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Abstract: Vector of locally aggregated descriptor (VLAD) coding has become an efficient feature
coding model for retrieval and classification. In some recent works, the VLAD coding method
is extended to a deep feature coding model which is called NetVLAD. NetVLAD improves
significantly over the original VLAD method. Although the NetVLAD model has shown its
potential for retrieval and classification, the discriminative ability is not fully researched. In this
paper, we propose a new end-to-end feature coding network which is more discriminative
than the NetVLAD model. First, we propose a sparsely-adaptive and covariance VLAD model.
Next, we derive the back propagation models of all the proposed layers and extend the proposed
feature coding model to an end-to-end neural network. Finally, we construct a multi-path feature
coding network which aggregates multiple newly-designed feature coding networks for visual
classification. Some experimental results show that our feature coding network is very effective for
visual classification.

Keywords: deep convolutional network; deep feature coding network; multi-path feature coding
network; sparsely-adaptive and covariance VLAD coding; visual classification

1. Introduction

Deep learning models have gained great attention in the field of computer vision, including visual
classification [1-8], super resolution [9,10], semantic segmentation [11,12], object detection [13-15]
and visual tracking [16]. Compared with the traditional statistical learning methods, deep learning
models have two main advantages: (1) based on end-to-end training manner, the networks parameters
which are more suitable for the final task can be obtained; and (2) the deep network representation can
provide a better description. The deep feature methods can significantly improve the performances
over the conventional feature methods, such as scale invariant feature transform (SIFT) [17] feature
method and histograms of gradients (HOG) [18] feature method.

Since the end-to-end training model and deep structure representation have great advantages,
some recent papers embed the domain knowledge of conventional statistical learning models into the
deep neural network and train the entire model by an end-to-end manner. The new neural networks not
only inherit the domain expertise but also make all the parameters more suitable for the final application
tasks. Representative works include the following. Zuo et al. [19] proposed a novel iteration-wise
I, —norm regularizer which is from the maximum a posterior (MAP) model to get the outstanding blind
de-convolution results. Peng et al. [20] proposed a novel deep subspace clustering method with sparse
prior to obtain the state-of-the-art clustering results. Wang et al. [21] proposed a novel end-to-end I
norm encoder to get the state-of-the-art hash results. Zheng et al. [12] treated the conditional random
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field as the recursive neural network (RNN), and then plugged this new structure RNN into a deep
convolutional neural network (CNN) to obtain the state-of-the-art image segmentation performances.
Wang et al. [22] extended the traditional dictionary pairs classifier [23] to an end-to-end classifier layer,
and then embedded this new layer into a deep CNN to get the state-of-the-art object detection results.
In [10], the domain expertise of sparse coding has been combined with the merits of the deep neural
network to improve the super-resolution performance. The computation steps and the optimization
procedures of some statistical learning methods can be considered as new structure layers which
provide some interpretations for deep learning models.

Feature coding [24,25] is a popular statistical learning method for visual classification. In the
traditional feature coding framework, feature coding is an important step, which connects feature
extraction and feature pooling. Feature coding also greatly affects the image recognition result.
Many effective feature coding methods have been proposed. The representative feature coding models
include sparse coding [26] model, convolutional sparse coding [27-29] model, locality constrained
coding (LLC) [30] model, soft coding [31] model, hard coding [32] model, salient coding [33] model,
Fisher Vector (FV) coding [34] model and Vector of Locally Aggregated Descriptor (VLAD) coding [35]
model. Since all the algorithmic components (feature extraction, dictionary learning, feature coding
and classifier training) in the conventional feature coding approaches are independent, the learned
parameters may be suboptimal for visual classification. Besides, the SIFT [17] features in conventional
feature coding methods are not good descriptors. Recently, the conventional VLAD coding model is
extended to a deep network which is called NetVLAD [36]. The NetVLAD layer is jointly trained with
a CNN to obtain the excellent retrieval and classification results. Besides, the NetVLAD model has
demonstrated its effectiveness in the field of action classification [37].

Although the NetVLAD model has been proposed, the NetVLAD method only aggregates
the first order statistical information from the spatial scale, thus the discriminative power of the
NetVLAD model is not fully researched. In this paper, a discriminative sparsely-adaptive and
covariance VLAD (SAC-VLAD) approach is proposed. Since each trainable parameter in SAC-VLAD
coding is differentiable for the final classification loss, we derive the back propagation models of each
trainable parameter and design a new deep feature coding network called SAC-VLADNet. By using
the back-propagation algorithm to minimize the final classification loss, the trained SAC-VLADNet
can be more suitable for image classification task. Moreover, we construct a multi-path SAC-VLADNet
(M-SAC-VLADNet) which aggregates multiple newly-designed SAC-VLADNets to further improve
the visual classification performance. Since our networks can effectively integrate the domain
expertise of the new discriminative feature coding and the deep neural network, the newly-designed
SAC-VLADNet and M-SAC-VLADNet can introduce more interpretations and discriminations into
the deep learning models.

The contributions of the proposed model are summarized in the following three aspects.

The first contribution is the newly-designed sparsely adaptive and covariance VLAD network.
The weight coefficient of the original NetVLAD [36] method is the soft assignment coding. In our
SAC-VLADNet, a new coding method called sparsely adaptive soft assignment coding (SASAC) is
used as the weight coefficient. The SASAC layer can be considered as a variant of multidimensional
Gaussian probability density function and adaptively learn all the parameters (dictionary and variance)
by an end-to-end fashion. Besides, many works show that the sparse features are helpful for improving
the image classification performance. To obtain the sparse weight coefficient, the SASAC layer only
holds the largest T probabilities and enforces other small probabilities to be zeros. To the best of our
knowledge, the end-to-end SASAC layer is not studied in current deep neural networks. We design
a new end-to-end layer by a new coding method. The original NetVLAD method used the first-order
VLAD coding to obtain the final representation. Our network uses the covariance VLAD coding to
obtain the interactive feature representation. The final feature representation of the proposed network
is the concatenation of the first-order and the covariance feature coding. Besides, the proposed network



Entropy 2018, 20, 341 3 0of 23

extends the affine subspace method in [38] to a 1 x 1 convolutional layer which reduces the dimension
of the coding.

The second contribution is the proposed Multi-path SAC-VLADNet. The existing feature coding
networks only extract the features of the last convolutional layer of a deep convolutional network
to compute the feature codings, thus these models can not take full advantage of the convolutional
representations for visual classification. To take full advantage of multiple levels representations,
the proposed M-SAC-VLADNet uses a novel manner to aggregate multiple SAC-VLAD layers. In the
M-SAC-VLADNet, we first extract the convolutional features from multiple layers. Next, we obtain
the corresponding SAC-VLAD coding in each convolutional feature. Finally, we aggregate all
the SAC-VLAD codings to construct the final multi-path feature coding network which is also
an end-to-end feature coding model. The M-SAC-VLADNet can simultaneously use the low, middle
and high level features to train multiple feature coding networks, thus will be more discriminative
than the single level feature coding network.

The third contribution is that the back propagation function of each new layer is derived. Based on
the back propagation algorithm, all the learnable parameters can be obtained. The back propagation
models of affine subspace layer and covariance VLAD layer are easily obtained. The SASAC layer
is a completely new structure layer, thus we will detailedly discuss the back propagation model of
the SASAC layer. Various visual classification experiments will show the superiorities of the new
layers. In addition, some visual recognition results demonstrate that SAC-VLADNet is evidently better
than SAC-VLAD, and M-SAC-VLADNet is better than SAC-VLADNet. These results demonstrate the
superiorities of the end-to-end model and the proposed multi-path feature coding network. We also
give some detailed experimental results of our network and other state-of-the-art models to show the
advantages of our network.

The remainder of this paper is organized as follows. Section 2 briefly introduces the traditional
feature coding framework, the CNN feature for feature coding network and the end-to-end NetVLAD
model. Section 3 presents the SAC-VLADNet and the M-SAC-VLADNet. Section 4 gives the
experimental comparisons between the proposed model and other state-of-the-art models. Finally,
Section 5 concludes this paper.

2. Related Work

In this section, the introduction of the traditional feature coding framework for visual classification
is first given. Next, the introduction of the CNN feature in the feature coding network is given.
Finally, the introduction of the NetVLAD method is given.

2.1. The Conventional Feature Coding Framework for Image Recognition

The traditional feature coding framework can be divided into five steps: (1) extracting the
SIFT [17] features from all the images; (2) solving an minimization problem from all the training SIFT
representations to obtain a dictionary; (3) computing the feature codings by a specific feature coding
method; (4) pooling the feature codings to get the pooled vectors; and (5) training the final support
vector machine (SVM) classifier by the pooled vectors to get the classification result. The block diagram
of the traditional feature coding framework for image recognition is shown in Figure 1a.

Feature

Dictionary coding Pooling
learning % m ™% § method method
SVM
Aty > 7 Classifier
SIFT features Dicti.onaFy Feature codings Pooled vector
(a)

Figure 1. Cont.
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Figure 1. (a) The traditional feature coding framework; (b) The block diagram of the FV-CNN [39].

2.2. The CNN Feature for Feature Coding Network

Since the SIFT [17] feature does not have the strong image representation ability, the image
classification performances of the traditional feature coding methods are not always satisfactory.
Recently, some feature coding models which utilize the CNN features are proposed. Compared with
the shallow SIFT feature, the CNN feature is a deeper and more descriptive representation of the
original image. In visual classification, the CNN based feature coding networks are obviously better
than the SIFT based feature coding methods. Fisher Vector with CNN (FV-CNN [39]) is a representative
feature coding network which is based on the CNN feature. FV-CNN [39] trains a gaussian mixture
model (GMM) dictionary by the CNN feature and obtains the Fisher Vector (FV) codings by the trained
GMM dictionary. The block diagram of the FV-CNN [39] for visual classification is shown in Figure 1b.

To obtain the CNN features of a feature coding network, all the images need to pass through
a CNN which is pre-trained on the large scale ImageNet [40] dataset. The most useful features extracted
from the pre-trained CNN are the feature of the last convolutional layer and the feature of the last fully
connected layer [39]. In the proposed model, we extract the feature of a specific convolutional layer to
train our feature coding network.

For a size-s RGB image I € R5*5*3, the extracted feature of a specific convolutional layer of
a deep CNN can be expressed as F € RO*O*P and D represents the number of the convolutional
kernels of a specific convolutional layer. O represents the size of the convolutional feature. F can also
be viewed as a feature set which contains M = O x O convolutional descriptors, and each descriptor
is D-dimensional.

2.3. The End-to-End NetVLAD Model

The NetVLAD model uses the last convolutional feature to train the NetVLAD layer, thus the
descriptor set F; = { f;; j—1 Tepresents the last convolutional feature of the ith image I;, and the total

number of the images is N. f;; € RP*1 is the jth descriptor of F;. Besides, the NetVLAD model uses K
visual words {c, }K_; (cx € RP*1) as the dictionary.
For F;, the final VLAD vector is K x D-dimensional and can be expressed as:

M

Y(F) =) ¥(fy) )

j=1
where ¥(f;) € RXP*! is the VLAD representation of f;;. The expression of ¥( ;) is:

Y(fip) = o) oD o (FOT]T )
where the sub vector ¢( f,i] ) € RP*1in Equation (2) is written as:

o(f]) = Aij (k) (fij — cx) ®)
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where A;;(k) represents the weight coefficient of ¢, and fj;. In the traditional VLAD [35] model,
hard assignment coding is used as the weight coefficient. In the NetVLAD model, soft assignment
coding [31] is used as the weight coefficient, and the soft assignment coding is written as:

Ifij—cxl3
Ay = ——22 @
A
E 37 202

k=1

where ||.| |2 is the I norm of a vector. 02 represents the covariance coefficient which controls the decay
of the response with the magnitude of the distance. As Equation (4) shows, the soft assignment coding
is a normalized weight coefficient which uses the sum of K probabilities as the denominator. After some
simple transformations, Equation (4) can be decomposed into a 1 x 1 convolutional layer and a soft-max
activation function layer. Based on Equations (1)—(4), the final expression of the NetVLAD model can

be written as:
ewz fij+k

—

fij(d) = cx(d)) ®)

K
=1 v ew,f,fiﬁrék/

where ¥ (F,)(k,d) represents the ((k — 1)D 4 d)"* element of ¥(F,) (k =1,2,--- ,K;d = 1,2,--- ,D).
fij(d) and ci(d) represent the d'' (d = 1,2, - -, D) element of f;; and cj respectively.

The NetVLAD layer also uses the widely-used L2-normalization method and intra-
normalization [41] method to obtain the final coding representation. The complete NetVLAD model
for visual classification is illustrated in Figure 2.

back-propagation algorithm to update the parameters in NetVLAD layer and Deep CNN

[ |

|- ST |

[

| } conv(w,b) } |

Images 1| 1x1xDx K } }

=1 | DeepCNN (CNN I i
el s pr’;trained( from | ‘ Broadcast_sub Poolingand | | | Softmax
the ImageNet) } {3, Normalization } Classifier

I F, o I

WCNN NetVLAD layer

Figure 2. The network structure of the NetVLAD for visual classification. The blue arrow represents the
feed-forward operation of the NetVLAD, and the red arrow represents the back-propagation operation
of the NetVLAD.

3. The Proposed SAC-VLADNet

In this section, the mathematical details of the SASAC layer, the affine subspace layer and
the covariance layer in our SAC-VLADNet will be presented. We further propose the multi-path
M-SAC-VLADNet which aggregates multiple SAC-VLADNet layers. The proposed SAC-VLADNet
layer is shown in Figure 3. The proposed M-SAC-VLADNet for image classification is illustrated
in Figure 4.
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back-propagation to update the parameters in SAC-VLADNet layer

SAC-VLADNet layer

Figure 3. The network structure of the SAC-VLADNet layer. F; is the feature of the i*" image in a specific
convolutional layer. The blue arrow represents the feed-forward operation of the SAC-VLADNet layer,
and the red arrow represents the back-propagation operation of the SAC-VLADNet layer. B(ay, by, vg),
¥(B) and A(7y) are Equations (A1)-(A3), respectively. X layer is the covariance statistic layer in
Equation (14). conv(U, ) is the 1 x 1 convolutional layer with the weight {U}} and the bias {p}.
ay, by, v, Ug and py (k = 1,2, - - - ,K) are the trainable parameters, which are obtained by the back

propagation algorithm.

CNN Feature

Images

Figure 4. The network structure of the M-SAC-VLADNet. The blue arrow represents the feed-forward
operation of the M-SAC-VLADNet, and the red arrow represents the back-propagation operation of
the M-SAC-VLADNet. G and B are the weight and bias of the final softmax classifier.

3.1. The Sparsely-Adaptive Soft Assignment Coding (SASAC) Layer

The NetVLAD model uses the soft assignment coding in Equation (4) as the weight coefficient.
Equation (4) can be considered as a normalized probability. For each 7, j and k, the probability of f;;
fij=cill3
and ¢y is pl](k) =e ]2(72
In the proposed network, we use the newly designed SASAC layer as the weight coefficient.
The SASAC layer uses a multidimensional Gaussian probability density function (MGPDF) to define

the probability of f;; and ¢;. The MGPDF with Euclidean distance is written as:

Ok = 0x10k2 - - 0kp € R
()bk = [O-klr Ok, ra-liD]T € RDXlz (6)
pij(k) — Wz_e—zn(fij—ck)-/‘l’k”z

Ok
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where ./ is the element wise division operation of two vectors, o1, 0k, - - - , 0xp are the covariance
parameters of cx. Different from the standard MGPDF that directly computes 0y, = 041032 - - - OkD,
our SASAC layer uses a trainable parameter to replace y. The trainable probability density function in
SASAC layer is written as:
U llos bl 4o
pi(k) = el ft el on )
j (27T)D/2

where .x is the element wise multiplication operation of two vectors, and a; € RP*1, b, € RP*! and
U € R are the trainable parameters. If we set a;, by and vy as the following parameters, Equation (7)
will be exactly equivalent to Equation (6).

ar = 1./ (V2¢y)
b = —ck-/ (V2¢x) 8)

v = In(0)

However, in the SASAC layer, ai, by and v; are achieved by an end-to-end learning manner,
instead of being directly constructed from the pre-computed expression in Equation (8).

Similar to the soft assignment coding in Equation (4), the SASAC layer also uses normalized
probability to construct the weight coefficient. The normalized expression of Equation (7) is written as:

o lafij+bil 3+
Aik) = ©
Z g_Hak"*fl‘]'-i_hk/H%—"_vk/
k'=1

For a certain k, if the probability p;;(k) is very small, this unreliable probability will affect the
classification performance of the model. Besides, many works show that the sparse codings are helpful
for improving the image classification performance. To eliminate the adverse impacts of the unreliable
probabilities and obtain the sparse weight coefficient, the SASAC layer only considers the largest T
probabilities and forces other small probabilities to be 0. The final expression of our SASAC layer is
the following expression.

e—\\uk.*fij+bk\|%+vk

k'€ St(fij)

o it 340 7

i) = § ey (10)
0, otherwise
where St(f;j) is a set that satisfies the following conditions:
St(fij) USr(fy) = {1,2,...K}
Card(St(fij)) =T <K .

Vk € ST(fi]‘),Vk, S ST(f,]),

el fi el B+oe > p=llay «fitb3+op
where St(f;;) is the complementary set of St(f;;) in the set {1,2,---,K}. Card(St(fi;)) is the number
of elements in St (f;;).

It is easy to see that the soft assignment coding in Equation (4) can be considered as a special case
of Equation (10) when a; = [ﬁ, ﬁ,- o, ﬁ]T € RP*1 b = —%ck €RPXl py =0y = =0k
and T = K. Our SASAC layer in Equation (10) can adaptively learn all the parameters (ay, by and vy)
based on a normalized MGPDF and obtain more sparse weight coefficient than the soft assignment
coding layer in Equation (4). The SASAC layer is differentiable, thus the SASAC layer can be trained
in an end-to-end method which can obtain the more suitable parameters for image classification.
The SASAC layer is a new neural network layer which incorporates the domain knowledge of the
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sparse MGPDF and the deep learning model. To the best of our knowledge, the end-to-end SASAC
layer is not studied in the previous deep neural network. In this paper, we first embed the end-to-end
SASAC layer into a deep neural network for image classification.

3.2. The End-to-End Affine Subspace Layer

The original NetVLAD model exploits the PCA algorithm for dimension reduction. The proposed
network exploits the affine subspace method in [38] for dimension reduction, which not only
provides a piecewise linear approximation of the data manifold but also makes the low dimensional
representations still have strong discriminations. The affine subspace layer in our SAC-VLADNet can
be written as:

Ry = Ur(fij — cx) = (Uxfij + px) (12)

where y, = —Uc, € RP*1, U, € RP*P (k=1,2,--- ,K) represents the projective matrix of a specific
subspace [38]. P represents the subspace dimension. In our SAC-VLADNet, U and y are obtained
through training, instead of being directly obtained by the pre-computed Uy. Uy fi; + pix in Equation (12)
can be considered as a 1 x 1 convolutional layer which has the weight {U} } and the bias {4}, thus the
conventional CNN training method can efficiently train the end-to-end affine subspace layer. The first
order statistical information is written as:

Aij (1) (U fij + 1)

™Mz Tz

Aij(2) (Uafij + p2)

R
=
—
iyl
N—
I
-

(13)

Aij(K) (Uk fij + px)

INagkS

-

3.3. The Covariance Layer

From Equation (5), it is clear to see that the original NetVLAD model only uses the first-order
statistical information. The NetVLAD layer and the traditional pooling methods achieve the aggregated
features from the spatial scale without considering the feature interaction between each channel.
The proposed SAC-VLADNet exploits the covariance matrix to get the interactive feature which can
efficiently enhance the representation ability. The final aggregated feature in the proposed network is
the concatenation of the first-order and the covariance statistical information. The covariance statistical
information of Equation (13) is written as:

&2 (F) = g ;[ i (k) (U fij 4 i) 1 [ () (Ui fij + )] ™ (14)
ec(G2

G2 () = ( (Fi)

where vec is the vector operation which transforms the matrix to the corresponding column vector.
Based on Equation (14), we use the covariance matrix of the first order feature coding to get the
interactive representation between the feature channel. Since Equation (14) is also differentiable,
the covariance statistic layer can be learned by an end-to-end method.

3.4. The Complete SAC-VLADNet

Based on the back propagation model of the SAC-VLADNet, the proposed network can be trained
by an end-to-end manner. The back propagation models of the affine subspace layer in Equation (12)
and the covariance statistic layer in Equation (14) can be easily obtained. The SASAC layer is a new
structure layer, and we give in detail the back propagation function of the SASAC layer in Appendix A.
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For the ith convolutional feature F;, the final form of SAC-VLAD coding (¢(F;) € RP(K+P)x 1yis
a P(K + P)-dimensional vector and written as:

¢1(F) = L2norm(&: (F;))

2(F) = L2norm(&2(F;))

N [ ¢1(F) (15)
¢h) = ¢a(Fi) )

¢(F) = L2norm(¢(F;))

where L2norm is the L2 normalization method of a vector. From Equation (15), we could find
that the final feature representation ¢(F;) can capture both spatial aggregation information and
interactive information between feature channels. This design can efficiently improve the final
representation ability. Based on the derived back propagation functions, we can extend the SAC-VLAD
in Equation (15) to an end-to-end deep network (SAC-VLADNet). ay, by, vy, Ug and g (k = 1,2, -, K)
are the learnable weights in SAC-VLADNet, and these parameters are learned by the back propagation
algorithm. In the proposed SAC-VLADNet, the feed-forward procedure first computes the final
softmax classification loss. Next, we compute the gradients of all the parameters and use the back
propagation algorithm to update each layer in SAC-VLADNet. We use the blue and the red arrows in
Figure 3 to represent the end-to-end training procedure of the SAC-VLADNet.

3.5. The Proposed M-SAC-VLADNet

Since the current feature coding networks (end-to-end feature coding networks [36] and non
end-to-end feature coding networks [39,42]) only use the last convolutional features to compute the
feature coding, these single path feature coding networks can not take full advantage of convolutional
features for image classification.

Based on our newly-designed SAC-VLADNet, we further propose a novel M-SAC-VLADNet
which aggregates multiple SAC-VLADNet layers for visual classification.

The M-SAC-VLADNet extracts L features from L convolutional layers. L features are defined as

F.(l), F.(z),- ., Fi(L>, and ¢ (Fi(l) ), & (Fi(z)),- -, Z (F.(L)) are the corresponding SAC-VLAD representations.

1 1 1

The final classification loss of the M-SAC-VLADNet is the standard softmax loss written as:

1 N C ePic
loss = N ; Z H(y;,c)log — (16)
i=lc=1 Z ePim
m=1

where C is the number of categories, H{x,y} = 1 is an indicator function which satisfies H{x,y} =1
if x = y, otherwise H{x,y} = 0. y; represents the label of the ith image. p;. is the total prediction score:

T
o = Y0 16" e(FD) + 0y (17)

where [ggl),ggl),- .- ,g(cl)]T and [bgl), bgl),o -, b(cl)]T are the weight and bias of the Ith (I = 1,2,--- ,L)
fully-connected (FC) layer. Equation (17) can be further written as:

pie = (G)TEED)E(EPY; -6 (FD)] + (B)T (18)

where G, = [ggl);g{(;z);- . ;gEL)}, B, = Zlel bgl). G =[G1,Gy,--+,Gc]T and B = [By, By, - -+, Bc]" are
the weight and bias of the final softmax classifier.

Compared with the NetVLAD [36] model, which only uses the single level feature coding
to train the final classifier, the proposed M-SAC-VLADNet exploits multiple SAC-VLAD codings
for image classification, thus the proposed multi-path feature coding network is expected to be
more discriminative.
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The M-SAC-VLADNet is also an end-to-end feature coding model. We first obtain the initialization
parameters in each SAC-VLADNet layer, and then train the entire M-SAC-VLADNet by an end-to-end
method. Based on the back propagation algorithm, the gradient information of the softmax classifier
can be used to update the parameters in each SAC-VLADNet layer. Because of this, the proposed
M-SAC-VLADNet can be trained in a supervised way. We define the feed operation of the
M-SAC-VLADNet as the blue arrow in Figure 4 and define the back operation of the M-SAC-VLADNet
as the red arrow in Figure 4.

4. Experimental Results

In this section, the classification performances of the proposed SAC-VLADNet and
M-SAC-VLADNet are evaluated on several image benchmarks. For a fair comparison, the parameters
in NetVLAD and SAC-VLADNet are set to the same values. For other compared classification methods,
we tune the corresponding parameters to get the best results. The experimental image databases include
MIT [43] indoor scene database, Stanford cars [44] dataset, Caltech-UCSD Birds 200 (CUB200) [45]
database and Caltech256 [46]) object database. The basic specifications of all the datasets are shown in
Table 1. First, the experimental setting of the proposed network iss given. Next, we evaluate some
important factors that significantly affect the image recognition rates of the proposed SAC-VLADNet.
Finally, we will give some detailed experimental results of our deep network and other state-of-the-art
classification models to demonstrate the superiorities of SAC-VLADNet and M-SAC-VLADNet.

Table 1. The basic specifications of all the databases.

Sample Number Classes T K P
MIT indoor 15620 67 7
CUB200 11788 200 5
128 128
Standford Car 16185 196 3
Caltech256 30680 256 7

4.1. Experimental Setting

In our experiments, we used the VGG-VD [47] network to extract the single level feature for
SAC-VLADNet and the multiple levels features for M-SAC-VLADNet, All the images were resized
to 448 x 448 pixels. We used random crop technology and random mirror technology to augment all
the training images. We used the flexible and efficient deep learning library Mxnet [48] to extract the
deep CNN features and implement the SAC-VLADNet and the M-SAC-VLADNet. To minimize the
classification loss, the stochastic gradient descent (SGD) optimization algorithm was used.

For the proposed SAC-VLADNet, we used the VGG-VD [47] network which is pre-trained from
the large scale ImageNet [40] dataset to initialize the frontal deep CNN. Then, we used the last
convolutional features to learn the initialized dictionary {Ck}le. We used the K-means algorithm in
VLFeat library [49] to train the initialized dictionary. Besides, we used the affine subspace model in [38]
to initialize the affine subspace parameters Uy (k =1,2,- - - ,K). We used the corresponding analytical
relationships in Section 3 to initialize ay, by, vy and yy. Based on Equation (15), we obtained the final
SAC-VLAD representations. Finallu, based on the obtained SAC-VLAD representations, we achieved
the initial weight and bias of the last fully-connected layer by training a softmax classifier. The non
end-to-end SAC-VLAD can be viewed as the initial value of the end-to-end SAC-VLADNet. Based
on the back propagation algorithm, the SAC-VLADNet model can achieve the final parameters for
visual classification.

For the proposed M-SAC-VLADNet, we first extracted the convolutional features of L = 4
layers (Relu5_1, Relu5_2, Relu5_3 and Pool5) on VGG-VD [47] network to obtain four initialized
SAC-VLADNet layers, and then concatenated the four SAC-VLAD representations together.
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Finally, based on the concatenate SAC-VLAD representations, we obtained the initial values
of G and B in Figure 4 by training a softmax classifier. Based on the above initialization
parameters, the M-SAC-VLADNet obtained the optimal parameters for visual classification by
an end-to-end manner.

4.2. Analyses of Some Important Factors

In this subsection, we evaluate some important factors that affect the image recognition rate of
the proposed SAC-VLADNet. When we evaluate a specific factor, we set all other factors to fixed
values. We evaluate all the factors on Caltech256 [46] dataset. The experimental configuration of the
Caltech256 database can be found in Section 4.6.4.

From Equation (10), it is clear to see that the SASAC layer only considers the largest T probabilities
and enforces other small probabilities to be zeros. T is a very important factor which will affect
the image recognition rates of the SAC-VLAD and the SAC-VLADNet. We compare the image
recognition rates in Caltech256 [46] dataset with different T, we set the dictionary size (K) and the
subspace dimension (P) as 128 and 128, respectively. The Caltech256 [46] image recognition rates of
the SAC-VLAD and the SAC-VLADNet with different T are shown in Figure 5.

90

i P i ' |%SAC-VLAD
) E R ‘ S A S [49=SAC-VLADNet
T - i
[%]
2
[$]
©
5
Q
Qo
<

10° 3 5 7 9 16 32 64 128
T sparse coefficients

Figure 5. The Caltech256 classification results of the SAC-VLAD and the SAC-VLADNet with
different T.

As shown in Figure 5, it is obvious to see that T should be a suitable value. If T is too small,
such as T = 1, some contributing probabilities are disregarded, which will decrease the discrimination
of the SASAC layer. If T is too big, such as T > 32, the unreliable probabilities will also reduce
the discrimination of the SASAC layer. In this experimental result, when T = 7, the SAC-VLAD
and the SAC-VLADNet get the best image classification performances. We can select optimal T for
other datasets in a similar way. In a specific database experiment, we give the optimal T. For our
M-SAC-VLADNet, T is set to the same value in each SAC-VLADNet layer .

Dictionary size (K) is another pivotal parameter. The Caltech256 [46] image recognition rates
of the SAC-VLAD and the SAC-VLADNet with different K are shown in Figure 6. We set T and the
subspace dimension (P) as 7 and 128, respectively.

As shown in Figure 6, it is clear to see that, when the dictionary becomes larger, the accuracy also
increases. However, after K is greater than a certain value, the accuracy cannot be further improved.
In this experimental result, the accuracy of the SAC-VLADNet does not show apparent improvement
when K is larger than 128. In other databases experiments, the SAC-VLADNet also gets good enough
performances when K = 128. In the following experiments, we set K as 128. For the NetVLAD model,
we also set the dictionary size as 128 in the following experiments.
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Figure 6. The Caltech256 classification results of the SAC-VLAD and the SAC-VLADNet with
different K.

The final length of the SAC-VLADNet coding is determined by the subspace dimension (P).
The Caltech256 [46] image recognition rates of the SAC-VLAD and the SAC-VLADNet with different
P are shown in Figure 7, we set T and the dictionary size (K) as 7 and 128, respectively.

As shown in Figure 7, it is clear to see that the SAC-VLADNet does not have a good enough
result when P = 128. For other databases experiments, SAC-VLADNet also achieves good enough
results when P = 128. To make the SAC-VLADNet representation have relatively low length, we set
P = 128 for the following experiments. The length of the SAC-VLADNet representation is P(K + P) =
128 x (128 4 128) = 32768 in the following experiments.
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Figure 7. The Caltech256 classification results of the SAC-VLAD and the SAC-VLADNet with
different P.

The SASAC layer and covariance statistic layer are two vital layers in the proposed SAC-VLADNet.
To demonstrate the effects of the SASAC layer and the covariance statistic layer, we give some
experimental comparisons of the variants of SAC-VLADNets. In this section, a SAC-VLADNet
model that doe not have the covariance statistic layer is described as the SA-VLADNet, and the
corresponding non end-to-end model is described as SA-VLAD. The image recognition rates of the
NetVLAD, the proposed models and other variants in Caltech256 [46] database are shown in Figure 8.
As Figure 8 shows, SAC-VLAD improves 1.5% over SA-VLAD, and SAC-VLADNet improves 1.0% over
SA-VLADNet, which demonstrates the effect of the covariance statistic layer. SA-VLADNet achieves
1.2% improvement over NetVLAD, which demonstrates that the SASAC layer is also an important
layer for improving discrimination. Since SASAC layer and covariance statistic layer can significantly
improve the image recognition rate of the proposed SAC-VLADNet, these two layers are necessary
components of the proposed deep network.
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Figure 8. The Caltech256 classification results of the NetVLAD, the proposed models and other variants.

4.3. Statistical Test of SAC-VLADNet and NetVLAD

In this subsection, we give the statistical test of SAC-VLADNet and NetVLAD. Figure 9 shows
the error bars of SAC-VLADNet and NetVLAD on 10 different data duplicates. The error bar
shows that the proposed SAC-VLADNet increases the recognition rate by 2-4% over the NetVLAD,
which demonstrates the great superiority of the SAC-VLADNet. We use the Matlab t-tests function to
do the statistical test of the SAC-VLADNet and the NetVLAD. The statistical test results demonstrate
that the differences between the proposed SAC-VLADNet and the NetVLAD are statistically significant
when significance level « = 0.05.
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Figure 9. The error bars of SAC-VLADNet and NetVLAD on four databases.

4.4. Analysis of Coding Results

In this subsection, we give some extended discussions of the coding results. We randomly select
one test sample from the Caltech256 database to get the NetVLAD coding and the SAC-VLADNet
coding. The coding results of SAC-VLADNet and NetVLAD are shown in Figure 10. As Figure 10
shows, the NetVLAD coding is relatively irregular, yet the SAC-VLADNet coding has some certain
rules. The first half of the SAC-VLADNet coding is the first order sparse coding, and the second half of
the SAC-VLADNet coding is the covariance sparse coding. The sparse and second order representations
make the SAC-VLADNet coding more discriminative than the NetVLA coding. Besides, the regular
SAC-VLADNet coding is better distinguished than the irregular NetVLAD coding, which enhances
the representation ability of the SAC-VLADNet coding.
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Figure 10. The coding results of SAC-VLADNet and NetVLAD.

4.5. Analysis of Multi-Path Features

In this subsection, we analyse the effect of the M-SAC-VLADNet. M-SAC-VLADNet aggregates
four SAC-VLAD representations from four convolutional layers (Relu5_1, Relu5_2, Relu5_3 and pool5)
in VGG-VD [47] network. Figure 11 illustrates the classification performances of 4 SAC-VLADNets
and 5 M-SAC-VLADNets.

In Figure 11, Relu5_1, Relu5_2, Pool5 and Relu5_3 represent four SAC-VLADNets which
extract the convolutional features from Relu5_1 layer, Relu5_2 layer, Pool5 layer and Relu5_3 layer,
respectively. Relu5_1+ Relu5_2, Relu5_1+ Relu5_3, Relu5_2 + Relu5_3, Relu5_1 4+ Relu5_2 + Relu5_3
and Relu5_1 + Relu5_2 + Relu5_3 + Pool5 are 5 M-SAC-VLADNets which extract the corresponding
features from multiple convolutional layers.

Pool 5

Relu5_2

Relu5_1+Relu5 2

Relub5_3

Relu5_1+Relub_3
Relu5_2+Relu5_3
Relu5_1+Relub5 2+Relub_3

Relu5 1+Relu5 2+Relu5_3+Pool5

Accuracies

Figure 11. The Caltech256 classification results of four SAC-VLADNets and five M-SAC-VLADNets.

As shown in Figure 11, Relu5_1 4 Relu5_2 is better than Relu5_1, Relu5_2 and Pool5. Besides,
Relu5_1 + Relu5_3, Relu5_2 + Relu5_3, Relu5_1 + Relu5_2 + Relu5_3 and Relu5_1 + Relu5_2 +
Relu5_3 4 Pool5 are better than Relu5_3. The experimental results in Figure 11 demonstrate the
effects of the multi-path feature coding networks. Relu5_1 + Relu5_2 + Relu5_3 + Pool5 utilizes
four path features and is more discriminative than other M-SAC-VLADNets (Relu5_1 + Relu5_2,
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Relu5_1 + Relu5_3, Relu5_2 + Relu5_3 and Relu5_1 + Relu5_2 + Relu5_3), which demonstrates that
Relu5_1+ Relu5_2 + Relu5_3 + Pool5 can take full advantage of multiple levels features and greatly
improve the image recognition rate. In the following experiments, M-SAC-VLADNet represents
Relu5_1 + Relu5_2 + Relu5_3 + Pool5, and SAC-VLADNet represents Relu5_3.

4.6. Comparisons with Other State-of-the-Art Classification Models

In this subsection, the experimental results of the proposed model and other state-of-the-art
models on each dataset will be given.

4.6.1. MIT Indoor Recognition

MIT [43] indoor scene database is a challenging indoor scene dataset. This dataset consists of
15,620 indoor scene samples of 67 classes. The common training/test division in [43] is used to obtain
the scene recognition results.

In the MIT [43] indoor scene dataset, the optimal T is 7, the compared models in this dataset
include FV-CNN [39], FC-CNN [39], Bilinear CNN (B-CNN) [50], Task driven pooling (TDP) [51],
CaffeNet [1], directed acyclic graph CNN (DAG-CNN) [52], Caffe-DAG [52] and NetVLAD [36].
The original FV-CNN [39] coding model uses the multi-scale input images to obtain the FV
representations. However, the proposed SAC-VLADNet uses the single-scale images with 448 x 448
pixels to get the SAC-VLAD representations. To get a fair result, in our comparative experiment,
FV-CNN model utilizes the single-scale images with 448 x 448 pixels to get the FV representation.
Table 2 shows the image recognition rates of the proposed model and other methods on MIT-indoor [43]
database. As Table 2 shows, since VGG-VD [47] network can extract deeper CNN features than
the AlexNet [1], VGG-VD [47] based methods are much better than AlexNet [1] based methods.
Compared with FC-CNN [39], FV-CNN [39], TDP [51] and DAG-CNN [52], which are the VGG-VD
methods, our SAC-VLADNet has obvious advantages. Besides, the SAC-VLADNet improves 2.8%
over the NetVLAD [36] and 2.4% over the B-CNN which are end-to-end trained deep networks,
this classification result shows the effectiveness of the proposed deep feature coding network.
M-SAC-VLADNet achieves 0.9% improvement over SAC-VLADNet and has obvious advantages over
other CNN methods, thus the proposed M-SAC-VLADNet is very effective for scene classification.

Table 2. The accuracies (%) on the MIT-indoor dataset.

Methods Features  Accuracies (%)
CaffeNet [1] AlexNet 59.5
Caffe-DAG [52] AlexNet 64.6
FC-CNN [39] VGG-VD 68.1
FV-CNN [39] VGG-VD 76.0
TDP [51] VGG-VD 75.6
DAG-CNN [52] VGG-VD 77.5
NetVLAD [36] VGG-VD 79.2
B-CNN [50] VGG-VD 79.6
SAC-VLAD VGG-VD 78.6
SAC-VLADNet VGG-VD 82.0
M-SAC-VLADNet VGG-VD 82.9

4.6.2. CUB200 Classification

Caltech-UCSD Birds 200 (CUB200) [45] is a widely used bird image database. CUB200 dataset
consists of 11,788 bird images from 200 bird categories, and the training and test sets in this database
are roughly equal. Besides, this dataset has detail part annotation and bounding box annotation.
Bird images always have different poses and viewpoints, and the background will affect the estimation
of the birds, thus classifying bird categories is very challenging.
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In the CUB200 database, the optimal T is 5. The compared models include fisher
vector (FV) coding [34], part R-CNN [53], part stacked CNN (PS-CNN [54]), deep LAC [55],
FV-CNN [39], Probabilistic Collaborative Representation classification (ProCRC) [56], NetVLAD [36],
Neural Activation Constellations (NAC) [57], without part annotations (WPA) [58], Multiple
Granularity Descriptors (Multi-grained) [59], Random Maclaurin compact bilinear pooling
(CBP-RM) [60], Tensor sketch compact bilinear pooling (CBP-TS) [60], B-CNN [50], low rank bilinear
pooling (LRBP) [61] and semantic part detection and abstraction CNN (SPDA-CNN) [62].

The CUB200 database also gives the annotations of Part and bounding box (bbox), yet our methods
only utilize the class information and not consider annotation of part and bounding box.

As Table 3 shows, the traditional FV [34] coding method uses the SIFT feature to compute
the FV coding, thus the traditional FV [34] coding method is significantly worse than other CNN
methods. Part R-CNN [53], PS-CNN [54] and Deep LAC [55] are based on AlexNet [1], and these
AlexNet methods are usually worse than other VGG-VD [35] methods. Considering the VGG-VD [47]
methods, our end-to-end SAC-VLADNet achieves 7.6% improvement over our non end-to-end
SAC-VLAD, which shows the great superiority of the end-to-end training manner in the proposed
network. Besides, our SAC-VLADNet is obviously better than FV-CNN [39], ProCRC [56], NAC [57],
Multi-grained [59] and WPA [58]. Compared with the NetVLAD [36], our SAC-VLADNet achieves 4.1%
improvement, which shows the effects of the new structure end-to-end layers. B-CNN, CBP-RM [60],
CBP-TS [60] and LRBP [61] are state-of-the-art end-to-end models on CUB200 database, and our
end-to-end SAC-VLADNet is comparable to these end-to-end methods. Based on the VGG-VD [47]
network, SPDA-CNN [62] learns a better part detectors and achieves 84.6% recognition rate. Compared
with the SPDA-CNN [62] model, our M-SAC-VLADNet achieves 0.9% improvement and doesn’t
require extra annotations of part and bounding box. The highest accuracy of the M-SAC-VLADNet in
Table 3 demonstrates that our multi-path feature coding network is very effective for bird classification.

Table 3. The accuracies (%) on the CUB200 dataset.

Methods Features Train Test Acc (%)
FV coding [34] SIFT n/a n/a 18.8
Part R-CNN [53] AlexNet Box+Part n/a 73.9
PS-CNN [54] AlexNet Box+Part Box 76.6

Deep LAC [55] AlexNet  Box+Part Box 80.2

FV-CNN [39] VGG-VD n/a n/a 713
ProCRC [56] VGG-VD n/a n/a 78.3
NetVLAD [36] VGG-VD n/a n/a 80.5

NAC [57] VGG-VD n/a n/a 81.0
Multi-grained [59] VGG-VD n/a n/a 81.7
WPA [58] VGG-VD Box n/a 82.0
CBP-RM [60] VGG-VD n/a n/a 83.9
B-CNN [50] VGG-VD n/a n/a 84.0
CBP-TS [60] VGG-VD n/a n/a 84.0
LRBP [61] VGG-VD n/a n/a 84.2

SPDA-CNN [62] VGG-VD Box+Part Box 84.6

SAC-VLAD VGG-VD n/a n/a 77.0
SAC-VLADNet VGG-VD n/a n/a 84.6
M-SAC-VLADNet VGG-VD n/a n/a 85.5

4.6.3. Car Categorization

Stanford [44] car database consists of 16,185 car samples of 196 classes. This dataset is split into
8144 training car images and 8041 test car images. The widely used training and test divisions in [44]
are used to obtain the car categorization performances.
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In the car database, the optimal T is 3, the compared models include FV coding [34], revisiting
the fisher vector (RFV [63]), FV-CNN [39], NetVLAD [36], CBP-RM [60], CBP-TS [60], B-CNN [50],
LRBP [61] and boosted CNN (BoostCNN [64]). Table 4 shows the Stanford cars recognition rates of our
network and other competing models.

Table 4. The accuracies (%) on the Stanford cars dataset.

Methods Features  Accuracies (%)
FV coding [34] SIFT 59.2
RFV [63] SIFT 82.7
FV-CNN [39] VGG-VD 85.7
NetVLAD [36] VGG-VD 88.5
CBP-RM [60] VGG-VD 89.5
CBP-TS [60] VGG-VD 90.2
B-CNN [50] VGG-VD 90.6
LRBP [61] VGG-VD 90.9
BoostCNN [64]  VGG-VD 92.1
SAC-VLAD VGG-VD 84.1
SAC-VLADNet VGG-VD 91.3
M-SAC-VLADNet VGG-VD 92.5

As Table 4 shows, the SIFT feature methods (FV coding [34] and RFV [63]) are significantly
worse than the other CNN methods. Compared with the NetVLAD, our SAC-VLADNet achieves 2.8%
improvement, which demonstrates that our new structure end-to-end layers can efficiently improve
the image classification performance. Besides, our SAC-VLADNet is comparable to CBP-RM [60],
CBP-TS [60], B-CNN [50] and LRBP [61] which are end-to-end deep models. BoostCNN [64] is
a state-of-the-art CNN model on Car dataset. Our M-SAC-VLADNet achieves 0.4% improvement over
BoostCNN [64] and is obviously better than the other CNN methods, which shows the advantage of
the new structure M-SAC-VLADNet in car categorization.

4.6.4. Caltech256 Classification

Caltech256 [46] is a massive object image database. This database consists of 256 object categories
with at least 80 samples per classer. The total number of this database is 30,680. Following the
widely-used experimental setting, we randomly select 60 images per class as the training set and
use the remaining images as the test set. To get a fair results, we run our methods 10 times for each
partition and report the average classification accuracies.

In Caltech256 database, the optimal T is 7. The compared models include sparse coding spatial
pyramid matching (ScSPM [26]), locality constrained coding (LLC [30]), FV-CNN [39], NAC [57],
FC-CNN [39], Deep Spatial Pyramid (DSP) [42], ProCRC [56] and NetVLAD. Table 5 shows the
Caltech256 recognition rates of our deep network and the other competing models.

As Table 5 shows, the traditional SIFT feature coding methods (5cSPM [26] and LLC [30]) are
significantly worse than the CNN feature coding methods. Compared with FV-CNN [39], NAC [57],
FC-CNN [39], DSP [42] and ProCRC [56], our SAC-VLADNet gets significant improvement. Compared
with the NetVLAD [36], our SAC-VLADNet achieves 2.2% improvement, which demonstrates the
superiorities of the newly-designed end-to-end layers. Besides, our M-SAC-VLADNet achieves at
least 1.1% improvement over the others, which demonstrates the superiority of our multi-path feature
coding network in object classification.



Entropy 2018, 20, 341 18 of 23

Table 5. The accuracies (%) on the Caltech256 dataset.

Methods Features  Accuracies (%)
ScSPM [26] SIFT 40.1
LLC [30] SIFT 47.7
FV-CNN [39] VGG-VD 81.2
NAC [57] VGG-VD 84.1
FC-CNN [39] VGG-VD 85.1
DSP [42] VGG-VD 85.5
ProCRC [56] VGG-VD 86.1
NetVLAD [36] VGG-VD 87.0
SAC-VLAD VGG-VD 85.6
SAC-VLADNet VGG-VD 89.2
M-SAC-VLADNet VGG-VD 90.3

4.7. Running Speed Comparison

Table 6 gives the training and test speeds (samples per second) of the SAC-VLADNet,
the M-SAC-VLADNet, the VGG-VD and the NetVLAD. In the training stage, since the SAC-VLADNet
uses the concatenation of the first-order and the covariance statistics, the SAC-VLADNet is more
time-consuming than the NetVLAD [36] which only computes the first-order VLAD coding.
Besides, since the VGG-VD [47] has multiple high-dimensional fully connected layers, SAC-VLADNet
is faster than VGG-VD. Since the M-SAC-VLADNet aggregates multiple feature coding layers, our
multi-path network is slower than the SAC-VLADNet, and the running speed of the M-SAC-VLADNet
is similar to that of the VGG-VD. In the test stage, the proposed SAC-VLADNet is slightly slower than
the NetVLAD and faster than the VGG-VD. Although the SAC-VLADNet and the M-SAC-VLADNet
are slower than the NetVLAD, considering the SAC-VLADNet and the M-SAC-VLADNet have the
better image classification performances, the proposed deep networks are still very effective.

Table 6. The running speed (samples/second) of the related methods.

Train  Test

VGG-VD 1395 103.8
NetVLAD 247 1148
SAC-VLADNet 220 1053

M-SAC-VLADNet  14.3 98.8

5. Conclusions

In this work, we propose a sparsely-adaptive and covariance VLAD (SAC-VLAD) coding
method which is more discriminative than the original VLAD coding method. Based on the back
propagation models, the SAC-VLAD coding method is extended to an end-to-end SAC-VLADNet.
We further propose an end-to-end multi-path SAC-VLADNet (M-SAC-VLADNet) which aggregates
multiple SAC-VLADNet layers for visual classification. Our models can efficiently embed the domain
knowledge of the feature coding into the deep convolutional neural network. The experimental
comparisons demonstrate that the our model is very competitive for visual classification.
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Appendix A. The Back Propagation Function of SASAC Layer

Foreachk (k=1,2,---,K), Equation (10) is equivalent to the following three expressions:

Bij(k) = e~ lakxfij+bel 3+ (A1)
oy ) Bijk), ke Sr(fij)
7 (k) = { 0,] otherwise ] (A2)
i (k
pglry = =i (A3)
. vii(K)
k=1

Equation (A2) can be considered as a variant of the max pooling layer. In max pooling layer,
the largest value is held and the remaining values are ignored. In Equation (A2), the largest T values
are held and the remaining values are set to be zeros. Equation (A3) is a normalized layer which
can obtain normalized weight coefficients. In this paper, the final classification loss is defined as J.
Foreachk (k=1,2,---,K), the gradient of the loss | with respect to the output of the SASAC layer is
defined as /\a( 7+ When 5 Aa @ is obtained, by using the chain rule, the gradients of -y;;(k) and B;;(k)

are derived as:
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Based on ﬁi]-(k) (k =1,2,---,K), the gradients of the loss with respect to the layer input and
trainable parameters (ax, by and c;) can be obtained. The following contents will present these back
propagation functions.

Gradient of fl-]-: The gradient of | with respect to fi]- can be obtained by:
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Based on Equations (A6) and (A7), the gradient of f;; is derived as:
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Gradients of ay, by and vy: The gradients of | with respect to ay, by and vy can be obtained by:
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Based on Equation (A1), a%]k, % and aaT]k are derived as:

36 (k
ﬁai,i) = —2fij.* (a. * fij + be) Bij (k)

3Btk

ﬁai; (Y * fij + by) Bij (k) (A10)
9Bk

ﬁa/vk ) Bij(k)

Based on Equations (A9) and (A10), the gradients of ay, by and vy are derived as:
a%]k = —Z%ﬂj- * (ag. * fij + by) Bij (k)
e = Tt~ 25 (@ fis + bo) By (K) (A11)
] _ vM 0
Tv]k =Yi% W.](k)ﬁij(k)
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