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Abstract
PM2.5 refers to particulate matter (PM) in air that is less than 2.5μm in aerodynamic diame-

ter, which has negative effects on air quality and human health. PM2.5 is the main pollutant

source in haze occurring in Beijing, and it also has caused many problems in other cities.

Previous studies have focused mostly on the relationship between land use and air quality,

but less research has specifically explored the effects of urban landscape patterns on

PM2.5. This study considered the rapidly growing and heavily polluted Beijing, China. To

better understand the impact of urban landscape pattern on PM2.5 pollution, five landscape

metrics including PLAND, PD, ED, SHEI, and CONTAG were applied in the study. Further,

other data, such as street networks, population density, and elevation considered as factors

influencing PM2.5, were obtained through RS and GIS. By means of correlation analysis

and stepwise multiple regression, the effects of landscape pattern on PM2.5 concentration

was explored. The results showed that (1) at class-level, vegetation and water were signifi-

cant landscape components in reducing PM2.5 concentration, while cropland played a spe-

cial role in PM2.5 concentration; (2) landscape configuration (ED and PD) features at class-

level had obvious effects on particulate matter; and (3) at the landscape-level, the evenness

(SHEI) and fragmentation (CONTAG) of the whole landscape related closely with PM2.5

concentration. Results of this study could expand our understanding of the role of urban

landscape pattern on PM2.5 and provide useful information for urban planning.

Introduction
PM2.5, which refers to particulate matter (PM) in air that is less than 2.5μm in aerodynamic
diameter [1], is a key pollutant affecting human health, visibility and radiation balance [2]. The
small size, strong adsorption and complex constitution are major features, as it can carry heavy
metals and sulfates, etc. into the respiratory tract and lungs [3]. PM2.5 mainly originates from
the products of our daily activities, such as vehicle exhaust, marine aerosols, coal and fuel oil
combustion, burning of agricultural wastes, paved road dust, and secondary sulfates, etc. [4].
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Owing to population expansion and rapid urbanization, PM2.5 has become one of the most
serious environmental problems in many cities in China [5, 6]. Big cities, such as Beijing and
Shanghai, have suffered terrible hazes in recent years, causing many environmental and eco-
logical problems, and also making troubles in human travel [1, 7], and is drawing more and
more attention around the world. This problem is especially urgent in China, which is
experiencing rapid urbanization and is planning to continue giving high priority to urbaniza-
tion in the coming decades [8].

PM2.5 pollution is a main factor in decreasing air quality. It not only causes serious visibility
problems, but also does great harm to human health. First, PM2.5 can impair visibility by light
scattering through its suspended particles and gases, especially its components such as primary
and secondary organics, inorganic salt, inorganic carbon, and elements [9]. Second, long-term
exposure to PM2.5 can result in mortality and morbidity [10]. Previous studies have confirmed
that high PM2.5 concentration is associated with increased rates of cardiovascular and respira-
tory diseases [11], and also leads to cancer, as well as premature death [12]. Last, PM2.5 can
affect Earth’s radiation balance and influence energy balance and material flow [4]. Thus, how
to decrease PM2.5 concentration to reduce its adverse impact has become a hot issue among
researchers.

Recent studies have mainly focused on source appointment [6], measurement and simula-
tion [13] and health risk assessment of PM2.5 [14], attempting to make clear the chemical com-
ponents and sources and then try to find out some effective measures to reduce the negative
effects. Additionally, many studies have explored the relationship between air pollution and
land use [15–17]. Besides, the changes of landscape patterns, which includes the changes of
composition and configuration of landscape can influence PM2.5. Furthermore, various meth-
ods have been explored and applied to research the factors of PM2.5 concentrations. Regression
analysis is a common method among them[18], especially the Land Use Regression model
(LUR) [19–21], which analyzes the potential factors based on GIS. Traffic, winter heating, farm
burning, and land use, etc. are found to greatly influence PM2.5. Take the ESCAPE project [22]
in Europe as an example, it used LUR to explore pollutant sources, including factors such as
road networks, population density, land use, and elevation (DEM), etc. Besides, a number of
studies also concentrate on the effects of specific land use types, such as vegetation, water etc.,
on PM2.5. The relationship between vegetation and air pollutant was a common focus in exper-
iment and simulation studies. Sabo et al. [23] examined the PM accumulation on leaves of 22
trees and 25 shrubs in test field in Norway and Poland. The results showed that Pinus mugo
and Pinus sylvestris, Taxus media and Taxus baccata, Stephanandra incisa and Betula pendula
were efficient species in capturing PM. Broad-leaved species with rough leaf surfaces are more
efficient in capturing PM than those with smooth leaf surfaces [24]. Modelling approaches to
research the PM deposition to the urban tree canopy were conducted in Japan [25], London
[26] and New York [27] et al. Green land was usual variable in land-use regression models [28,
29]. As for water, winds carry billions of tons of PM from the continents to the oceans. Marine
and atmospheric scientists were investigating the transport and deposition of Pm to the ocean.
The flux of PM depends on many factors including the distribution of sources, the physical
and chemical properties of the PM, meteorological conditions, and the rates of removal by dry
and wet deposition. Atmospheric chemical transport models, coupled with in situ observations,
were improving our understanding of the temporal and spatial variability of PM deposition to
oceans [30]. ESCAPE case study in Stockholm County also found that water in buffer of 500
meters had negative effect on PM2.5 concentration [22]. These studies all displayed the reduc-
ing influence of vegetation and water on particulate matter.

The relationship between land use and PM2.5 has been confirmed in previous studies, but
there is not enough information offered in these studies to explore the effects of urban
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landscape patterns on PM2.5 pollution. The relationship between urban landscape patterns and
air pollution is a complex patterns-process relationship. Recently, with the development of RS
and GIS, research has started to focus on the influence of urban form and urban landscape on
air pollution. Tang and Wang [31] demonstrated that urban form had effects on traffic-
induced noise and air pollution, such as urban forms in historical area with narrower roads,
complex road network led to lower noise pollution, but the greater street canyon effects results
in higher CO concentration. Weber et al. [32] revealed that landscape metrics in different
urban structures were good indicators of PM10 without measured data, which indicated the
function of urban landscape on air pollution. An study case of evaluating how spatial heteroge-
neity of forest affect air pollution was conducted by Escobedo and Nowak [33], which also took
urban landscape of green space into account. As for the relative studies in China, there were
also some papers proving the importance of landscape patterns in green space on air quality
[34]. The fragmentation of green space has been shown to affect the concentration of fine par-
ticulate matter in Yichang city [35]. By means of calculating and analyzing several landscape
metrics, these studies investigate how to make a better landscape planning to reduce air pollu-
tion, such as how to plan vegetation to deposit PM2.5 more efficiently [36]. The reason that
landscape pattern influence PM2.5 concentration may depend on many factors. The landscape
could firstly change the factors, such as transportation volume and wind trace and further
influence the air pollutant concentration. Moreover, different landscape pattern perhaps
affected the interaction between forest, water and particulate matter in the air.

However, compare to noise pollution [31, 32], water pollution [37–39] and other ecological
processes [40], there is little research focusing on the relationship between air pollution, espe-
cially fine particulate matter and urban landscape patterns [33, 34]. More attention has been
paid to the influence of different land cover on air pollution, rather than different landscape
pattern. In addition, it is hard to explain the mechanism of the urban landscape pattern on par-
ticulate matter though it may have some similar process with heat island. The other possible
reasons for rare studies may include the appropriateness of method, limitation of data, etc. [41,
42]. As a result, firstly capturing the quantitative relationships between landscape patterns and
PM2.5 is of theoretical importance and practical for optimizing urban landscape patterns and
improving air quality in the environment, especially in China today. Furthermore, it can widen
our understanding of the relationship between landscape patterns and ecological process and
its effects on air pollution.

Urban landscapes are characterized by complex spatial heterogeneity, as different land-
cover and land-use types have their own surface characteristics. Landscape metrics are algo-
rithms that quantify specific elements [32] and spatial characteristics, including patches, clas-
ses, and entire landscapes, and are usually used in urban form and urban landscape research
[41]. Further, landscape metrics are also applied to investigate the influence of composition
and configuration of different land use types on biodiversity [43] and habitat [44]. Addition-
ally, they can be calculated quickly and directly. Thus, it is appropriate to use landscape metrics
to investigate the effect of urban landscape patterns on PM2.5 concentration.

The main objective of this paper is to examine the effects of urban landscape pattern on
PM2.5 pollution. The study site is Beijing, China’s capital, which has limited green space [13]
and has been experiencing serious hazes in recent years [21]. Therefore, the results of this
study can contribute to improving urban landscape planning and management, and can be as
effective measures for addressing air quality problems in Beijing. We used variables including
PM2.5 concentration, street networks, elevation, population and landscape metrics to build
regression models of all year and each season. Then we investigated the effects of urban land-
scape patterns on PM2.5 pollution in Beijing through statistical analysis. Specifically, the study
addressed the following questions:
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1. How do urban landscape composition affect PM2.5 concentration?

2. How do urban landscape configuration affect PM2.5 concentration?

3. How do whole landscape pattern affect PM2.5 concentration?

Study area
Beijing is located in the northeast of the North China Plain (115°250-117°300E, 39°280-41°250N)
with a population of 20.693 million and a total area of 16410.54 km2. Its climate belongs to a
continental monsoon climate with apparent seasons. The average temperature is 12.3°C, and
annual precipitation is about 572mm [45]. We used MAM (March, April and May), JJA (June,
July, and August), SON (September, October, and November), and DJF (December, January,
and February) to represent spring, summer, autumn, and winter respectively. As a city with a
history of more than 3000 years, Beijing has served as the capital for more than 850 years [46].
Since the implementation of China’s reform and opening-up policy in 1978, Beijing has been
undergoing rapid urbanization. Construction land area and traffic volume has increased dra-
matically, which has resulted in severe air pollution. Frequent haze events and high pollutant
concentrations in this city have attracted the attention of the world. Additionally, along with
urbanization, there is less impossible to increase area, especially of green space, which can miti-
gate the PM2.5 concentration [31]. So how to make use of the landscape pattern to improve air
quality in limited areas is of great significance for sustainable development in Beijing.

Data andmethods
To explore the effects of landscape patterns on PM2.5 concentration, the following steps were
taken: (1) PM2.5 concentration of 35 monitoring sites in Beijing was obtained from the website
of the Beijing Environmental Monitoring Center; (2) relevant variables, including street net-
work, population, and elevation etc. were analyzed using GIS; (3) a selection of landscape met-
rics were calculated in Fragstats, including class level and landscape level, to provide
information about features of landscape composition and configuration; (4) statistical analysis,
mainly including Pearson’s correlation, stepwise multiple regression and leave-one-out cross
validation, was applied to investigate the relationship between landscape patterns and PM2.5

concentration. Specific details were provided as described in the following.

PM2.5 measurements
Routine monitoring data were collected at 35 air quality monitoring sites, which were available
on the website of Beijing Environmental Monitoring Center in real time. Continuous hourly
PM2.5 concentrations were measured for a whole year from 4th March 2013 to 8th March,
2014. The 35 sites were divided into four categories to guarantee adequate spatial variation in
measured concentrations, including 12 urban environmental evaluation sites, 16 suburb envi-
ronmental evaluation sites, 5 traffic pollution monitoring sites, and 2 regional background con-
trol sites. The distribution of all sites was illustrated as shown below (Fig 1).

Land use data
Land use data for 2010 in Beijing were obtained from the Center for Earth System Science,
Tsinghua University [47], derived from Landsat TM and ETM+ with a spatial resolution of
30m. While the original land cover data were classified into 20 land use categories, we simpli-
fied land use data into 5 categories: construction land, vegetation, water body, bare land and
cropland for further analysis in landscape metrics variables.
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Fig 1. Classification and distribution of air quality monitoring sites in Beijing.

doi:10.1371/journal.pone.0142449.g001
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Landscape metrics
Based on the land use classification, landscape metrics of different level were calculated. Land-
scape metrics have been widely used to measure landscape patterns [48], which include compo-
sition and configuration [49]. According to former studies [32, 50, 51], 5 landscape metrics
(Table 1) were selected to measure urban landscape patterns in Beijing based on principles
including (1) theoretically and practically important, (2) easily calculated, (3) interpretable,
and (4) little redundancy. The selected landscape metrics were applied to reflect the size, den-
sity, edge, shape of different patch types, and evenness and fragmentation of the whole land-
scape, respectively. The percentage of landscape (PLAND) is a landscape composition metric
measuring the percentage of different patch types within the landscape. Patch density (PD),
edge density (ED) are landscape configuration metrics describing the spatial distribution of
patches within the landscape. Shannon’s evenness index (SHEI) and contagion (CONTAG) at
landscape level signifies some characteristics of the whole landscape. Additionally, we adapted
buffer radii of 100, 300, 500, 1000, 2000, 3000m and 5000m around the monitoring sites. The
above metrics describing various patch and landscape types were calculated using Fragstats4.1
as variables.

Other variables
Other variables in this study also include street networks, population, and elevation etc. Street
networks data were obtained through map vectorization from Google Earth combined with
Landsat TM 2012. We categorized all roads into major roads and secondary roads and used the
length of specific road types as traffic variables. Major roads include ring roads, expressways,
and some other important roads, while secondary roads covered the rest. In accordance with
the principle of traffic-related buffer selection described by Hoek et al. [52] We set the maxi-
mum traffic-related buffer distance to 1000m. Combined with dispersion patterns, we adapted
circular buffers with 100, 200, 300, 500, 750, and 1000 m radii around the sampling sites.

Population dataset, from Institute of Geographic Sciences and Natural Resource Research,
CAS, with a spatial resolution of 0.50 (816.3m approximately), was used to represent the popu-
lation distribution of Beijing. Considering the spatial resolution of the dataset, we only adapted
buffer radii of 1000, 2000 and 5000m.

DEM data, derived from ASTER GDEM 1st edition (V1) with a spatial resolution of 30m,
were obtained from Geospatial Data Cloud.

Land cover data, street networks, population density, and elevation were conducted in Arc-
GIS to develop the predictor variables for further study (Table 2).

Table 1. List of the selected landscapemetrics.

Metrics (abbreviation) Description (unit) Range

Percentage of landscape
(PLAND)

PLAND quantifies the proportional abundance of each patch type in the landscape (percent) 0 < PLAND �100

Patch density (PD) PD expresses number of patches on a per unit area for considered class (number per 100
hectares)

PD > 0

Edge density (ED) ED reports edge length on a per unit area for considered class (meter per hectare) ED � 0

Shannon’s evenness index
(SHEI)

SHEI expresses the evenness distribution of area among patch types (none) 0 � SHEI � 1

Contagion(CONTAG) Tendency of land use types to be aggregated (percent) 0 < CONTAG � 100

Sources: Fragstats documents 4.2 (2014).

doi:10.1371/journal.pone.0142449.t001

Effects of Landscape Pattern on PM2.5

PLOS ONE | DOI:10.1371/journal.pone.0142449 November 13, 2015 6 / 20



Statistical analysis
Annual and seasonal average concentrations of PM2.5 in 35 sites were calculated as dependent
variables in this study, while the independent variables are listed in Table 2. The statistical anal-
ysis includes Pearson’s correlation analysis, multiple stepwise regression, and leave-one-out
cross validation (LOOCV). The method in this study was similar but not identical to LUR
model. The LUR model, which was developed by Briggs et al. in 1997 [53]. It uses least squares
regression to combine monitored data with GIS-based predictor data to build a prediction
model applicable to nom-measured locations [54]. It usually contains these main steps, includ-
ing obtaining the monitoring data, generating variables, developing models, model validation
and regression mapping. The most prominent characteristic of LUR may be the predictor

Table 2. Classification and description of independent variables.

Class of
variables

Description Subclass of variables Buffer radii(meters) Variables names

Street network The length of major roads and common
roads within the buffer (m)

Mr (main roads) 100;200;300;500;750;1000 Mr_xx*

Cr (common roads) 100;200;300;500;750;1000 Cr_xx

Population
density

Population within the buffer(in units) Pop (population) 1000;3000;5000 Pop_xx

Elevation Elevation of the site (m) DEM (elevation) DEM

Landscape
metrics

The landscape metrics of land use within
the buffer

Crop (cropland) PLAND 100;300;500;1000;2000;3000;5000 Crop_PLAND_xx

PD 100;300;500;1000;2000;3000;5000 Crop_PD_xx

ED 100;300;500;1000;2000;3000;5000 Crop_ED_xx

SHEI 100;300;500;1000;2000;3000;5000 Crop_SHEI_xx

CONTAG 100;300;500;1000;2000;3000;5000 Crop_CONTAG_xx

Vege (vegetation) PLAND 100;300;500;1000;2000;3000;5000 Vege_PLAND_xx

PD 100;300;500;1000;2000;3000;5000 Vege_PD_xx

ED 100;300;500;1000;2000;3000;5000 Vege_ED_xx

SHEI 100;300;500;1000;2000;3000;5000 Vege_SHEI_xx

CONTAG 100;300;500;1000;2000;3000;5000 Vege_CONTAG_xx

Wat (water body) PLAND 100;300;500;1000;2000;3000;5000 Wat_PLAND_xx

PD 100;300;500;1000;2000;3000;5000 Wat_PD_xx

ED 100;300;500;1000;2000;3000;5000 Wat_ED_xx

SHEI 100;300;500;1000;2000;3000;5000 Wat_SHEI_xx

CONTAG 100;300;500;1000;2000;3000;5000 Wat_CONTAG_xx

Cons (construction
land)

PLAND 100;300;500;1000;2000;3000;5000 Cons_PLAND_xx

PD 100;300;500;1000;2000;3000;5000 Cons_PD_xx

ED 100;300;500;1000;2000;3000;5000 Cons_ED_xx

SHEI 100;300;500;1000;2000;3000;5000 Cons_SHEI_xx

CONTAG 100;300;500;1000;2000;3000;5000 Cons_CONTAG_xx

Bare (bare land) PLAND 100;300;500;1000;2000;3000;5000 Bare_PLAND_xx

PD 100;300;500;1000;2000;3000;5000 Bare_PD_xx

ED 100;300;500;1000;2000;3000;5000 Bare_ED_xx

SHEI 100;300;500;1000;2000;3000;5000 Bare_SHEI_xx

CONTAG 100;300;500;1000;2000;3000;5000 Bare_CONTAG_xx

* xx corresponds to the circular buffer radii (in meters).

doi:10.1371/journal.pone.0142449.t002
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variables developed in GIS. Compared to LUR model, our study added landscape metrics as
variables in the model, not only usual variables in other models, such as land use, street net-
work et al., which did not occur in previous LUR models. In short, the difference between LUR
models and our method was that we made use of landscape metrics to investigate the effect of
landscape pattern on PM2.5 concentration more than land use factors.

In the first place, in order to conduct a tentative study on the effects of landscape patterns
on PM2.5 concentration, Pearson correlation coefficients were applied to measure the relation-
ship between them. Pearson correlation coefficient is a linear correlation coefficient used to
reflect the extent of correlation between two variables. The larger the absolute value of correla-
tion coefficient, the greater correlation they have [48]. This study made a Pearson correlation
between each landscape metric and PM2.5 concentration, attempting to find the landscape met-
rics which have significant correlation with PM2.5 concentration (P<0.05). Pearson correlation
analysis was performed to determine whether the landscape variables and PM2.5 concentration
were highly correlated, which laid a foundation for further study.

Next, we tested the relationship between landscape patterns and PM2.5 concentrations by
stepwise multiple regression. A multiple linear regression was performed using all variables in
a stepwise selection method. The method selects a subset of the variables that have a high corre-
lation with dependent variables. Only variables that made a significant contribution to the
overall model were kept (P<0.05) [55, 56]. Stepwise multiple regression identifies which vari-
ables explain the greatest amount of variation in PM2.5 concentration. Before stepwise multiple
regression, in order to avoid the potential of collinearity among variables belonging to the
same category and ensuring interpretability of parameters, a model-building algorithm was
used, as follows[19]: (1) Remove variables with less than five nonzero values; (2) in each sub-
category, rank all variables by the absolute strength of their correlation with the measured pol-
lutant and identify the highest-ranking variable; (3) remove other variables in each sub-cate-
gory that are correlated (Pearson’s r> 0.6) with the highest-ranking variable; (4) enter all
remaining variables into a stepwise multiple linear regression with a confidence interval 95% in
SPSS; (5) remove the variables that have insignificant t-statistics (P<0.05) or are inconsistent
with a priori assumptions; (6) repeat steps 4 and 5 until there are no more variables that can
contribute less than 1% to the adjusted R2. Then stepwise multiple regressions were performed
to estimate the direction and magnitude of the effect of transportation, population density, ele-
vation, and landscape pattern on PM2.5 pollution. There were 5 regression models in the study,
including 1 annual average model and 4 seasonal average models.

In the last step, we evaluated the regression models by leave-one-out cross validation
(LOOCV) [52], where models were developed for N-1 sites (N is the total number of sampling
sites) and the predicted concentrations were compared with the measured concentrations at
the left-out site. The above procedure was repeated 35 times. Then, the root mean squared
error (RMSE) was calculated to describe the validity and accuracy of the models. Generally, a
lower RMSE value meant more stable and accurate models.

Results

Descriptive statistics
All 35 sites were valid samples during the study period. The annual average concentration of
35 sites was 90.724μg/m3, which was 2–3 times higher than the WHO Level 1 Interim Target of
35μg/m3. The maximum value of annual average concentration was 115.894μg/m3 in the Liu-
lihe site, while the minimum value was 62.054μg/m3 in Miyun reservoir site. Fig 2 showed that
PM2.5 concentration in winter and autumn was larger than that in spring and summer. The
average concentration of four seasons was 85.349μg/m3, 79.149μg/m3, 86.887μg/m3 and
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112.299μg/m3. The peak concentrations of spring, summer, autumn and winter were
109.930μg/m3 (Liulihe site), 100.899μg/m3 (Daxing site), 147.738μg/m3 (Daxing site) and
163.347μg/m3 (Inner YongDingMen street site). The PM2.5 concentration between different
sites and different seasons changes greatly. The spatiotemporal variation of PM2.5 concentra-
tion in Beijing may be evident.

Pearson correlation analysis
The relationship between PM2.5 concentration and landscape patterns was first characterized
by Pearson correlation analysis. Pearson coefficients indicated the extent of the correlation.
There were 4 landscape metrics which had a significant relationship (|r|>0.6) with PM2.5 con-
centration in Table 3. Firstly, among 5 land use types, only vegetation metric (vege_P-
LAND_5000) related closely with PM2.5 concentration. R values between vege_PLAND_5000
and annual, spring, summer, winter average concentration were -0.701, -0.790, -0.701 and
-0.623 respectively, which indicated that increase of vegetation area could decrease PM2.5 con-
centration, especially in spring, summer and winter. Secondly, at class-level configuration

Fig 2. Seasonal pattern of four categories of all sites.

doi:10.1371/journal.pone.0142449.g002
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metrics, only vege_ED_5000 had close correlation with PM2.5 concentration in spring (r =
-0.776), summer (r = -0.776) and autumn (r = -0.612) particularly. Thirdly, at landscape level,
both SHEI and CONTAG displayed a significant relationship to PM2.5 concentration, and they
all belonged to the radii buffer of 3000. In addition, all metrics showed a negative relationship
with PM2.5 concentration except CONTAG_3000. And all metrics at class-level had negative
correlation with PM2.5 concentration, and they all related to vegetation, which was of great
importance in mitigating PM2.5 concentration. Furthermore, from temporal perspective, the
results of correlation in summer was more similar to that in annual average. They both had 4
metrics (vege_PLAND_5000, vege_ED_5000, SHEI_3000 and CONTAG_3000). While there
were only 2 metrics in spring (vege_PLAND_5000 and vege_ED_5000), and was only 1 metric
in autumn (vege_ED_5000) and winter (vege_PLAND_5000). From the correlation analysis,
the metrics PLAND and ED of vegetation had significant relationship with PM2.5 concentra-
tion, which enhanced the importance of vegetation conservation. The SHEI and CONTAG
also signified the effects of evenness on mitigating PM2.5 concentration. They laid a foundation
for the further regression analysis.

Stepwise multiple regression
To further analyze the contributions of landscape metrics to PM2.5 pollution in various seasons,
stepwise multiple regression was employed and 5 regression models obtained. More details are
shown in Table 4.

First, stepwise multiple linear regression of variables including street network, population,
DEM and landscape metrics was performed to research the influence of urban landscape on
PM2.5 concentration in the whole year. After removal of the non-significant variables, 6 signifi-
cant variables (vege_ED_5000, crop_PLAND_1000, cons_PLAND_300, cons_ED_2000,
wat_ED_3000 and mr_1000) were employed to correlate with PM2.5 concentration (Table 4).
The obtained relationship is expressed by the following equation:

PM2:5
year¼90:962� 0:428 � vege ED 5000 þ 0:347 � crop PLAND 1000 þ 0:125 � cons PLAND 300

�1:604 � cons PD 2000 � 0:208 � wat ED 3000 þ 0:002 �mr 1000
ð1Þ

There existed negative linear correlation between PM2.5 concentration and vege_ED_5000,
cons_PD_2000 and wat_ED_3000. A positive linear correlation of PM2.5 concentration
between crop_PLAND_1000, cons_PLAND_300 and mr_1000 was found. The order of

Table 3. Landscapemetrics that had relationship with PM2.5 concentration (|r|>0.6).

Class Class-level composition metrics (r
value)

Class-level configuration metrics (r
value)

Landscape-level metrics (r
value)

Landscape metrics (annual
average)

Vege_PLAND_5000(-0.701) Vege_ED_5000(-0.766) SHEI_3000(-0.654)

CONTAG_3000(0.631)

Landscape metrics (spring
average)

Vege_PLAND_5000(-0.790) Vege_ED_5000(-0.766)

Landscape metrics (summer
average)

Vege_PLAND_5000(-0.701) Vege_ED_5000(-0.766) SHEI_3000(-0.654)

CONTAG_3000(0.631)

Landscape metrics (autumn
average)

Vege_ED_5000(-0.612)

Landscape metrics (winter
average)

Vege_PLAND_5000(-0.623)

doi:10.1371/journal.pone.0142449.t003
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absolute coefficients suggesting that the correlations for cons_PD_2000 was closer than other 5
variables. The order of sequence into the regression model indicated that vege_ED_5000 was
of most importance for decreasing PM2.5 concentration.

Next, according to different kinds of independent variables in different period, 4 models
were obtained as follows:

PM2:5
spring ¼ 90:767� 0:485 � vege PLAND 5000 � 0:464 � bare ED 500 � 0:530

� wat PLAND 5000 ð2Þ

PM2:5
summer ¼ 84:803� 0:434 � vege PLAND 5000 � 0:698 � vege PD 5000 þ 0:005 �mr 1000

�1:151 � wat PLAND 500
ð3Þ

PM2:5
autumn ¼ 90:819� 0:289 � vege ED 5000 þ 0:528 � crop PLAND 1000 � 0:853 � cons PD 300

�2:901 � vege PD 5000 þ 6:210 � bare PLAND 500
ð4Þ

Table 4. Analysis of coefficient of regression models.

Regression model Variables Parameters of models

B t Sig.

Year Constant 90.962 14.956 0.000 Adjusted R2 = 0.849

Vege_ED_5000 -0.428 -9.472 0.000 D-W value = 2.053

Crop_PLAND_1000 0.347 5.402 0.000 RMSE = 4.754μg/m3

Cons_PLAND_300 0.125 2.629 0.014 F = 32.819(Sig. = 0.000)

Cons_PD_2000 -1.604 -3.094 0.004

Wat_ED_3000 -0.208 -2.966 0.006

Mr_1000 0.002 2.065 0.048

Spring Constant 90.767 63.759 0.000 Adjusted R2 = 0.802

Vege_PLAND_5000 -0.485 -7.572 0.000 D-W value = 1.889

Bare_ED_500 -0.464 -5.143 0.000 RMSE = 5.050μg/m3

Wat_PLAND_5000 -0.530 -4.173 0.000 F = 46.933(Sig. = 0.000)

Summer Constant 84.803 37.515 0.000 Adjusted R2 = 0.684

Vege_PLAND_5000 -0.434 -5.504 0.000 D-W value = 1.849

Vege_PD_5000 -0.698 -2.589 0.015 RMSE = 6.027μg/m3

Mr_1000 0.005 3.788 0.001 F = 19.409(Sig. = 0.000)

Wat_PLAND_500 -1.151 -3.207 0.003

Autumn Constant 90.819 24.020 0.000 Adjusted R2 = 0.624

Vege_ED_5000 -0.289 -2.521 0.017 D-W value = 2.148

Crop_PLAND_1000 0.528 5.010 0.000 RMSE = 10.317μg/m3

Cons_PD_300 -0.853 -3.190 0.003 F = 12.288(Sig. = 0.000)

Vege_PD_5000 -2.901 -3.214 0.003

Bare_PLAND_500 6.210 2.304 0.029

Winter Constant 45.596 2.288 0.029 Adjusted R2 = 0.658

Vege_PLAND_5000 -0.873 -5.109 0.000 D-W value = 1.652

Wat_ED_3000 -0.634 -4.513 0.000 RMSE = 12.956μg/m3

CONTAG_3000 1.415 4.407 0.000 F = 22.805(Sig. = 0.000)

doi:10.1371/journal.pone.0142449.t004
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PM2:5
winter ¼ 45:596� 0:873 � vege PLAND 5000 � 0:634 � wat ED 3000 þ 1:415

� CONTAG 3000 ð5Þ

There were 3 variables appearing in the regression model of spring. From the perspective of
coefficient, the order of the three variables was vege_PLAND_5000>bare_ED_500>wat_P-
LAND_5000, showing that the composition of vegetation and water had significant relationship
with PM2.5 concentration, and the edge density of bare land also negatively related to PM2.5 con-
centration. In regression model of summer, 3 variables were landscape metrics among all 4 vari-
ables except mr_1000. The maximum absolute coefficient existed in wat_PD_500, which means
it played the most related role in PM2.5 concentration. Additionally, there existed negative linear
correlation between PM2.5 concentration and vege_PLAND_5000, vege_PD_5000 and wat_P-
LAND_500, with positive linear correlation of PM2.5 concentration and mr_1000. There were 5
variables in autumn model, bare land and cropland could increase PM2.5 in autumn, which con-
tributed more in this season. In winter, the model showed what differently comparing to other
seasons was CONTAG_3000, the only 1 landscape metrics at landscape level, indicating the fea-
ture of whole landscape also influence the particulate matter. Table 4 shows that the significance
of regression coefficients t value and models F value were less than 0.05, indicating that each
partial regression coefficient in the regression equation were significant, and each regression
model was valid. The adjusted R2 of these 5 regression equations was 0.849, 0.802, 0.684, 0.624
and 0.658 respectively. In the LOOCV, the RMSE for PM2.5 concentrations models were
4.754μg/m3, 5.050μg/m3, 6.027μg/m3, 10.317μg/m3 and 12.956μg/m3. The results was acceptable
comparing to other studies [20, 22], especially the first 3 models.

On the basis of the above results, the classification of variables in each regression equation
was made in Table 5, according to the different variable types. As shown in Table 5, transporta-
tion and landscape metrics were 2 kinds of main variables that entered into the stepwise multi-
ple regressions. There were 9 class-level composition metrics in the overall models. 3 metrics
belonged to vegetation, 2 metrics belonged to water body and cropland, and the rest was

Table 5. Classification of independent variables included in regression models.

Classification Class-level composition
metrics

Class-level configuration
metrics

Landscape-level
metrics

Other
variables

Model year Crop_PLAND_1000(+) Vege_ED_5000(-) Mr_1000(+)

Cons_PLAND_300(+) Cons_PD_2000(-)

Wat_ED_3000(-)

Model spring Vege_PLAND_5000(-) Bare_ED_500(-)

Wat_PLAND_5000(-)

Model summer Vege_PLAND_5000(-) Vege_PD_5000(-) Mr_1000(+)

Wat_PLAND_500(-)

Model autumn Crop_PLAND_1000(+) Vege_ED_5000(-)

Bare_PLAND_500(+) Cons_PD_300(-)

Vege_PD_5000(-)

Model winter Vege_PLAND_5000(-) Wat_ED_3000(-) CONTAG_3000(+)

Land use types (number of appearing in
models)

Vegetation (3) Vegetation (4)

Water body (2) Water body (2)

Cropland (2) Construction land (2)

Construction land(1) Bare land (1)

Bare land (1)

doi:10.1371/journal.pone.0142449.t005
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construction land and bare land. Class-level configuration metrics contained 9 metrics, includ-
ing 4 vegetation metrics, 2 water body metrics, 2 construction land and 1 bare land metrics.
Among these 5 models, only 1 landscape-level metric, CONTAG_3000 appearing in the model
of winter. Besides, other dependent variables only contained transportation indicator, mr_1000.
As for their effects on PM2.5 concentration, all configuration metrics at class-level had negative
relationship with PM2.5, while CONTAG_3000 and mr_1000 related positively with PM2.5.
However, the effects of composition metrics at class-level on PM2.5 varied with the landscape
types. The composition of vegetation and water body had negative effect on PM2.5, but that of
construction land, bare land and cropland had opposite influence. Furthermore, the variables
also changed with the season, the most obvious one was crop_PLAND_1000 in model autumn,
which indicated the crop was a special landscape types for air pollution. In conclusion, regres-
sion analysis made a further and more accurate results than correlation analysis. Different land
use had different influence on PM2.5 concentration. Vegetation and water could deposit particu-
late matter, while bare land and construction land could produce particulate matter, crop land
had uncertain relationship with PM2.5 concentration. As for landscape configuration metrics,
both ED and PDmay decrease PM2.5 concentration no matter what kind of land use. The even-
ness of whole landscape and main road contributed the PM2.5 concentration, too.

Discussion

Effects of urban landscape composition on PM2.5 concentration
The concentration of PM2.5 was controlled by multiple factors, such as wind, precipitation,
traffic conditions etc., but this paper took major focus on urban landscape pattern. PLAND,
the composition metric, characterizes the percentage of patch classification in the whole land-
scape [50], from which we could learn the effect of land use types on PM2.5 indirectly. More
information can be gained in regression models. In 5 models, all land use types all entered. The
land use types most frequently associated with PM2.5 concentration was vegetation, next were
water body and cropland, bare land and construction land were least. The coefficients of
vege_PLAND in model spring, model summer and model winter were -0.485, -0.434 and
-0.873 respectively. The coefficients of wat_PLAND in model spring and model summer were
-0.530 and -1.151 respectively. They were negative, indicating that increasing the sink land-
scape percentage would decrease PM2.5 concentration. Cons_PLAND (coefficient was 0.125 in
model year), bare_PLAND (coefficient was 6.210 in model autumn) and crop_PLAND (coeffi-
cients were 0.347 and 0.528 in model year and model autumn) were proved to influence PM2.5

oppositely, for the coefficients were positive in models. In fact, it was easy to understand the
role of PLAND on PM2.5. Sink landscape can absorb PM2.5, and construction land can produce
particulate matter [57]. Altering their areas caused increasing and decreasing PM2.5, demon-
strating results similar to many relative studies.

A number of previous studies have shown a strong relationship with land use, mainly apply-
ing LURmodels [5, 22] and simple linear regression [18]. Those studies similarly showed that
vegetation [27, 47] and water [22] were able to reduce PM2.5 concentration. As a sink landscape
for PM2.5, vegetation and water play a primary role in PM2.5 pollution, as was derived from cor-
relation analysis and stepwise multiple regression. Vegetation mainly absorbed particulate mat-
ter through leaves by dry and wet deposition to reduce ambient PM2.5 concentration. Tree
planning has been put forward by the Beijing municipal government as a major measure to
improve air quality. Yang et al. [58] used an urban forest effects model to explore the effect of
urban forest on air pollution. Results showed that trees in central Beijing removed 1261.4 tons
of pollutants, most of which were particulate matter. Research in 10 U.S. cities also showed simi-
lar results in that the amount of PM2.5 removed by trees ranged from 4.7 tons to 64.5 tons
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annually, for instance saving the state of New York 60 million dollars in healthcare costs and
mortalities because of cleaner air [27]. Besides regression models, some studies based on physi-
cal model also showed the similar results. Gromke [59] indicated that the trees had bad influ-
ence on pollutant dispersion using a new vegetation model. Ji and Zhao [60] used drift flux
model and Reynolds-Average Navier-Stokes (RANS) model to investigate the effect of trees on
particle concentration distributions and building. Dzierzanowski et al. [61] further focused on
the various functions of different tree species on particulate matter. These results of above stud-
ies all revealed that vegetation had the great impact on PM2.5 mitigation, which agreed with the
results of this study. Further, water played a significant role as well, primarily depositing and
absorbing particulate matter across vast surfaces, which complied with results in experiment
and simulation studies [22, 62]. However, water’s effect may not obviously comparing with
other land use types. So it has often been often neglected in LUR models [52]. Nonetheless, this
study confirmed the significance of water, which should be given more attention in future study.

Besides water body and vegetation, cropland, construction land and bare land were also
important land use type in regression models. Cropland was a special factor. On the one hand,
as a part of vegetation [63], it can reduce PM2.5 concentration by deposition; on the other
hand, smoke can be produced by straw burning during harvest, the reason that many cities
reach peak PM2.5 concentration in autumn, which could be shown obviously in model autumn.
In addition, cropland can be considered bare land when it is left aside. Thus, the effect of crop-
land on PM2.5 concentration depended on the balance between these two functions. So only in
model autumn could crop_PLAND entered, which not only verified but highlighted the impor-
tance of cropland for air pollution, in autumn particularly. Meantime, construction land shared
a mass of impervious surfaces. The rapid development of urbanization has led to increasing
areas of construction land, bringing burgeoning population and growing transportation use
[64], increasing the potential for PM2.5. According to Tan et al. [65], who took Taiwan as a case
study for analyzing the holiday effect on air quality, low urbanization areas always had better
air than cities in Taiwan, no matter what period of the year. As a consequence, during the pro-
cess of urbanization, how to manipulate PM2.5 will be the most important issue to deal with.

Furthermore, there were some differences among four seasons. Firstly, among the four sea-
sons, only autumn model contained the crop variable. Land use did not change greatly during
the year, but crop was a special land use. In autumn, the crop could produce smoke by straw
burning, either in Beijing or surrounding regions, which make it significant in autumn model
rather than other three seasons. Secondly, the winter model only contained two variables, pro-
ducing a lower R2. It may be explained by specific PM2.5 sources that were distributed in a small
scale, such as meteorological conditions, fossil fuel combustion, biomass burning for cooking
and winter heating [17, 66–68], and setting off fireworks in the winter [69, 70]. Thirdly, bare
land could be a source because of the soil or sand dust caused by wind erosion, especially in the
spring of Beijing, when sand storm happened frequently. In conclusion, due to the regression
algorithm, which only picked up the variables that were significant, and complicated influence
of many other factors, it was not easy to explain all different variables between seasons.

Effects of urban landscape configuration on PM2.5 concentration
The relationship between urban landscape patterns and PM2.5 concentration were not clearly
noted in previous studies. The conclusion that landscape patterns correlated to PM2.5 con-
centration was obtained in our study through correlation analysis and stepwise multiple
regression. Pearson correlation analysis (Table 3) showed that ED had a significant relation
to PM2.5 concentration. Pearson coefficients between Vege_ED and PM2.5 concentration
were -0.766 and -0.612 in different models. While in regression models, ED and PD were
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entered as well. Results revealed ED and PD had more evident relationship with PM2.5,
which was rarely referenced in other studies.

In theory, according to the relationship between PLAND and PM2.5 concentration, the prob-
lem of PM2.5 could be dealt with by changing the percentage of specific patches, but there would
be little possibility to increase sink landscape area or decrease construction land area in many
quickly developing cities, especially in Beijing [46]. So the positive role of landscape configuration
must be given full play in solving serious haze problems. Unfortunately, few studies have investi-
gated the effect of configuration on PM2.5. Morani et al. [36] only discussed best tree planting
locations to reduce the concentration of particulate matter. Zhang et al. [71] simulated the airflow
and PM2.5 dispersion making use of large eddy simulation method, which took street canyon as a
special land structure factor. The studies of Ji and Zhao [60] also provided suggestions on effec-
tive configuration for trees to reduce PM concentration. These regression and simulation results
revealed that the configuration may related with pollutant to some extent. Correlation analysis
and stepwise multiple regression results in our study showed that not only composition but also
configuration affects air pollution. In other words, we can ease haze by transforming patch per-
centage and optimizing the configuration. It is noteworthy that numerous studies have focused
on the relationship between landscape patterns and heat island. In fact, the haze island caused by
PM2.5 was similar to heat island to some extent. Connors et al. [72] pointed out that the impact
of configuration on urban heat island was context-dependent, and the most important metrics
influencing it were LSI and ED. Buyantuyev andWu [73] explored heat island and landscape het-
erogeneity. They learned that the interaction between land utilization and patterns of human
activities will affect city temperatures. The relationship between configuration of various patches
of urban landscape and PM2.5 concentrations can be explained by the following principles.

Both ED (edge density) and PD (patch density) can be used to represent the complexity of the
edge and reflect the degree of interaction between certain landscape and ambient landscapes,
Vege_ED, wat_ED, bare_ED, cons_PD, cons_PD and vege_PD in models all appeared to be
important for explaining variation in PM2.5 concentrations. Increasing ED and PD of these land
use types can mitigate PM2.5 more efficiently based on our study. It could be explained by the fol-
lowing reasons. Firstly, along with increasing ED and PD, the interaction between land use types
can be more intensive, playing a more useful role for vegetation in PM2.5 deposition. Vegetation
can absorb more particulate matter produced from other source landscapes. Secondly, urban
landscape configuration could affect ambient microclimate, such as wind, humility and tempera-
ture et al. Canyon effect was a focus researching the relationship between urban structure with
climate and human activity [32]. The street structure could change wind speed and direction.
Heat island was largely influenced by urban configuration, indicating the effect of urban land-
scape pattern on temperature [74]. These methodology conditions were the main factors influ-
encing PM2.5. In result, ED and PD could affect the ambient air pollution in an indirect way.
Lastly, the edge and patch density may change the human activity, which may be another reason
for mitigating PM2.5 concentration. However, the increase of edge density and patch density may
enhance energy flow and exchange between green land and surrounding patches, therefore
depositing more PM2.5 from its ambient area, which leads to reducing the PM2.5 concentration
[75]. Edge and patch density availability can optimize the configuration of sink landscapes, creat-
ing more opportunities for source landscape and sink landscape to interact, enhancing particulate
pollution removal. This is of great significance for urban landscape planning and management.

Effects of whole landscape patterns on PM2.5 concentration
The results from our study also revealed that landscape-level metrics can affect PM2.5 concen-
tration as well as class-level metrics. We chose SHEI and CONTAG to reflect the evenness and
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fragmentation of the whole landscape. SHEI had significant negative correlation with PM2.5

concentration. In correlation analysis, r value between SHEI_3000 and PM2.5 concentration
was -0.654, while the CONTAG_3000 (r = 0.631) showed a positive relation to PM2.5 concen-
tration. In regression models, CONTAG_3000 was shown to effect PM2.5 concentration in win-
ter. Therefore, at the landscape level, SHEI and CONTAG were two factors influencing PM2.5.

SHEI can reflect the landscape heterogeneity of patches types, and it is sensitive to the distri-
bution of various patches. The larger index suggests the more well-distributed landscape. The
more well-distributed the landscape, the closer the relationship between each land use and
more interaction between “sink” landscape and “source” landscape have, thus more frequently
mitigating the PM2.5 pollution [46]. CONTAG describes the tendency of land use types to be
aggregated. The smaller index means more scattered landscape, which indicates there are
many different small patches. In other words, the communication between them can be more
effective [35]. On the other hand, humility and heat also varies with the whole landscape pat-
tern. This theory was the same as that relating to ED and PD. As a consequence, we should try
to evenly distribute all kinds of patches in the whole landscape and balance the source land-
scape functions and sink landscape as much as possible. The findings from our study that both
class-level and landscape-level metrics influenced PM2.5 concentration is of significance to
urban landscape planning and management.

Limitations and recommendations for future studies
There were data from only 35 sites analyzed in this study due to number of monitoring sites in
Beijing, which could reduce the precision of regression equations to a certain extent. The ideal
number of sites is 40–80, according to Hoek et al. [52]. Moreover, air pollution data was influ-
enced by time and location, so it was difficult to assess the timeliness and stability of the results.
It was no doubt that PM2.5 was controlled by many factors besides the variables in our study.
Xie et al. [76] found that PM2.5 concentration had relationship with SO2, NO2, CO and O3

according to the case studies in 31 Chinese cities. Wu et al. [17] added canteen amount as an
independent variable in Beijing study. The recent research took meteorological factors into
account, such as humidity, wind speed and wind direction [77,78]. Tang et al. [79] considered
the influence of street pattern and building height. With the rapid development of technique
and data sharing around the world, there would be more potential variables adding to the mod-
els. The selection of variables in our study partially due to the inaccessibility of more data. Fur-
thermore, both adjusted R2 and RMSE, which usually used to describe the performance of
model, were among reasonable range comparing to others regression models [52]. So the
results in this study could be also useful for estimating the effect of landscape features on PM2.5

concentration though without considering other factors.
The results from our study verified that urban landscape pattern could also affect PM2.5

concentration, which may be of some benefit for air pollution management and landscape
planning. However, the mechanisms and processes responsible for the effects of landscape met-
rics on PM2.5 pollution and seasonal differences could not be identified clearly from the statisti-
cal models applied in this study. In addition, it may be difficult to expect the performance of
the models adding more variables, but such experiment would definitely be in our further
study. Other more research, such as spatiotemporal characteristics of the effects, the impact
scale and intensity, and mechanisms of seasonal differences were also included.

Conclusions
There is no doubt that PM2.5 has become a serious air pollution problem in many rapidly
developing cities. PM2.5 not only harms the environment, but also harms human health. So
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how to mitigate PM2.5 concentration is a focus of much research. Taking Beijing, one of the
most air-polluted cities in China, as an example, our study quantitatively investigated the
effects of urban landscape patterns on PM2.5 concentration using correlation analysis and step-
wise multiple regression. Our study yielded the following conclusions:

1. Among landscape composition, as sink landscape for PM2.5, vegetation and water body had
the most obvious influence on PM2.5 concentration. Vegetation and water can absorb par-
ticulate matter to reduce pollutants, while construction land and bare land will increase the
concentration, and cropland was a special factor for its different function varying with
seasons.

2. Configuration metrics at class-level ED and PD were significantly related with PM2.5 con-
centration. The larger ED and PD of landscape would remove more PM2.5.

3. Landscape-level metrics influenced PM2.5 concentration as well as class-level metrics. The
evenness (SHEI) and fragment (CONTAG) of the whole landscape had a significant rela-
tionship with PM2.5 pollution. More even and scattered landscape distribution may be better
for mitigating the particulate matter.

The above results can provide additional useful information for better urban landscape
planning and management.
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