaterial is the repair of an abdominal wall defect whether
congenital or acquired. In the great majority of cases requiring surgery, the defect takes the form of a
hernia. Over the past few years, biomaterials designed with this purpose in mind have been gradually
evolving in parallel with new developments in the different surgical techniques. In consequence,
the classic polymer prosthetic materials have been the starting point for structural modifications or
new prototypes that have always strived to accommodate patients’ needs. This evolving process
has pursued both improvements in the wound repair process depending on the implant interface in
the host and in the material’s mechanical properties at the repair site. This last factor is important
considering that this site—the abdominal wall—is a dynamic structure subjected to considerable
mechanical demands. This review aims to provide a narrative overview of the different biomaterials
that have been gradually introduced over the years, along with their modifications as new surgical
techniques have unfolded.

Keywords: Polypropylene; polytetrafluoroethylene; meshes

1. Introduction

The spectacular rise in the use of biomaterials in clinical practice has meant that pro-
phylactic materials today play a major role in the development of surgical techniques in all
medical specialties [1]. The field of biomaterials and their applications is perhaps the most
dynamic of all advanced technological developments. As one of their multiple applications,
these materials are invariably used to strengthen or replace defective abdominal wall
tissues such as when repairing a hernia.

The term hernia refers to the abnormal protrusion of an organ or part of an organ
outside the body cavity in which it is normally contained. Hernias most often arise in
the abdomen, causing pain or discomfort to the patient and limiting daily activity. To
mechanically close the hernial cavity and reinforce the abdominal wall, the standard sur-
gical technique is synthetic mesh placement. Currently, more than 20 million hernias are
operated on each year across the world [2]. In the United States alone, some 700,000 in-
guinal hernia operations are performed every year. The frequency of incisional hernia, i.e.,
a hernia produced as a consequence of a prior surgical incision weakening the abdominal
wall, is also remarkably high [3,4]. In some cases, the objective of surgery using a pros-
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thetic material is to repair defects generated when a tumour or metastasis is excised, as a
malignancy in the peritoneal cavity may invade the abdominal wall [5].

Based on clinical evidence, the use of a prosthetic material is currently recommended
for the repair of a hernia, whether this is a primary defect (primary hernia) or the conse-
quence of a prior laparotomy (incisional hernia) [6–9]. Mesh hernia repair thus replaced
the traditional suture closure techniques. The free-tension repair concept of Lichtenstein
et al. [10], advocating the use of a mesh or patch to repair a hernia revolutionised all surgical
procedures designed to repair an abdominal wall defect. The same has occurred with the
repair of incisional hernias, in which the use of a biomaterial is today almost mandatory
and this has served to reduce recurrence rates [11]. As early as in 1960, Usher [12] heralded
what was later to be promulgated and popularized by Lichtenstein’s group: “if mesh is
used to bridge the defect instead of reinforcement for tissues approximated under stress,
this factor of tension is eliminated, and recurrence becomes less likely . . . ”.

Abdominal wall repair is a challenging and complex procedure that includes the
reconstruction of the original tissue structure and restoration of its previous function.
The abdominal wall comprises distinct layers whose integrity has to be maintained. The
recovery of the elasticity and natural strength of the abdomen must be guaranteed as well
after abdominal wall reconstruction. Research and development of biomaterials to be used
in the repair of abdominal wall defects is thus an ever-expanding field. Their use in the past
20 years has conditioned these prosthetic materials, which have gradually been modified
in an effort to develop a biomaterial that shows optimal behaviour at every tissue interface.

Developments in second and third generation materials that take into account the
recipient organism and its biology to improve their host tissue integration is effectively an
attractive area of research. Similarly, the development of materials for this purpose has had
to constantly adapt to new surgical techniques such as laparoscopic surgery. Therefore,
there is a vast variety of prosthetic materials with different properties and indications
available for abdominal wall repair.

The objective of this report is to provide a narrative overview of the different biomate-
rials that have been gradually introduced over the years, along with their modifications
and their adaptation to surgical advances made in hernia repair.

2. Classic Polymer Biomaterials and Hernia Repair

The three biomaterials that have been milestones in the field of hernia repair that are
still used today are: polyester, or Dacron mesh (Mersilene®), polypropylene (PP) mesh
(Marlex®) and expanded polytetrafluoroethylene (ePTFE) mesh (Soft Tissue Patch®).

As early as 1956, Dacron® fabric started to be used for inguinal and ventral hernia
repair. The first study, conducted by Wolstenholme [13] gave rise to promising results as
patients’ hernial defects were treated without great complications.

In a review conducted in 1975, Stoppa et al. [14] highlighted the benefits of Dacron®

mesh when used to repair recurrent giant groin hernias. These authors argued that, when
adequately placed in the preperitoneal space, this mesh acts as a non-resorbable artificial
endoabdominal fascia, instantly conferring lasting strength to the abdominal wall. Wantz
in 1991 [15] confirmed the good results obtained with this material. The Dacron mesh was
the first non-metal prosthesis to be widely incorporated into clinical practice although its
use started to decline as PP mesh gained popularity.

The first PP mesh marketed under the name of Marlex® was introduced by Usher in
1959 [16]. This mesh featured several benefits over the metal meshes used at the time, as
it was much more flexible and could be easily inserted into a defect of any size without
fragmenting like the metal meshes. It also seemed more resistant to infection. Two years
later, Usher described the use of a Marlex® prosthesis to bridge lesions in the abdominal
wall, with good outcomes in terms of low recurrence rates (10.2% for incisional hernia,
5.9% for inguinal) [17].

Given its advantages, the popularity of Marlex® rapidly spread. In 1961, Usher [18]
described an improved version of Marlex® comprising a mesh woven from polypropylene
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monofilament suture thread. Later studies confirmed the benefits of hernia repair using
Marlex® [19–23]. In 1989, Lichtenstein [24] reported his good results with Marlex® used in
1000 patients with inguinal hernia.

Already in the 1990s, several techniques were developed to repair large incisional
hernias in the abdominal wall, while sparing the peritoneum between the organs and mesh.
Outcomes were satisfactory in terms of recurrence rates, and while infection was observed
in a small proportion, no prosthesis had to be removed [25–27].

The third classic prosthetic material used to repair a hernial defect was polytetrafluo-
roethylene (PTFE). The first report of the use of PTFE (Teflon) for the repair of an abdominal
wall defect was that by Harrison in 1957 [28] in which results were promising. However,
when this same material was woven to generate a prosthesis, outcomes were disappointing
and it was discontinued [29].

In 1967, Oshige [30] described a process whereby PTFE could be expanded to modify
its microstructure and achieve greater mechanical strength. This technique was refined
by the company Gore and Associates [31] and clinically applied to vascular prostheses.
Following this use, PTFE was radically expanded to generate a sheet material that could be
used to repair hernias and other soft tissue defects. It was named the Soft Tissue Patch®

and introduced for the first time in clinical practice in 1983.
Just as PTFE, expanded PTFE (ePTFE) is inert in tissues and induces a scarce foreign

body reaction in the host. The Soft Tissue Patch® is manufactured as sheets of different
calibres and a thickness of 1 or 2 mm. It is comprised of nodes of PTFE forming columns
connected by fine PTFE fibrils, which are multidirectionally angled on the surface. This
confers the mesh balanced resistance properties in all directions. Mean internodal fibril
length, or pore size, is 20 to 25 µm, and this unique porous structure offers a flexible
biomaterial that is soft and easily handled, does not fray and allows for cell infiltration.

Studies have shown that ePTFE has an adequate tensile strength for its safe clinical
use. Through industrial testing methods, it has been proven stronger than the meshes
Marlex or Dacron and similar to these materials in terms of suture retention resistance.

In 1979, initial experimental investigations [21] revealed the good biological tolerance
of this material. Sher et al. in 1980 [32] confirmed for the first time its good behaviour at
the peritoneal interface in relation to polypropylene. These findings were highlighted by
Lamb et al. [33], who confirmed that the peritoneal reaction to the implants was minimal.

After 1985, the first clinical trials on the use of ePTFE offered good results in both the
short and long terms. There were barely any recurrences, infections or surgical complica-
tions, and it was thus concluded that this prosthetic material was perfectly tolerated by the
human body [34–38]. This was a great advance, as it was associated with a lower incidence
of adhesions, which had so far been one of the major shortcomings of the materials avail-
able. Further benefits were good integration of the prosthetic mesh in the host tissue and
the development in experimental animals of a continuous layer of mesothelial cells on the
side of the mesh in contact with the peritoneum by the fourth week post-implant [39,40].

In 1992, de Bord et al. [41] published their findings in a study in which 62 patients
with large incisional hernia underwent repair with Soft Tissue Patch®. The recurrence rate
recorded in this patient series was 12.9%.

In 1993, Berliner [42] described his experience with the treatment of 350 inguinal
hernias with an ePTFE soft tissue patch for tension-free repair under local anaesthesia
in an ambulatory setting. During a mean follow up of 41.8 months, there were four
recurrences (1.1%). Graft infection was a mere 0.29%, although a persistent fistula required
patch removal.

In 1997, Bellón et al. [43] related their experience with the repair of large groin hernias
using an ePTFE patch in 38 patients. After a follow up ranging from 18 to 72 months, three
recurrences (7.8%) and one episode of post-implant intestinal obstruction were recorded.
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2.1. Structural Modifications to the Classic Polymer Biomaterials

Since the 1990s, these classic biomaterials have undergone modifications targeted at
improving the mesh/host tissue interface for both better host tissue incorporation and
mechanical strength.

The first structural modifications were made to the ePTFE prosthetics and the starting
point was the Soft Tissue Patch®.

These modifications to the soft tissue patch gave rise to Mycro Mesh®. This macrop-
orous mesh consists of a standard microporous mesh with evenly spaced large pores for
more rapid tissue incorporation in the prosthesis [44]. The second variation is Dual Mesh®,
which is made up of two surfaces, a non-porous side designed to avoid adhesion formation,
and a standard microporous surface to allow for host tissue incorporation [45]. This latter
surface was subjected to further modification to create a rougher surface for better host
tissue ingrowth (Dual Mesh Corduroy®). Another development was the pretreatment of
the prosthetic mesh surface with an antibacterial agent (silver and chlorhexidine) giving
rise to the Dual Mesh Plus®. The result was an antibacterial prosthetic material designed to
avoid the adherence of bacteria. This was the first antibacterial mesh to be commercialized.
Studies in vitro have confirmed the benefits provided by this pretreatment [46].

The most recent modification to an ePTFE prosthesis has been the creation of a reticular
non-expanded PTFE mesh (Infinit Mesh®). The idea pursued was adequate host tissue
incorporation to improve the strength of the repair zone putting this mesh in competition
with the lightweight and heavyweight PP prostheses. Experimental findings have indicated
no difference in tissue incorporation in relation to conventional PP mesh [47,48].

Before this PTFE design, a similar design had been described in the literature but of
ePTFE, with which good mechanical results had been obtained following its implant in the
host [49] (Figure 1).

Polypropylene prostheses were also subjected to structural changes, and the starting
point was always the classic prosthesis Marlex®. In the newer designs, factors were
considered such as pore size, prosthetic filament diameter and the spatial distribution of
filaments [50]. The pores of the classic PP designs were enlarged in size to attain diameters
exceeding 1 mm and giving rise to the lightweight meshes of lower density or g/m2 of
material [51].

This led to classification schemes whereby the classic PP meshes with a density of
80 g/m2 were considered heavyweight while materials of lower density to this threshold
were classified as lightweight [52,53]. This was later to be followed by the introduc-
tion of materials of intermediate density ranging between 50 and 80 g/m2, determin-
ing that meshes are presently described as lightweight when their density is lower than
50 g/m2 [54].

Sometimes prosthetic weight is independent of pore size. Hence, implant materials
with small pores and a simple spatial structure involving crossovers or knots comprised
of a very fine filament can still be of fairly low density [55]. This aspect is important, as
in agreement with the German school of thought [56], pore size has been the main factor
used to describe a prosthetic material as of high or low density determining that implants
described as high-density always have pores smaller than 1 mm, while low-density ones
have a pore size larger than 1 mm.

Another modification employing PP as the structural basis has taken the form of
hybrid or partially absorbable prosthetic devices. In these, polypropylene filaments are
intermeshed with absorbable filaments. The hybrid materials are low density with large
pores [57]. The absorbable component was initially a polyglactin polymer (Vypro®) but
was later replaced by polyglecaprone (Ultrapro®).

Another innovation has been the pretreatment of PP meshes. For this purpose, a
titanium coating has been the most widely used [58].
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Figure 1. Macroscopic images of the different modifications in polytetrafluoroethylene (PTFE) meshes (left) and host tissue
incorporation once implanted (right). Both surfaces, subcutaneous and peritoneal sides of the PTFE implants (Soft tissue
Patch®, Dual mesh®, Dual Mesh Corduroy®-Dual Mesh Plus®, 30, 14, and 90 days post-implant, respectively, 100×) were
encapsulated by host connective tissue. Scar tissue surrounds the PTFE implants, and some cells could be seen into the
prosthetic interstices, at the inner third of the PTFE. Furthermore, in Mycro Mesh®, host tissue penetrates through the
material micropores (60 days post-implant, 100×). Infinit Mesh® behaviour was similar to reticular meshes integration, like
polypropylene, with connective tissue surrounding the mesh filaments (14 days post-implant, 100×). Scale bar: 100 µm.
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2.2. Modifications to Improve Host Tissue Incorporation
2.2.1. Expanded Polytetrafluoroethylene

Because of their laminar structure, the host tissue incorporation achieved by ePTFE
meshes at a tissue/tissue interface is deficient. Recipient tissue encapsulates these sheet
prostheses with connective tissue. Further, as they are microporous, colonization is only
cellular and there is scarce angiogenesis elicited. All this affects the mechanical strength of
these implants which is particularly poor in zones of mesh anchorage to the host tissue [59].

With the aim to improve integration within host tissue and thus mechanical outcomes
arose the first modification of introducing microperforations in the original Soft Tissue
Patch®. Modifications were also made to its surface making it rough on one of its sides to
generate Dual Mesh®. In both cases, no improvement was noted in terms of mechanical
strength compared with the initial patch [60,61].

The genesis of a prosthesis in the form of a mesh (Infinit®) [62] elaborated from non-
expanded polytetrafluoroethylene gave rise to both improved tissue incorporation and
mechanical strength, although the elastic modulus of this material was excessively high [63].
Finally, the antibacterial ePTFE meshes have had scarce repercussions in clinical practice.

Contrary to what occurs at the tissue/tissue interface, ePTFE biomaterials such as the
Soft Tissue Patch® or DualMesh® show excellent behaviour when placed directly in contact
with the contents of the peritoneal cavity. Studies both in vitro and in vivo examining
the formation of a neoperitoneum on the implanted prosthetic surface in contact with the
intestinal loops have shown that the characteristics of this new layer depend upon the
structure of the biomaterial employed for tissue repair [64].

In experimental studies designed to monitor the prosthetic peritoneal surface follow-
ing implant, a network of collagen fibres covered with typical mesothelial cells can be
observed at an early stage. These fibres arrange themselves so that they run parallel to
the prosthetic surface and are accompanied by a large number of cells, mostly fibroblasts
and some foreign body reaction cells. In later stages, the neoperitoneum is remodelled and
fibroblasts become the dominant cells at the expense of most of the foreign body reaction
cells, which indicates good tolerance to the prosthesis. Finally, the collagen fibres organize
themselves to run parallel to the implant surface, with the neoperitoneum on their outside
making contact with the visceral peritoneum [65] (Figures 1 and 2).
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Figure 2. (a) Diagram and (b) light microscopy (90 days post-implant, 100×) images showing tissue incorporation (cross-
section), in PTFE meshes, once implanted in the abdominal wall. Meshes are encapsulated by vascularized connective tissue
arranged as fibrous bundles running parallel to the prosthetic surface. Cells are observed inside the biomaterial, although
they fail to penetrate beyond the outer third of the laminar sheet. Scale bar: 100 µm. (c) Scanning electron microscopy view
of mesothelial covering (14 days, 500×). Scale bar: 20 µm.
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This perfectly configured neoperitoneum avoids one of the major complications that
can arise following the implant of a biomaterial in contact with the visceral peritoneum,
i.e., the formation of adhesions between the mesh and intestinal loops. Because of this
behaviour, ePTFE meshes have been employed since the introduction of laparoscopic
surgery for hernia repair [66–68]. In this type of surgery, the biomaterial is placed in
direct contact with the contents of the abdominal cavity. This means that this interface
needs to be as smooth as possible (to avoid inducing adhesions) by promoting adequate
mesothelial deposition.

2.2.2. Polypropylene

The rationale for the new low-density PP mesh designs was to minimize the foreign
material implanted in the host in an effort to reduce the amount of fibrosis produced [69,70].
The idea was to avoid the abdominal rigidity, or lack of compliance, problems observed
in some patients implanted with the conventional PP meshes, especially the high-density
ones (i.e., those of small pore size). There is no doubt that reducing the final amount of
foreign material left in the host should have considerable benefits, especially in younger
patients (Figures 3 and 4).
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Figure 3. (a) Diagrams and (b) light microscopy images (100×) showing tissue incorporation (cross-section) in polypropylene
meshes, once implanted in the abdominal wall (90 days post-implant). The prosthetic filaments are surrounded by scar
tissue in which the collagen fibres concentrically lay around the mesh filaments. The spaces between filaments are also
occupied by scar tissue. Scale bar: 100 µm. (c) Scanning electron microscopy view of mesothelial covering (14 days, 500×).
Scale bar: 20 µm.

Studies conducted by our group [71] have shown that the tissue incorporation and
mechanical strength offered by both the lightweight implants and the partially absorbable
ones are similar to those of the conventional heavyweight reticular meshes. We should
underscore that from the first moments of implant (2 weeks), collagen deposition can be
detected on the large-pore implants [72,73]. This could explain why no differences exist in
mechanical strength between low- and high-density materials when this factor is examined
in the long term, i.e., 6 months after implant. In a recent study we observed that it is
the recipient tissue that conditions implant behaviour in the long term, as similar me-
chanical strength values are obtained when comparing light- and heavyweight prosthetic
meshes [74].
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Figure 4. Macroscopic images of the different modifications to polypropylene meshes. Pore size:
modifications in pore size have the objectives of minimizing minimize the quantity of foreign
material in the host tissue, and improve the foreign body reaction and fibrosis without compromising
mechanical resistance. Composition: hybrid meshes combine different components knitted or woven
together to obtain a single mesh structure. Some of them incorporate an absorbable component
(polyglecaprone-25 or polyglactin) to diminish the fibrosis reaction and amount of foreign material
left in the body. Others include titanium or polymers like polyvinylidene fluoride. Fixation: self-
adhesive meshes strive to achieve atraumatic mesh fixation (red box: polylactic acid hooks, scanning
electron microscopy, 16×).

However, at the peritoneal interface, where these PP implants are in contact with
the contents of the peritoneal cavity, the neoperitoneum generated is of a disorganized
structure with a rough texture and zones of haemorrhage and necrosis which will further
promote the appearance of adhesions [75]. We would thus argue that the reticular structure
of this material leads to the inappropriate disposition of mesothelial cells on its surface.

Such behaviour patterns can be confirmed in in vitro experiments in which, after the
seeding of mesothelial cells on different biomaterials, uniform rapid mesothelialization is
only achievable with a laminar sheet material [76]. Seeding mesothelial cells on reticular
PTFE has the same effect. Thus, it seems that the structure of a material, rather than its
chemical composition, will condition its behaviour at the peritoneal level [49].

The birth of hybrid or partially absorbable prosthetics whose polymer base component
is polypropylene has attempted to reduce even further the amount of foreign material left
behind in the host after its implant. All these prosthetic materials are low density materials
and their host tissue incorporation is similar to that of conventional PP.
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With the objective of improving the biocompatibility of PP, this polymer is coated with
titanium (Figure 4). The results obtained, however, both experimental and clinical, have
been a matter of controversy. Thus, some authors have detected no benefits in preclinical
studies of this PP treatment [77], while others argue that the foreign body reaction elicited
in the host is diminished when titanium is incorporated into the PP [78,79]. In patients
implanted with treated PP, some benefits seem to exist in terms of reduced postoperative
pain and a more rapid recovery process [80,81].

2.3. Modifications Designed to Improve Adhesion to the Host: Self-Gripping Meshes

To improve mesh fixation to the host tissue, materials have been developed that have
systems such as grips [82] or adhesives [83,84] to anchor the mesh. The objective of these
designs has been to avoid the trauma of the use of sutures or tacks [85]. The idea behind
these self-fixing meshes is to facilitate their placement at the repair site and shorten the
time needed to do this.

The first of these meshes was Progrip®, a self-gripping mesh made of a low-weight
knitted PP fabric (initially was made of polyester) that incorporates reabsorbable polylactic
acid microhooks. These microhooks provide tissue-gripping properties of the mesh over
the following 12 months [86].

The second mesh Adhesix® is a self-adhesive, double-sided mesh, made of two
components. A knitted monofilament PP mesh (rough side) covered by a reabsorbable layer
of polyethylene glycol and polyvinylpyrrolidone (smooth side) [87]. These two components
form a hydrogel that cross-links to the underlying tissue within 5 min. According to the
manufacturer, the bioadhesive is reabsorbed within 7 days of implant. Mesh density after
the reabsorption of both components is 40 g/m2.

Experimental and clinical outcomes of the use of these self-fixing meshes have been
good overall both in terms of their host tissue incorporation and biomechanics [88–92]
(Figure 4).

2.4. Reticular Polyvinylidenfluoride (PVDF) Materials

Among the reticular meshes, we find those fashioned out of polyvinylidenfluoride
(PVDF) [93]. This polymer shows improved textile and biological properties. It is thermally
stable and has been established as a suture material in cardiovascular and orthopaedic
surgery applications [94]. Compared to other polymers such as polyester, it is more resistant
to hydrolysis and degradation. Reports also exist of a diminished inflammatory response
to this polymer [95]. The first mesh made of PVDF was promoted by the German research
group of Schumpelick [96]. Notwithstanding, results obtained post-implant with this
prosthesis, both preclinical and clinical, have been controversial, particularly when this
material is used at a peritoneal interface [97–103] (Figure 4).

2.5. Condensed Polytetrafluoroethylene (cPTFE)

This is a non-woven, macroporous material that is manufactured through a PTFE con-
densing process. Its objectives have been to achieve good peritoneal behaviour including
minimal adhesion formation and bacterial adherence.

Some preclinical studies have confirmed the improved performance of this mesh
over that of ePTFE at the peritoneal interface [104,105]. Other studies, also experimental,
while again describing the formation of fewer peritoneal adhesions, have detected risks
associated with its intraperitoneal implant, especially regarding its peripheral zones [106].
In clinical practice, this mesh has been tested in a low number of patients with infection of
the abdominal wall and results have been acceptable [107].

Table 1 summarizes the most representative modifications introduced in the polymeric
materials employed in hernia repair.
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Table 1. Classification of the different types of polymeric meshes employed in hernia repair and the most representative modifications introduced. (PVDF, polyvinylidene fluoride; PLA,
polylactic acid).

Type of Mesh Modifications Advantages Limitations References

Polyester (PO) Standard mesh (Dacron®, Mersilene®) Good and lasting mechanical strength Adhesion formation
Foreign body reaction [13–15]

Polypropylene
(PP)

Standard mesh (Marlex®, Prolene®, Surgipro®)
Low recurrence rates

Flexible and easily inserted
Good mechanical resistance

High adhesion formation
Disorganized neoperitoneum [16–27,64,65,75]

Structural modifications

Increased pore size
Smaller knots
Fine filaments
Lower density

(ParieteneTM, Optilene®)

Improved integration and compliance
Reduction of foreign material

Reduction of inflammation and fibrosis
Reduction of bridging effect

Adhesion formation [50–56,69,70,72–74]

Introduction
of a second component

Absorbable filaments
(Vypro®, Ultrapro®) Reduced foreign material Adhesion formation [57,71]

Inert filaments: PVDF
(Dynamesh®)

Diminished inflammatory response
Resistance to degradation Controversial results among

experiments
Adhesion formation

[93–103]

Mesh coating: titanium
(TiMESH®)

Improved biocompatibility
Diminished foreign body reaction [58,77–81,102]

Self-gripping
PLA hooks (Progrip®)

Adhesive (LifemeshTM,
Adhesix®)

Results comparable to sutured meses
(Progrip®)

Avoidance of the trauma caused by
sutures or tacks

Mesh dislocated (onlay
procedures) [88–92]

Polytetrafluoroethylene
(PTFE)

Expanded PTFE,
laminar structure

Standard material
(Soft Tissue Patch®)

Good biological tolerance
Low incidence of adhesions
Adequate neoperitoneum

Deficient tissue incorporation
Reduced mechanical strength

(vs. PP)
Encapsulation

Scarce angiogenesis

[30–43,59,64–68,75]

Introduction of evenly spaced
large pores (Mycro Mesh®) More rapid tissue incorporation Not mentioned [44,60]
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Table 1. Cont.

Type of Mesh Modifications Advantages Limitations References

Polytetrafluoroethylene
(PTFE)

Expanded PTFE,
laminar structure

Non-porous side and
standard microporous surface

(DualMesh®)
Adhesion prevention

Good tissue ingrowth at
microporous/rougher surface

Poor tissue integration at
nonporous surface [45,46,75]

Rougher surface
(Dual Mesh Corduroy®)

Pretreatment with
antibacterial agent (Dual

Mesh Plus®)
Reduced adherence of bacteria Not mentioned [46]

PTFE, reticular structure (Infinit Mesh®)
Improved tissue incorporation

Improved mechanical strength (vs.
PTFE)

Adhesion formation
High elastic modulus [47–49,62]

Condensed PTFE (MotifMESH®)
Reduced adhesion formation
Minimal bacterial adherence Adhesions on raised edges [104–107]
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3. Composite Materials
3.1. Classic Composite Materials

The different tissue behaviour of the classic biomaterials PP and ePTFE, especially
when implanted at the tissue/tissue and peritoneal interface, has driven the search for a
prosthetic material that encompasses the good qualities of both these materials. This led
to the compound prostheses known as composites. In this combined prosthesis, the basic
requirements of a prosthetic material proposed by Schein et al. [108] could be fulfilled: (a)
elicit good host tissue ingrowth, (b) behave well at the peritoneal level, (c) and show good
mechanical strength post-implant.

These prosthetic materials have two components. One of these is generally of reticular
structure and designed to show good host tissue incorporation and the other, of smoother
sheet texture, is designed to offer a good peritoneal interface.

Both components are usually joined together through acrylic adhesive, heat-sealing
or even suture [109]. The reticular component was initially PP and subsequently it
was polyester.

The visceral contact component may be absorbable or non-absorbable. When non-
absorbable, this component is known as a physical barrier [110–112] and when absorbable
as a chemical barrier [113–126] (Figure 5).
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The barriers used for visceral contact have always shared the structural characteristic
of their smooth surface. Such a smooth surface facilitates the deposition and expansion
of the mesothelial cells of the peritoneum. If the visceral contact surface is reticular,
mesothelial cells are deposited incorrectly and this generates visceral adhesions [127].

Physical and thus non biodegradable barriers were initially made of laminar PP or
ePTFE. Other biomaterials employed were polyurethane [128,129] and silicone. As chemical
barriers, collagen coated with polyethylenglycol/glycerol, and sodium hyaluronate have
been employed (Figure 6).
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The benefits of the absorbable components are that any type of adhesion arising
after implant could hypothetically disappear with their degradation to give rise to a
perfectly adequate peritoneal interface [130–132]. In general, whether biodegradable or not,
these materials placed in contact with the visceral peritoneum should induce a minimal
inflammatory reaction and allow for rapid and complete mesothelial cover [133].

Composites need to fulfill two objectives. The first is good integration within the host
tissue and the second, for which they have been mainly designed, is to elicit adequate
mesothelialization at the peritoneal level. This way, complications arising from the implant
of a reticular material such as adhesions causing intestinal obstruction [134], implant migra-
tion to hollow organs [135], or very serious complications such as intestinal fistula [136,137],
can be avoided.

Composite biomaterials are indicated for clinical use, mainly in open and laparoscopic
repair surgery. Their tissue incorporation is improved over that achieved with the laminar
ePTFE meshes. Clinical trials on prosthetic materials with a biodegradable chemical barrier
have shown their good behaviour at the peritoneal interface [138–142].

While this peritoneal behaviour of composites is adequate, adhesions almost invari-
ably form. On the upside, however, these adhesions are usually loose and easy to dissect
or section. They are never integrated within the viscera (Table 2).

Table 2. Classification of the different types of composite meshes employed in hernia repair and the most representative
modifications introduced (PP, polypropylene; PO, polyester; PTFE, polytetrafluoroethylene; PU, polyurethane; PEG,
polyethylene glycol; hy, hyaluronate; pd, polydioxanone; PGA, polyglycolic acid; P4H, poly-4-hydroxybutirate).

Type of Mesh Modifications Advantages Limitations References

Classic composite
materials

Tissue integrating
component

Reticular non absorbable mesh
(PP, PO) Good host tissue

ingrowth
Good mechanical

strength
Adequate behaviour at

the peritoneal
interface

Reduced inflammatory
reaction

Foreign material in
the recipient [108–142]

Visceral
component

Physical barrier (non
absorbable):

PTFE (Composix®)
PU (PL-PU99®)

Chemical barrier (absorbable):
PEG (Parietex CompositeTM)

hy (SeprameshTM)
pd + cellulose (ProceedTM)

Last generation
composites

Tissue integrating
component

Partially or totally
absorbable mesh:

PP+PGA (Ventraligth TM ST)
P4H (Phasix TM ST)

Non absorbable mesh:
PO (SymbotexTM)

PP (PhysiomeshTM)
Same as classic

composites
Reduced foreign material

in the
recipient

Not mentioned [143–147]

Visceral
component

Chemical barrier (absorbable):
pd hydrogel (VentraligthTM)

Collagen+chitosan
(SymbotexTM)

Polyglecaprone 25
(PhysiomeshTM)

PGA hydrogel (Phasix TM ST)

3.2. Structural Modifications to Classic Composite Materials

As composite materials have evolved in terms of their visceral contact component,
in parallel the part designed for tissue integration has also advanced [143]. Thus, in the
new prosthetic designs, the prosthetic component whose mission is to anchor the mesh in
the host tissue has evolved from non-absorbable to absorbable. The objective pursued by
these designs is to leave the least amount of foreign material possible in the recipient. In
addition, the biomaterial initially acts as a scaffold so that host tissue will gradually invade
the mesh and replace it as it gradually biodegrades for true tissue regeneration [144,145].
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The materials used in these composites as the integrating component have been PP,
3D polyester, PP mesh coated with polyglecaprone 25 (partially absorbable), and poly-4-
hydroxybutyrate (totally absorbable). On the visceral-facing side, the barriers, all chemical,
have been polydioxanone, polyglycolic acid hydrogels and collagen with chitosan (Table 2,
Figure 7).
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50×. Scale bar: 500 µm) and mesothelial layer at the peritoneal side after implant (right, 500×. Scale
bar: 20 µm). Nowadays, there is a tendency towards the use of reticular absorbable or partially
absorbable components, and a short-term (14–30 days post-implant) absorbable laminar structure as
adhesion barrier.
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In preclinical studies, the behaviour of these materials has emerged as appropriate
and similar to that of the classic composites [146].

Recently, a new composite mesh has been introduced whose structure comprises
low-density PP and a biological material composed of porcine intestinal submucosa. This
material has been tested in clinical practice, though with a very short follow up, offering
acceptable results [147].

4. Last-Generation Polymer Materials

The last few years have seen the emergence of polymer materials that are fully
biodegradable in the mid/long term with applications in hernia repair. These materi-
als have the objective of reducing the foreign body reaction in the host and of promoting
tissue regeneration (Figure 8).
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patible synthetic polymers that are gradually absorbed by the host (macroscopic -left- and scanning
electron microscopy images-right, 50×). Scale bar: 500 µm.

One of the first to arise has been a compound of polyglycolic acid and trimethylene
carbonate (Bio-A®) [148]. These polymers are widely known for their biocompatibility and
while they have been used in the field of sutures in particular, experience to date with this
prosthesis has been scarce.
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Preclinical studies [149] have revealed the full biodegradation of this material in 3
to 6 months. In clinical practice [150], high recurrence rates have been detected when
using Bio-A® for the repair of inguinal hernias. Its real indication, thus, seems more as a
strengthening than repair material.

Another fully absorbable material is TGR™ (Matrix Surgical Mesh) composed of two
synthetic fibre types (co-polymer glycolide-lactide trimethylene carbonate/lactide and
trimethyl carbonate) with a multifilament structure [151]. Preclinical experience with this
material seems adequate [152], although this has not been confirmed clinically [153].

Finally, another totally degradable material is Phasix™, a biosynthetic absorbable
monofilament mesh (poly-4-hydroxybutyrate) [154–157]. This prosthesis has shown good
outcomes in preclinical studies [158]. Its absorption over time is, however, disputed, as in
some studies, material remains have been observed 18 months after implant [159]. Clinical
trials are still scarce. The use of this material in the repair of ventral hernias has been
associated with no recurrences after two years [160]. However, in another study examining
its use for inguinal hernia repair, recurrence at 18 months post-implant was 9% [161].

5. Prosthetic Structure and Placement in Host Tissue: Adapting to Surgical Techniques

Regardless of its chemical composition, any prosthetic material of reticular struc-
ture (non absorbable, absorbable, or partially absorbable), needs to be implanted at a
tissue/tissue interface. To avoid complications, these materials must not be placed in con-
tact with a peritoneal interface. The selection of the reticular mesh to be used, i.e., high- or
low density, will depend on patient factors such as obesity or physical requirements (physi-
cal demands). The latest generation fully absorbable reticular materials require longer-term
follow up to assess their repair behaviour and efficacy. Surgical treatments with retic-
ular prostheses may be conventional open procedures or the more recently introduced
robotic surgery.

Laminar-structured prosthetic materials and composites can be placed at the peritoneal
interface given their good behaviour in relation to the visceral peritoneum. An organized
mesothelial deposit on these materials makes them ideal for placement at this interface.
Surgical repairs with these materials can be laparoscopic and/or robotic.

6. Future Perspectives and Conclusions

The progressive use in recent years of biomaterials for hernia repair has led to their
constant modification with the aim of obtaining a biomaterial showing optimal behaviour
at every tissue interface. Despite such efforts, we still do not have the ideal prosthesis as it
is proving difficult to generate a product able to adapt to all applications. Research and
development has been evolving from simple tissue repair towards the actual regeneration of
tissues, giving rise to new prosthetic materials that are fully biodegradable in the long term
such that minimal foreign material is left behind in the host. Similarly, the development of
functionalized materials as carriers of agents able to mitigate some complications, such as
biomaterial infection, is today a priority line of investigation.

One of the main hurdles met when trying to elucidate the biological behaviour of
prosthetic materials used for hernia repair is the difficulty in conducting investigations
in humans. There are no markers related to the wound-repair process that could indicate
which patients are at risk or not of showing poor repair. This demonstrates that experi-
mental or preclinical studies are an important source of knowledge about some biological
behaviours despite the biases these may entail.
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