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Abstract: Gelatinases are members of the matrix metalloproteinase (MMPs) family; they play an
important role in the degradation of the extracellular matrix (ECM). This effect is also crucial in the
development and progression of chronic kidney disease (CKD). Its expression, as well as its activity
regulation are closely related to the cell signaling pathways, hypoxia and cell membrane structural
change. Gelatinases also can affect the development and progression of CKD through the various
interactions with tumor necrosis factors (TNFs), monocyte chemoattractant proteins (MCPs), growth
factors (GFs), oxidative stress (OS), and so on. Currently, their non-proteolytic function is a hot
topic of research, which may also be associated with the progression of CKD. Therefore, with the
in-depth understanding about the function of gelatinases, we can have a more specific and accurate
understanding of their role in the human body.
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1. Introduction

In recent years, with the increasing prevalence of chronic kidney disease (CKD), this disease has
become a major public health problem in the world [1,2]. With the development of CKD, eventually,
it will progress to end-stage renal disease (ESRD) [3] and leads to irreversible loss of renal function.
In the early stages of CKD, the renal function is still in a compensatory period, but with the progression
of the disease, the renal function will deteriorate, and finally, complete loss of renal function ensues.
The main pathological changes include renal interstitial fibrosis, glomerulosclerosis, etc. [4], and
renal interstitial fibrosis is considered to be the final outcome of all CKD regardless of its etiology [5].
The pathogenesis of renal interstitial fibrosis is complex, which is a combination of multiple factors.
When kidney is injured, the occurrence of inflammation leads to infiltration of inflammatory cells,
such as macrophages, lymphocytes, etc. In this process, the injured cells and the inflammatory cells
in kidney release a large number of inflammatory mediators, such as [6–8] tumor necrosis factors
(TNFs), monocyte chemoattractant proteins (MCPs), growth factors (GFs), etc., which on the one hand
further aggravate the inflammatory reaction of the kidney and on the other hand result in activation
of relevant cell signaling pathway, such as [9,10] transforming growth factor-β (TGF-β)/Smad and
Notch, which promote the development of fibrosis. Eventually, this will lead to the extracellular matrix
(ECM) deposition that will induce the blocking of the renal interstitial capillary bed and hypoxia.
All of the above will promote the emergence of renal interstitial fibrosis; during this process, matrix
metalloproteinases (MMPs), especially gelatinases, play a significant role.
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The study of MMPs began in 1962 [11]; nowadays, there are 28 kinds of human-derived MMPs that
have been discovered, which belong to the family of zinc-dependent endopeptidases. According to the
structural and substrate specificity, MMPs can be divided into: collagenases, gelatinases, stromelysins,
matrilysins, membrane-type MMPs and other types [12]. Gelatinases mainly include MMP-2 and
MMP-9; its structure includes the signal peptide region [13], which mediates the nascent peptide
chains to the cytoplasm and endoplasmic reticulum; the propeptide region keeps the gelatinases in an
inactive form; the catalytic domain and the hemopexin domain (PEX), which connect each of them
through a hinge structure; and PEX plays an important role in the regulation of substrate specificity
and localization of MMP-2 and 9 [14].

2. The Regulation of Matrix Metalloproteinase-2 (MMP-2) and Matrix Metalloproteinase-9
(MMP-9) Expression

Under the normal condition, the mesangial cells, tubular epithelial cells, etc., in the human kidney
can produce MMP-2 and 9, but always at a low level. However during the process of renal fibrosis, the
mRNA transcription levels of MMP-2 and 9 are upregulated rapidly due to the abnormal activation
and interactions of multiple cell signaling pathways. For example: the TGF-β/Smad signal pathway,
which is important for the development of kidney fibrosis; when it is activated, the expression of
MMP-2 and 9 are also upregulated [9]. The P38MAPK and Notch signal pathways are also very vital
in the process of kidney fibrosis; some studies suggest that when they are activated, the expressions
of MMP-2 and 9 are also upregulated [10,15,16] (Figure 1). With the aggravation of fibrosis, the renal
tubular epithelial cells often exhibit hypoxia, and the hypoxia in turn also can lead to the upregulation
of MMP-2 expression [17].

Int. J. Mol. Sci. 2017, 18, 776 2 of 10 

 

The study of MMPs began in 1962 [11]; nowadays, there are 28 kinds of human-derived MMPs 
that have been discovered, which belong to the family of zinc-dependent endopeptidases. According 
to the structural and substrate specificity, MMPs can be divided into: collagenases, gelatinases, 
stromelysins, matrilysins, membrane-type MMPs and other types [12]. Gelatinases mainly include 
MMP-2 and MMP-9; its structure includes the signal peptide region [13], which mediates the nascent 
peptide chains to the cytoplasm and endoplasmic reticulum; the propeptide region keeps the 
gelatinases in an inactive form; the catalytic domain and the hemopexin domain (PEX), which 
connect each of them through a hinge structure; and PEX plays an important role in the regulation of 
substrate specificity and localization of MMP-2 and 9 [14]. 

2. The Regulation of Matrix Metalloproteinase-2 (MMP-2) and Matrix Metalloproteinase-9 
(MMP-9) Expression 

Under the normal condition, the mesangial cells, tubular epithelial cells, etc., in the human 
kidney can produce MMP-2 and 9, but always at a low level. However during the process of renal 
fibrosis, the mRNA transcription levels of MMP-2 and 9 are upregulated rapidly due to the 
abnormal activation and interactions of multiple cell signaling pathways. For example: the 
TGF-β/Smad signal pathway, which is important for the development of kidney fibrosis; when it is 
activated, the expression of MMP-2 and 9 are also upregulated [9]. The P38MAPK and Notch signal 
pathways are also very vital in the process of kidney fibrosis; some studies suggest that when they 
are activated, the expressions of MMP-2 and 9 are also upregulated [10,15,16] (Figure 1). With the 
aggravation of fibrosis, the renal tubular epithelial cells often exhibit hypoxia, and the hypoxia in 
turn also can lead to the upregulation of MMP-2 expression [17]. 

 
Figure 1. The regulation of activity and expression of matrix metalloproteinase-2 and 9 (MMP-2 and 
9). The regulation mechanism is complicated. The signal pathways, such as Notch, P38MAPK and 
transforming growth factor-β (TGF-β)/Smad, regulate the production of pro-MMP-2 and pro-MMP-9. 
Tissue inhibitor of metalloproteinase-2 (TIMP-2) and membrane-type 1 matrix metalloproteinase 
(MT1-MMP) play an important role in the activation of pro-MMP-2 and pro-MMP-9 to MMP-2 and 
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Figure 1. The regulation of activity and expression of matrix metalloproteinase-2 and 9 (MMP-2
and 9). The regulation mechanism is complicated. The signal pathways, such as Notch, P38MAPK and
transforming growth factor-β (TGF-β)/Smad, regulate the production of pro-MMP-2 and pro-MMP-9.
Tissue inhibitor of metalloproteinase-2 (TIMP-2) and membrane-type 1 matrix metalloproteinase
(MT1-MMP) play an important role in the activation of pro-MMP-2 and pro-MMP-9 to MMP-2 and
MMP-9. Additionally, MMP-2 also can promote the pro-MMP-9 to MMP-9. Reversion-inducing
cysteine-rich protein with kazal motifs (RECK), TIMP-2, endocytosis and cytokines play an important
part in the activity regulation of MMP-2 and MMP-9.
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3. The Regulation of MMP-2 and MMP-9 Activity

3.1. The Basic Pathway of the Activity Regulation of MMP-2 and MMP-9

The translation product of MMPs’ mRNA is an inactive zymogen (pro-MMPs); when the
propeptide region is cleaved, the pro-MMPs becomes activated and will become biologically active.
The substances that can activate it are numerous, for example plasmin, which plays an important role
in the process of renal interstitial fibrosis [18], and it is one of the important molecules to promote
pro-MMPs’ activation [19]. Another example is urokinase-type plasminogen activator (UPA), whose
upregulation is associated with the development of renal interstitial fibrosis [20], and it is also known
to activate the pro-MMPs [21].

In addition to the above, tissue inhibitor of metalloproteinases (TIMPs) also has an important
role in the activation of pro-MMPs; the TIMPs family includes four kinds of TIMPs (TIMP-1 to
TIMP-4); TIMPs have a dual nature effect on MMPs like two sides of a coin: on the one hand, they
can inhibit the activation of MMPs; on the other hand, they can promote the activation of MMPs.
Take TIMP-2 as an example: it not only inhibits the activity of MMP-2, but it is also required for
MMP-2 activation at a low concentration [22]. Membrane-type matrix metalloproteinases (MT-MMPs),
one of the six sub-types of MMPs, also play a vital role in the activation of pro-MMPs. It is known
that TIMP-2 mediation can lead to a combination of MT1-MMP (MMP-14) and pro-MMP-2 to form
a complex-proMMP-2/TIMP-2/MT1-MMP on the membrane; thus, in this way, pro-MMP-2 can be
activated as MMP-2 (Figure 1). Additionally, Toth et al. [23] showed that MT1-MMP and TIMP-2 also
play a similar role in the activation of pro-MMP-9 to MMP-9. Meanwhile, MMP-2 also can promote
the pro-MMP-9 to MMP-9 [24].

3.2. Effects of Cell Membrane Structural Change on MMP-2 and MMP-9 Activity

In the advanced stage of CKD, due to the excess formation of the renal fibrous septum, the renal
interstitial capillary bed gets blocked, leading to further deterioration of the hypoxic state of renal
tissue. Researches have already shown that [25] hypoxia can also decrease the activity of MMP-2
(Figure 2). Therefore, the interesting question would be why hypoxia can both increase the expression
of MMP-2 and also reduce the activity of MMP-2. The answer is still not clear, yet the activation of
MMP-2 has two pathways: the cell membrane pathway and the intracellular pathway; and studies
have shown that the cell membrane pathway is the main one [26]; therefore, is it that the membrane
structural change has the effect on it? Endocytosis is one of the important ways of changing the cell
membrane structure [27], and under the hypoxic condition, endocytosis is enhanced [28,29]; so is
it that endocytosis affects its activity? For caveolin protein-1 (caveolin-1), one of the key proteins
involved in the endosome formation, research has shown that its interference in myocardial cells
enhances the activity of MMP-2 [30], whereas its increased expression inhibits the activity of MMP-2
in HT1080 cells [31]. Recently, Yu et al. [32] have found that downregulation of its expression in the
renal tubular epithelial cells can increase the activity of MMP-2. These studies suggest that enhanced
endocytosis decreases MMP-2’s activity, but why? We mentioned above that MT1-MMP is important
in the activation of MMP-2; however, the interaction between MT1-MMP and caveolin-1 can trigger the
caveolin-1-dependent endocytosis of MT1-MMP [33,34], and Kim et al. [35] also found that caveolin-1
inhibits MT1-MMP activity. Therefore, endocytosis may be crucial in decreasing MMP-2 activity
(Figures 1 and 2). Therefore, does endocytosis have similar effects on MMP-9 activity? At present,
there are no relevant research works, but during the process of MMP-9 activation, MT1-MMP also
plays an important role, as previously mentioned; therefore it can be inferred that endocytosis may
have similar effects on MMP-9 activity, as well (Figures 1 and 2).
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Figure 2. In the early stage of chronic kidney disease (CKD), when the kidney is injured, the injured
cells and the inflammatory cells in kidney will secrete a variety of pro-inflammatory and pro-fibrotic
cytokines, which promote the occurrence of renal interstitial fibrosis. Meanwhile, the activity of MMP-2
and 9 is increased and the renal basement membrane injured, promoting the phenotype transformation
of renal tubular epithelial cells, at last resulting in the aggravation of extracellular matrix (ECM)
deposition. However, in the advanced stage of CKD, the activity of MMP-2 and 9 is decreased and
leads to inadequate degradation of ECM; therefore, the fibrosis is difficult to reverse. The reason for the
activity decrease of MMP-2 in the advanced stage of CKD is related to the enhancement of endocytosis,
which is caused by hypoxia, but further studies are needed regarding relation to the reason for the
activity decrease of MMP-9 in the advanced stage of CKD. 1© Early stage; 2© advanced stage.

In addition to this, more than 10 years ago, scholars already discovered that [36,37] low density
lipoprotein-related protein receptor 1 (LRP1) via the α2M proteasome can mediate the extracellular
MMPs’ endocytosis, and by the interaction with the α2M proteasome, LRP1 can also regulate the
distribution and activity of MT1-MMP, which is an another important pathway in the regulation of
MMPs’ activity by endocytosis. Reversion-inducing cysteine-rich protein with kazal motifs (RECK) is
also one of the important inhibitors of MMPs and MT-MMPs’ activity [38], but the specific mechanism
is still unclear; whether it is possible that it is also related to endocytosis. Miki et al. [39] found that
RECK could also regulate the endocytosis of MT1-MMP, and as MT1-MMP plays an important role in
the activation of MMP-2 and 9, this suggested that endocytosis may be one of the important pathways
for RECK in the regulation of MMP-2 and 9 activity (Figure 1). All of these findings suggest the
importance of endocytosis in the regulation of MMPs’ activities. However, there are very few studies
done on the regulation of MMPs’ activity by endocytosis, but its role cannot be ignored.

4. Role of MMP-2 and MMP-9 in Chronic Kidney Disease (CKD)

4.1. The Interaction between MMP-2, 9 and Tumor Necrosis Factors (TNFs) Promotes CKD Progression

TNF-α and TNF-β play an important role in the development of CKD [6,40]; what is the
relationship between TNFs and MMPs and CKD? It has been proven that TNF-α can not only induce
the expression of MMP-2 and 9 [41,42], but also promotes the activation of pro-MMP-2 [43] and
thereby enhances the activity of MMP-2 [41,44]. Additionally, both TNF-α and TNF-β can promote
the activation of pro-MMP-9 [45]. Conversely, if the activity of MMP-2 and 9 is inhibited, the process
of converting pro-TNF-α to TNF-α will also be inhibited [46]. All of these studies suggest that TNFs
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interacts with MMPs (Figure 1). Therefore, these two are important in the occurrence and development
of the progression of CKD.

4.2. The Effects of Interaction between MMP-2, 9 and Monocyte Chemoattractant Proteins (MCPs) on CKD

The MCPs family belongs to the chemokine CC subfamily; it includes five subtypes (MCP-1
to MCP-5), and it is known that MCP-1 and MCP-3 play an important role in the pathogenesis of
renal interstitial fibrosis [7,47] (Figure 1). Some studies [48,49] have found that MCP-1 not only can
simulate the expression of MMP-9, but also can enhance the activity of MMP-2, and the presence
of MMP-2 can promote the degradation of MCP-3; thus, MCP-3 can be transformed into a common
CC chemokine receptor antagonist, which inhibits the inflammatory response and the infiltration of
mononuclear macrophages [50,51]. Therefore, in the absence of MMP-2, the degradation of MCP-3
may be reduced, which may promote the inflammatory response; thereby, a new hypothesis of the
metalloproteinase/phospholipase A2 (SPLA2) axis is proposed [52] according to which the secretion of
SPLA2 is increased when there is a lack of MMP-2 in the body. Additionally, as SPLA2 is important in
inflammation, which promotes the inflammatory response, thus the activation of this axis will increases
the related inflammatory response. Yet, SPLA2 also plays an important role in the development of
renal injury and CKD [53,54]; therefore, in people with congenital MMP-2 deficiency, the occurrence
and development progression of CKD may also be closely associated with this axis.

4.3. The Effects of Interaction between MMP-2, 9 and Growth Factors (GFs) on CKD

GFs is a factor of a large family including: epidermal growth factor (EGF), fibroblast growth
factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), connective
tissue growth factor (CTGF), etc. The contribution of different GFs in CKD is different. Some GFs
promote the process of interstitial fibrosis, such as CTGF, TGF-β and EGF [55–57]; whereas some GFs
may inhibit the process of renal interstitial fibrosis, such as hepatocyte growth factor (HGF), etc. [58].
Therefore, GFs seems to have an effect with a dual nature on the progression of CKD. Additionally,
what is the specific relationship between GFs and MMP-2 and 9? For example, MMP-9 increases the
expression of TGF-β and promotes the occurrence of renal interstitial fibrosis [59], while MMP-2 has
an activation effect on FGF, which also promotes the development of fibrosis [60]. It was previously
mentioned that HGF has an inhibitory effect on renal fibrosis, and the mechanism may be associated
with the increased expression of MMP-2 and 9 [61].

Thus, there is an interesting problem in the process of development of CKD: some of the GFs
promote its progression, whereas some others inhibit its development. The role of MMP-2 and 9 in the
process of renal fibrosis is actually similar to that of GFs, such as: the activity of MMP-2 in the early
stage of CKD is increased and can degrade the type IV collagen in renal basement membrane; injures
the glomerular filtration membrane; promotes the upregulation of TGF-β; and promotes the renal
tubular epithelial phenotype transformation; all of these promote the development of fibrosis [62].
However, at the advanced stage, the deposition of matrix is aggravated due to the inadequate activity
of MMP-2 (Figure 2). The reason for the inadequacy of MMP-2 activity in the advanced stage is still
unclear. As mentioned earlier, some studies did a preliminary investigation that one of the possible
reasons could be due to renal interstitial fibrosis, which inhibits oxygen diffusion in the renal tubules,
thereby enhancing endocytosis and the subsequent decrease of MMP-2’s activities. Studies [63] have
found that the change of MMP-9 activity in renal interstitial fibrosis is similar to that of MMP-2, and the
reasons for this are not clear; whether endocytosis plays an important role or not is yet to be elucidated
(Figure 2).

4.4. The Effects of Interaction between MMP-2, 9 and Oxidative Stress on CKD

The role of oxidative stress (OS) in the pathogenesis of CKD is often important, and OS is often
associated with neutrophils. The progression of CKD is associated with the degeneration and necrosis
of the renal tissue; these cause the accumulation of neutrophils, which phagocytize this necrotic debris.
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During the process of phagocytosis by neutrophils, the oxygen consumption is increased, and part
of the oxygen molecules under the catalytic reaction of NADPH and NADH oxidase can accept the
extra electron and transform into oxygen free radicals, which induce OS [64]. Additionally, this further
aggravates the inflammatory injury in CKD.

OS also can activate MMP-2 and 9 [65–68], the activity of which may change in different
stage of CKD, as previously mentioned. With the progression of CKD, renal interstitial fibrosis
is further aggravated, which further hinders the diffusion of oxygen, finally leading to serious hypoxia.
The hypoxia further aggravates OS, thus forming a vicious cycle, which eventually leads to further
exacerbation of fibrosis (Figure 2).

5. The Possible Relationship between MMP-2, 9 and Their Activating Molecule MMP-14 and
Their Non-Proteolytic Functions with CKD

Recently, more and more attention has been given to the non-proteolytic functions of MMPs [69].
Therefore, in this part, we propose the possible relationship between non-proteolytic functions of
MMP-2, 9 and their activation-related molecule MMP-14 with the occurrence and development of CKD.

5.1. The Possible Relationship between Non-Proteolytic Functions of MMP-2 and CKD

Many studies have been carried out about the role of the proteolytic functions of MMP-2 in the
process of renal interstitial fibrosis. Therefore, what is the role of its non-proteolytic functions in the
development of interstitial fibrosis? Some researchers have found that [70] in lung adenocarcinoma
cells, pro-MMP-2 through the interaction with αVβ3 integrin can activate the phosphoinostitide
3-kinase/protein kinase B/hypoxia-inducible factor-1α (PI3K/AKT/HIF-1α) pathway. When this
pathway is activated, the production of HIF-1α will increase. Additionally, HIF-1α can promote the
expression of CTGF [71], and CTGF plays an important role in the development of CKD and renal
interstitial fibrosis [72,73]. Therefore, in the process of the development of renal interstitial fibrosis,
does pro-MMP-2 have a similar effect? If there is any, then this indicates that not only MMP-2, but
also its precursor may have an important role in the initiation of a similar fibrotic pathway in the early
stage; however, this claim needs to be confirmed by further studies.

5.2. The Possible Relationship between Non-Proteolytic Functions of MMP-9 and CKD

MMP-9 plays an important role in the occurrence and development of CKD. Studies have shown
that MMP-9 also has non-proteolytic functions, for example [74], in Schwann cells, through the help of
LRP1, MMP-9 can activate extracellular signal regulated kinase (ERK) 1/2. A similar function has not
been reported in renal cells, but the activation of kinase is interlinked; related reports in Schwann cells
stated that MMP-9 has the effect of ERK activation, and ERK has an important role in renal interstitial
fibrosis [56]. Therefore, whether it is possible to inhibit the development of renal interstitial fibrosis by
blocking these effects of MMP-9 warrants further study and discussions.

5.3. The Possible Relationship between Non-Proteolytic Functions of MMP-14 and CKD

It has been mentioned previously that with the mediation of TIMP-2, MMP-14 can be combined
with pro-MMP-2 to form a complex of proMMP-2/TIMP-2/MT1-MMP on the cell membrane so
that pro-MMP-2 can be activated to MMP-2. At present, the study [75] on MCF-7 breast cancer cells
shows that the cytoplasmic tail of MMP-14 is required for the binding of TIMP-2 to MMP-14 on
the MCF-7 surface, and when these two form as a complex, this can induce the proliferation and
migration of MCF-7. What is more, in a mice xenograft model [75], an inactive proteolytic MMP-14
mutant still promotes the growth of tumor in mice; however, this effect was lost when its cytoplasmic
tail was deleted. In another example [76], during the glycolysis in MMP-14 −/− macrophages, the
adenosine triphosphate (ATP) concentration was reduced compared to before. This is because in
macrophages, MMP-14 can stimulate glycolysis and the synthesis of ATP through its cytoplasmic
tail effect. Therefore, in the early and advanced stages of renal interstitial fibrosis, if the abnormality
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of the MMP-14 cytoplasmic tail results in the abnormality of its non-proteolytic function, then can
pro-MMP-2 still be successfully activated to MMP-2? If so, how does this affect the early and advanced
stages of renal interstitial fibrosis? Will this aggravate it or alleviate it?

6. Conclusions

This review focuses on the regulation of gelatinases’ activity and their regulatory molecules
in the development of CKD besides their role in the hydrolysis of ECM. The present studies show
that gelatinases play a very important role in CKD, which is closely related to the multiple cell
signaling pathways, endocytosis and the occurrence of renal inflammation in CKD. Additionally,
their non-proteolytic functions may also be inextricably linked to the occurrence and development of
CKD. Many studies on gelatinases focus on their traditional role of the hydrolysis of ECM, but in the
meantime, we must also provide more emphasis on their other roles besides the traditional role. In
this way, we can have a more specific and accurate understanding of their function in the human body.
We hope that this can bring us more interesting discoveries.
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