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Circadian rhythms underpin most physiological processes, including energy
metabolism. The core circadian clock consists of a transcription-translation negative
feedback loop, and is synchronized to light-dark cycles by virtue of light input from
the retina, to the central clock in the suprachiasmatic nucleus in the hypothalamus. All
cells in the body have circadian oscillators which are entrained to the central clock
by neural and humoral signals. In addition to light entrainment of the central clock
in the brain, it now emerges that other stimuli can drive circadian clock function in
peripheral tissues, the major one being food. This can then drive the liver clock to
be misaligned with the central brain clock, a situation of internal misalignment with
metabolic disease consequences. Such misalignment is prevalent, with shift workers
making up 20% of the working population. The effects of diet composition on the clock
are not completely clarified yet. High-fat diet and fasting influence circadian expression
of clock genes, inducing phase-advance and phase-delay in animal models. Ketogenic
diet (KD) is able to induce a metabolic switch from carbohydrate to fatty acid oxidation,
miming a fasting state. In recent years, some animal studies have been conducted to
investigate the ability of the KD to modify circadian gene expression, and demonstrated
that the KD alters circadian rhythm and induces a rearrangement of metabolic gene
expression. These findings may lead to new approaches to obesity and metabolic
pathologies treatment.
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INTRODUCTION

The Clock Machinery and the Circadian Rhythm
In mammalians many genes exhibit daily fluctuations in their expression levels, configuring a
circadian rhythm of approximately 24 h. This circadian oscillation is internally generated (Ko and
Takahashi, 2006; Dibner et al., 2010) and driven by clock machinery.

At a cellular level the circadian clock is constituted by core clock genes, including CLOCK,
BMAL1, PER, and CRY, that are connected by transcriptional-translational feedback loops
(Albrecht, 2012). The feedback loop produces oscillations in gene expression, associated with
circadian changes in chromatin architecture, mRNA processing, and protein activity and turnover
(Eckel-Mahan et al., 2013). CLOCK and BMAL1 are the core heterodimeric transcription factor
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which drives expression of PER, and CRY genes, and the REVERB
genes, by binding to conserved DNA sequences termed E boxes.
BMAL1/CLOCK transactivation of target genes such as PER
and CRY, which are part of the negative feedback loop, results
in the accumulation of their protein products PER and CRY
proteins. PER and CRY act together to repress the activity of
the BMAL1/CLOCK heterodimer, thus forming one negative
feedback loop. CLOCK:BMAL1 also activate the transcription
of the nuclear receptors REV-ERB and RORA, whose proteins
compete to bind the BMAL1 promoter at a ROR binding site.
ROR activates BMAL1 transcription, while REV-ERBs represses
it (Ko and Takahashi, 2006). Thus there are two negative feedback
loops that together confer a robust 24 h-period oscillator.

The circadian clock synchronizes internal metabolism with
the environment, interacting with light-dark and feeding-
fasting state (Panda, 2016). The central clock is set in the
suprachiasmatic nucleus (SCN) of the anterior hypothalamus,
and it is synchronized to the external light-dark cycle by direct
neural input from the retina. The central clock is set at the
top of the hierarchy of the circadian oscillation and drives the
peripheral clocks oscillation in a synchronized way. In peripheral
tissues all cells also have a circadian oscillator. However, in
the absence of light-sensing these clocks are kept synchronized
by neural and humoral outputs from the SCN. In addition,
peripheral clocks will entrain to feeding cycles, a phenomenon
termed food entrainment (see Figure 1). It is possible to drive
the circadian phase of the liver to be in anti-phase to that of
the SCN by restricting feeding to the conventional rest period
(Damiola et al., 2000); night in humans. Other metabolic tissues,
as adipose tissue, have their own clocks, which are normally kept
synchronized with the liver clock and the other peripheral clocks.

The clock machinery controls physiology processes by
regulating the expression of hundreds of metabolic genes,
involved in the rate-limiting steps of fundamental metabolic
pathways. Therefore it orchestrates metabolism in cycles of
24 h, and increases metabolic efficiency thanks to anticipatory
responses to the feeding-fasting cycles and temporal separation
of opposite metabolic processes (Panda, 2016; Poggiogalle et al.,
2018; Reinke and Asher, 2019).

Peripheral tissues are implicated in the metabolic balance
of the individual. Among them, the liver plays a key role
in major enzymatic processes for glucose and fat metabolism.
Therefore, the SCN-liver axis for circadian rhythm is probably
the most important connection between the central clock and the
peripheral clocks.

The Ketogenic Diet
Ketogenic Diet (KD) is a low-carbohydrate, normo-protein diet,
characterized by an overproduction of the ketone bodies acetone,
acetoacetate and β-hydroxyl-butyrate (βOHB). KD induces a
metabolic switch from carbohydrate to fatty acid oxidation,
so that fat is the principal energy source. During a KD, fatty
acid oxidation, ketogenesis and gluconeogenesis are upregulated
and glycolysis and de novo lipogenesis are markedly reduced
(Tognini et al., 2017), and these metabolic modifications are
similar to those physiologically seen during fasting or significative
caloric restriction (Tognini et al., 2017). Ketone bodies are not

only an energy source, directed from the liver to the periphery
during fasting conditions and exercise, but also important
signaling molecules (Newman and Verdin, 2014). βOHB can
bind to G-protein-coupled receptors for short-chain fatty acids
on the cell surface, reducing lipolysis (Taggart et al., 2005)
and sympathetic activity (Kimura et al., 2011). On the other
hand, short-chain fatty acids promote sympathetic nervous
system activation (Kimura et al., 2011). Ketone bodies are also
able to inhibit histone deacetylase and induce hyperacetylation,
similarly to what happens in fasting conditions, and determine
changes in gene expression (Shimazu et al., 2013; Newman and
Verdin, 2014). In addition, ketone bodies are also implicated
in the mechanism of food anticipation (Chavan et al., 2016;
Chaix and Panda, 2016).

In clinical settings, there are different kinds of KD, which
differ in the degree of calorie restriction and macronutrient
composition (Kirkpatrick et al., 2019). The KD was originally
proposed for the treatment of refractory epilepsy in children
and over time has been proven to be particularly effective
in treating morbid obesity and metabolic diseases, providing
a relatively fast weight loss with concomitant preservation of
muscle mass. KD characterized by a very low-calorie content
(VLCKD) is actually considered for prescription in severe obesity
and obesity complicated by type 2 diabetes, hypertriglyceridemia
and/or hypertension (Caprio et al., 2019), that configure a
picture of severely metabolically compromised patients. There
are some contraindications to KD prescription. In particular,
according to the Italian consensus on VLCKD, it is absolutely
contraindicated in some patients, as patients with organ
failure (respiratory failure, kidney failure and moderate-to-severe
chronic kidney disease, hepatic failure), some cardiovascular
diseases (heart failure, unstable angina, cardiac arrhythmias and
recent stroke or myocardial infarction), severe infections, type
1 diabetes mellitus, beta-cell failure in type 2 diabetes mellitus
and therapy with sodium/glucose cotransporter-2 inhibitors.
Moreover, VLCKD is contraindicated in frail elderly patients,
during pregnancy and breastfeeding, in the peri-operative period
and in case of concomitant psychiatric conditions (severe
mental illnesses, eating disorders, alcohol and substance abuse)
(Caprio et al., 2019).

Ketogenic diet has been recently proposed as an adjuvant
treatment for other illnesses (Paoli et al., 2013), as migraine
(Di Lorenzo et al., 2019), polycystic ovary syndrome (Paoli
et al., 2020), cancer (Chung and Park, 2017), neurodegenerative
diseases (Wlodarek, 2019) and even COVID-19 (Gangitano et al.,
2021; Sukkar et al., 2021). Question remains about the relative
impact of fat content, protein content, and overall calorie content.

CLOCK DESYNCHRONIZATION AND
METABOLISM: THE IMPORTANCE OF
THE TIMING OF FOOD INTAKE, FASTING
AND SLEEP

Internal misalignment between the phase of the circadian cycle
in the central clock and that of the peripheral clocks, results
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FIGURE 1 | The regulation of circadian rhythm. Biological rhythm is under the control of the central clock, set in the suprachiasmatic nucleus. This clock integrates
its internal rhythm with the alternance of light and dark, and orchestrates the rhythm of peripheral clocks, which are directly entrained also by food. When all clocks
are synchronized, metabolism functioning is preserved.

in disorder amongst the organs implicated in metabolism, and
behavior, and may drive the onset of disease. Indeed, this
prevalent phenomenon occurs in shift workers who have an
increased risk of obesity and type 2 diabetes (see Figure 2).

Clock-mutant mice, with preserved rhythmicity in the
suprachiasmatic nucleus and pineal gland, and arrhythmic clock
genes expression in liver and skeletal muscle, are metabolically
impaired, with altered glucose tolerance and insulin secretion,
and altered expression of molecular determinants of metabolic
homeostasis in liver and skeletal muscle, in comparison with
wild-type mice (Kennaway et al., 2007).

Eating against the clock drives internal desynchronization
and, among peripheral clocks, the hepatic clock is particularly
sensitive to feeding time information (Damiola et al., 2000;
Eckel-Mahan et al., 2013). Studies in mice reveal that animals
fed during the resting phase gain weight, develop abdominal
obesity, metabolic alterations (Salgado-delgado et al., 2010;
Yasumoto et al., 2016), increased hepatic fat accumulation,
hyperphagia and are less physically active (Yasumoto et al.,
2016). These metabolically impaired animals develop alterations
in the circadian expression of clock genes (Turek et al.,
2005; Salgado-Delgado et al., 2013; Yasumoto et al., 2016),
confirming the strict association between circadian rhythm
and metabolism. Feeding during the resting phase leads to
desynchronization among liver and skeletal muscle peripheral
clocks (Yasumoto et al., 2016), desynchronization among liver
clock genes and metabolic genes expression (Salgado-Delgado
et al., 2013) and alteration of the expression of glucose and
lipid metabolism-related genes (Yasumoto et al., 2016). The
disruption of circadian rhythm selectively hits peripheral clocks,
as the central clock is only affected by light information
(Damiola et al., 2000).

By contrast, feeding mice during the active phase prevents
metabolic alterations and clock genes disruption, despite the

night-shift work (Salgado-delgado et al., 2010) and the diet
composition (Hatori et al., 2012). Studies on mice fed High-
Fat (HF) diet with time-restricted access to food of 8 h/day,
during the natural feeding time, in comparison with mice fed
HF ad libitum, showed that, given the same caloric intake,
weight gain and metabolic disturbances were restricted to the ad-
lib fed animals, and that time-restricted feeding prevented the
metabolic consequences of an unhealthy diet (Hatori et al., 2012).
In fact, restricting food consumption to the active phase led to
increased amplitude of the circadian oscillation in peripheral
tissues and it was not associated to the development of obesity,
hyperinsulinemia and hepatic steatosis (Hatori et al., 2012;
Bae et al., 2019).

Intermittent fasting, with food given every other day, has been
shown to be able to abolish the circadian expression of most
clock genes, whileClock and Per2were expressed with a decreased
amplitude and a phase-advance in mouse liver (Froy et al., 2009).
On the contrary, intermittent fasting was able to restore circadian
rhythms and clock gene expression amplitude that was disrupted
by abnormal light cycles, including cycles with a period of less
than 24 h (Froy et al., 2009).

In mice without a central clock and subject to environmental
disruption by being in constant darkness there is the complete
disintegration of consolidated sleep-wake, and activity rhythms,
with loss of feed/fasted cycles. Time-restricted food availability
was sufficient to restore circadian organization to the animals’
behavior, and energy metabolism with normalization of body
weight and glucose metabolism (Kolbe et al., 2019). Therefore,
intermittent fasting seems to be able to affect circadian rhythm
differently, depending on the time of food availability (Froy et al.,
2009). Furthermore, complete fasting modulates the circadian
rhythm by attenuating clock gene oscillation amplitude and
also induces a circadian phase advance (Barnea et al., 2009).
A simultaneous shift in feeding schedule and light and dark
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FIGURE 2 | Circadian rhythm disruption. (A) Many external factors may disturb circadian rhythmicity. Shift-work, jet-lag and social jet-lag alter the exposition to light
and dark cycles. Also lack of sleep and low-quality sleep are able to disrupt central clock rhythm. Consumption of high-fat foods, as well as eating at night-time and
fasting, have disruptive effects on peripheral clocks, which are led out of phase. Clocks desynchronization favors the onset of metabolic disturbances. (B) Ketogenic
diet, probably through its peculiar molecules fatty acids and ketone bodies, may play a role in influencing circadian rhythm.

cycle has been proposed to facilitate circadian resetting in animal
models (Wu et al., 2010).

In humans, the key role of the timing of food intake is
confirmed by the fact that late eating is associated with increased
BMI (Mchill et al., 2017, 2019), reduced insulin sensitivity and
reduced effects of weight-loss strategies (Dashti et al., 2021).
Breakfast consumption has been proven to affect clock and
clock-controlled gene expression, and skipping breakfast alters

core clock gene expression and also increases the postprandial
glycemic response in both healthy and type 2 diabetes patients
(Jakubowicz et al., 2017).

In people with sleep deprivation, typical of shift-workers, there
is a preference for high-fat and sweet foods (Cain et al., 2015;
Simon et al., 2015), and an association, which may be causal,
with weight gain (Van Den Berg et al., 2008; Chaput et al., 2014)
and development of obesity (Potter et al., 2017) and metabolic
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disturbances, as altered glucose tolerance (Grant et al., 2017;
McHill and Wright, 2017). Even sleep fragmentation is associated
with obesity (Van Den Berg et al., 2008; Mezick et al., 2014) and
insulin resistance (McHill and Wright, 2017). A possible strategy
to mitigate the risks of shiftwork is to avoid eating against the
clock (Grant et al., 2017).

Social jet lag is a recently emerged phenomenon related to the
shift of social life toward nocturnal hours, so that people meet
each other and eventually eat and/or drink during hours normally
dedicated to rest and sleep. It is characterized by a misalignment
between social life and biological rhythms, configures a situation
similar to the classic jet lag, and, like long flights, leads to
altered circadian rhythm and metabolic consequences long-term
(Almoosawi et al., 2018; Mathew et al., 2020).

CLOCK DESYNCHRONIZATION AND
METABOLISM: THE IMPORTANCE OF
DIET COMPOSITION

Diet composition can influence circadian clock activity, because
feeding-derived metabolites play a role in regulating cellular
rhythmicity (Eckel-Mahan et al., 2013), but the mechanisms
through which nutrition influences the circadian metabolome
and consequently circadian rhythm have not yet been elucidated.

Some animal studies show that HF diet is able to disrupt
circadian rhythm (Kohsaka et al., 2007; Barnea et al., 2010),
inducing a phase shift (Barnea et al., 2009, 2010; Eckel-Mahan
et al., 2013) and a loss of synchronization of gene expression
among liver and fat tissue (Kohsaka et al., 2007). Kohsaka
et al. (2007) fed mice with a regular chow or an HF diet for
6 weeks. After 7 days, before a significant weight gain, mice
fed with HF diet reduced their overall physical activity and
increased the food intake during the resting period. Core clock
gene expression was not affected in the hypothalamus, but the
amplitude of Clock and Bmal1 expression was attenuated in fat
and liver. Moreover, a loss of synchrony of gene expression of
nuclear receptors and metabolic regulators was observed among
peripheral tissues.

Barnea et al. (2009, 2010) studied mice fed an HF diet
or a low-fat (LF) diet for 7 weeks, followed by a day of
fasting. Clock genes oscillated in the liver, muscle and white
adipose tissue (WAT), but fasting in the LF diet group led
to an attenuation of clock gene amplitude. Fasting caused
a circadian phase advance, but in contrast an HF diet
induced a phase delay in circadian clock genes and resulting
disruption of the circadian rhythmicity of the adiponectin
component cascade. Diet-induced disruption in the circadian
expression of adiponectin signaling components may result
from metabolite regulation of peroxisome proliferator-activated
receptors α and γ (PPARα and PPARγ) and mAMPK. These
signaling cascades may allow feeding time to affect core
circadian clock function. In turn, disruption of the clock
may result in aberrant coordination of adiponectin synthesis
and processing. This alteration in adiponectin signaling may
be related to the development of metabolic impairment
and the disruption of other clock-controlled mechanisms,

as blood pressure and sleep/wake cycle, associated with
metabolic syndrome.

Eckel-Mahan et al. (2013) studied mice and showed that
diet composition itself is able to reprogram the clock. In
particular, an HF diet profoundly reorganizes specific metabolic
pathways, with a widespread remodeling of the liver clock,
ablates some transcript and metabolite oscillations, generates
new oscillating transcripts and, in contrast to Barnea (Barnea
et al., 2009, 2010), observed that it induces a phase advance
for many metabolites and oscillating transcripts. These changes
are maintained on the diet and are reversible. In addition,
Eckel-Mahan identified new oscillating gene transcripts in
the liver that were only seen on the HF diet, while they
observed that some typically oscillating genes lost a circadian
signature. HF reorganizes coordinated oscillation of transcripts
and metabolites through shifted CLOCK: BMAL1 chromatin
recruitment and cyclic activation of surrogate pathways through
the transcription factor PPARγ. Clock and Bmal1 transcription,
protein levels and their phosphorylation were unaltered in livers
of HF-diet fed mice. Three days of HF diet were enough to
initiate the reprogramming of the circadian clock, confirming
the results of Kohsaka (Kohsaka et al., 2007) that an HF
diet is able to alter circadian rhythm and behavioral activity
independently from weight gain. Two weeks of normal chow
were able to restore the circadian clock, proving that the
transcriptional and epigenetic modifications induced by the HF
diet are reversible.

CIRCADIAN RHYTHM AND KETOGENIC
DIET

The effects of a ketogenic diet on clock gene expression have been
recently investigated in mouse models, and these studies showed
that KD is able to influence circadian rhythm.

Oishi et al. (2009, 2013) fed mice with KD or normal chow
for 2 weeks, and observed that KD induced a phase-advance in
peripheral clocks and behavioral activity, despite a maintained
light-dark cycle and feeding ad libitum. The phase-advance effect
was greater in the heart, kidney, and adipose tissue, than in the
liver. Moreover, some clock genes showed a higher amplitude
of their expression in the liver, while their amplitude in the
heart was substantially unaffected (Oishi et al., 2013). The
authors hypothesized that this robust oscillation may be related
to CIRBP expression, a protein linked to hypothermia in mice
(Oishi et al., 2013).

On the contrary, Genzer et al. (2015) fed mice with a LF diet
or KD for 8 weeks, and observed that clock genes were phase-
delayed under KD compared to the LF diet in the brain and
the liver. Moreover, the amplitude of the circadian rhythm of
clock genes in the liver was sixfold higher in the KD group,
while their amplitude was lower in the brain, except for Bmal1
that showed an increase in the amplitude of oscillation. The
high-amplitude circadian rhythm in the periphery reflected an
increased locomotor activity. In contrast to Oishi, their gene
analysis was performed under conditions of total darkness,
thereby avoiding light as a confounding factor.
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Tognini et al. (2017) studied the molecular mechanisms which
may lay behind the influence of KD on circadian rhythm. The
authors fed mice ad libitum with normal chow or a KD for
4 weeks, and then studied the effects of the diets in the liver
and the gut. With normal chow, the number of cyclic genes
was similar in the liver and in the gut, while KD induced many
de novo oscillating genes in the liver, and reduced the oscillating
genes in the gut, revealing a tissue-specificity of the metabolic
effects induced by the KD. Moreover, the diurnal KD-induced
genes oscillated in a coordinated manner in the liver and in
the gut. Among the genes oscillating both in normal chow and
KD diet, more than a half had an increased amplitude in the
liver under the KD diet. The expression of hepatic and gut core
clock genes did not differ in mice fed the KD in comparison to
normal chow-mice, so that core clock genes seem to be resistant
to alterations induced by a food challenge. KD modulates the
clock machinery recruitment to chromatin, leading to changes
in the coupling of the core molecular clock machinery to output
pathways. This is different to the HF diet which tends to hinder
the chromatin recruitment of Bmal1 (Eckel-Mahan et al., 2013).
The ketone, βOHB, has an epigenetic role in histone post-
translational modifications.

In humans there are no studies on the effects of a ketogenic
diet on the circadian rhythm. Anyway sleep, as discussed above,
is a direct expression of circadian rhythm. In the literature,
there are some indirect data on the effects of KD on sleep. Diet
composition can influence sleep quality and structure (Zadeh
and Begum, 2011; Santana et al., 2012; Grandner et al., 2013;
Tanaka et al., 2013; Yamaguchi et al., 2013; Katagiri et al., 2014;
St-Onge et al., 2016a,b; Zhou et al., 2016; Komada et al., 2017).
Studies on patients treated with KD show some interesting
results on improving sleep structure. A study of 11 epileptic
children administered KD for 12 months (Hallbook et al., 2007)
showed a reduction of total sleep and daytime sleep, intact
slow-wave sleep and an increase in rapid eye movement (REM)
sleep, associated with improved attentional behavior. Similarly,
morbidly obese adolescents which were administered a high-
protein, low-carbohydrate, low-fat KD experienced increased
REM and decreases slow-wave sleep from a supraphysiological
level (Willi et al., 1998).

Afaghi et al. (2008) studied a sample of 14 healthy non-obese
men administered a very low carbohydrate diet which induced
ketosis, and an isocaloric control mixed diet, and observed
increased slow-wave sleep and decreased REM sleep during the
very low-carbohydrate diet administration. Castro et al. (2018)
recently studied the effect of a very low-calorie, ketogenic diet
on sleep in 20 obese patients, measuring the diurnal sleep
propensity with the Epworth Daytime Sleepiness Scale (ESS)
and the quality of sleep with the questionnaire Pittsburgh Sleep
Quality Index (PSQI). The quantity and quality of sleep were

reported as not changed during the administration of diet, over
a time of 12 weeks, but the reported sleepiness was reduced,
suggesting a modification in sleep patterns, even if unrecognized
by the patients.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Circadian rhythms lie at the base of complex life, and are
required for the regulation of energy metabolic processes. When
peripheral clocks are led out of phase respect to the central
clock, or among each other, metabolic alterations may occur. The
timing of food intake, diet composition and sleep all play roles in
regulating circadian rhythm.

Some research studies in animal models suggest that a
ketogenic diet is able to influence circadian biology, through
the modulation of clock gene expression. KD seems to have
a profound impact on circadian rhythm, metabolism and
behavioral activity, and induces a higher amplitude of gene
expression and de novo oscillating genes at hepatic level. How
these effects manifest, and what the long-term consequences
are, remain to be determined. The role of ketosis itself is
yet to be completely elucidated. At the same time, the effects
of diet composition that have been studied and observed
are mainly related to peripheral circadian clock regulation
rather than central core clock regulation, so it is still not
elucidated if nutrients may exert a direct effect on the central
core clock rhythm.

Other studies with animal models and studies on circadian
rhythm in humans are necessary to answer these questions which
are recently born.

The interaction among diet, in particular the ketogenic diet,
and circadian rhythm is extremely complex, and research at
its dawn has already given intriguing results, taking potential
important new horizons on obesity treatment.
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