Published online 12 October 2012

Nucleic Acids Research, 2013, Vol. 41, No. 1 e27
doi:10.1093/nar/gks939

NGC: lossless and lossy compression of aligned
high-throughput sequencing data

Niko Popitsch* and Arndt von Haeseler

Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical
University of Vienna, Dr. Bohr Gasse 9, Vienna, A-1030, Austria

Received July 10, 2012; Revised September 14, 2012; Accepted September 15, 2012

ABSTRACT

A major challenge of current high-throughput
sequencing experiments is not only the generation
of the sequencing data itself but also their process-
ing, storage and transmission. The enormous size of
these data motivates the development of data com-
pression algorithms usable for the implementation
of the various storage policies that are applied to
the produced intermediate and final result files. In
this article, we present NGC, a tool for the compres-
sion of mapped short read data stored in the
wide-spread SAM format. NGC enables lossless
and lossy compression and introduces the following
two novel ideas: first, we present a way to reduce
the number of required code words by exploiting
common features of reads mapped to the same
genomic positions; second, we present a highly
configurable way for the quantization of per-base
quality values, which takes their influence on down-
stream analyses into account. NGC, evaluated with
several real-world data sets, saves 33-66% of disc
space using lossless and up to 98% disc space
using lossy compression. By applying two popular
variant and genotype prediction tools to the
decompressed data, we could show that the lossy
compression modes preserve >99% of all called
variants while outperforming comparable methods
in some configurations.

INTRODUCTION

Current high-throughput sequencing (HTS) technologies
enable the fast, accurate and affordable sequencing of
long stretches of DNA, which adds genome scientific
approaches, such as RNA-sequencing (RNA-seq) or
whole genome sequencing to the set of standard labora-
tory methods. These technologies result in huge amounts
of digital data that have to be processed, transferred,
stored and archived, which includes ‘raw’ sequencing

data and an even larger number of intermediate and
final result files that are produced by pipelines of data
analysis and manipulation tools. Such files store HTS
data in different (pre-) processing states and associated
metadata describing these data, such as read names or
mapping quality values, using various file formats, for
example, unmapped reads stored in FASTQ format,
mapped reads stored in SAM/BAM or called variations
stored in the VCF format.

In general, all such files are subject to differing data
handling and storage policies that define, for example,
where and how long these files are stored, how fast they
have to be accessible or how secure this access has to be.
The emerging field of personal genomic sequencing, for
example, will result in large amounts of data with high
security demands, but not necessarily fast access times.
Note that such policies are influenced not only by practical
considerations (such as available storage space) but also,
for example, by legal constraints and privacy issues.
It is the costs associated with processing, storage and
transmission of these data, rather than the generation
of sequencing data itself, that constitute a major challenge
to HTS experiments today [compare with (1-3)]. This
motivates the development of data compression algo-
rithms specialized for the discussed file formats, and
recent research in this field may be divided into three
major, but overlapping, categories: (i) compression of
genomic sequences as generally produced by re-sequencing
experiments (1,4,5); (ii)) compression of unmapped
short reads (6-8); and (iii) compression of aligned read
data (9-12).

This article falls in the latter category, namely by com-
pression of aligned short reads stored in the popular SAM
text file format (13). This data format stores not only short
sequences of DNA characters (read bases) but also a lot of
associated metadata, such as per-base quality values
(g-values), read names or mapping positions. Along with
this easily processable text format goes a compressed
binary variant (BAM) that basically comprises a blocked
gzipped version of SAM. Our tool, NGC, allows a more
efficient compression of the data stored in SAM/BAM
files by handling each contained data stream individually,

*To whom correspondence should be addressed. Tel: +43 1 4277 24024; Fax: +43 1 4277 24098; Email: niko.popitsch@univie.ac.at

© The Author(s) 2012. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/), which
permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com.

e27 Nucleic Acids Research, 2013, Vol. 41, No. 1

using value transformations and compression algorithms
that pay attention to the respective value distributions. An
overview of our solution is depicted in Figure 1. In this
article, we mainly discuss the wused compression
approaches for two of these data streams, namely read
bases and g¢-values and briefly sketch our strategies for
encoding read names and alignment positions.

Our proposed method for the (lossless) compression of
read bases builds on the wide-spread idea to store such
data relative to some reference sequence (5,9,10,15,16).
However, we propose to traverse the bases in an alignment
of reads in a per-column way that exploits common
features of multiple mapped reads rather than handling
each read individually as done in previous research. This
leads, ultimately, to a reduction of required code words
and, in consequence, to a more efficient data compression.
We measured the achieved compression rates (the required
bits per sample) and overall compression ratios (the ratio
between compressed and uncompressed size. The smaller

PAGE2 oF 12

this ratio, the better) and compared them with related
tools.

Regarding the compression of g-values, we contribute a
detailed discussion of several possibilities for their lossy
compression and analyse the impact of the associated
information-loss on subsequent data analysis pipelines.
We propose a novel way for lossy g-value compression
that distinguishes between different categories of g-values
and is able to preserve the original qualities of bases in
selected columns, which are the main targets of variant-
calling and genotype prediction algorithms. We have
evaluated our lossy per-base quality value compression
using variant calling pipelines composed of state-of-the-art
analysis tools and found that our proposed methods may
preserve 99-100% of all called variants on average while
outperforming comparable methods. Our evaluation
included Homo sapiens, Mus musculus, Escherichia coli
and Arabidopsis thaliana data from exome, whole
genome, ChIP and RNA sequencing experiments.

. o
g —>{ 0) HEADER (m) | —]
: IHEADER) . OJHEADER | conty | B,
& %| 1) SEQ (b) Vertical
= diff
8 2) QUAL (b) rundength [T I e
o
> 3) POS (i) encoder
6 7 8 9 10
4) QNAME (s)
5) TLEN (i) Q-value | |
@ § N quantizer Ly 11 12 13 14 15
27| | 6) MAPQ (b) o N
D o
§ 3 7)LEN (c) % 16 17 18 191 ..in
2 .
,—‘ Difference o) N TN
0) RNANE &) L— Golomb/Rice —— %
- 9) RNEXT (s) encoder 3 NGC file
—1 10) FLAG (c) H §'
11) HCPRE (b Prefix 114 @
=) (b) encoder | |7 =
% 12) HCPOST (b) §
- 13) SCPRE (b) Difference %
14) SCPOST (b) runlength =51 8
‘;{3 15) SCPREQ (b)
= Run-length | |
E —{ 16) SCPOSTQ(b) encoder)
=
= 5 Difference T X
o 18) PNEXT (i) encoder [T o ||
8 |
Encoders g
————- §

®©

®

o

®

Figure 1. Schematic overview of the NGC compression approach. NGC takes a SAM/BAM file, a reference sequence and a set of configuration
parameters as input (step I) and generates an NGC file and an optional statistics file (optional components drawn with dashed lines). First, NGC
de-multiplexes the various data streams and adds some additional streams (step II). These streams are then passed to our various encoders that
transform their values and prepare them for the subsequent block-compression (step III). In step IV, the data is compressed using a general-purpose
compression algorithm (gzip, bzip2 or lzma). Finally, the compressed data blocks, the original SAM file header, and the required configuration
information are combined to one single output file (step V). Streams with dark background (step II) encode the information described in (14),
although with different encoding schemas. Streams with white background encode: 7: read lengths, 11-16: data required for reconstructing clipped
bases/g-values, 17: unmapped reads. The basic data types of the streams are written in parentheses: (s)tring, (i)nteger, (c)har, (b)yte, (m)ixed or SAM

format.

PAGE3 0oF 12

MATERIALS AND METHODS
Data sets and software availability

The used evaluation data sets are deposited in the
Sequence Read Archive (3) under study numbers/run ac-

cession numbers: ChIP-Seq (mouse): SRX014899/
SRR032209, Reseq/hm (human): SRX000376/
SRR001471, RNA-Seq (E. coli): ERX007969/

ERRO019653, Reseq (E. coli, paired end): ERX008638/
ERRO022075, Reseq (E. coli): SRX118029/SRR402891,
Reseq (4. thaliana): SRX011868/SRR029316. The
human exome-sequencing data set was kindly given to
us by B. Streubel. The Reseq/chr20 (human) data set is
a resequencing data set of human chromosome 20, avail-
able from the GATK resource bundle (compare with
Supplementary Materials).

The data sets were mapped using BWA v0.6.1 (17), with
standard parameters for single paired end data. Unmapped
reads were pruned from the data sets; variants were called
with GATK v1.4 (18) and SAMTOOLS v0.1.18 (13), using
the parameter settings given in the Supplementary
Materials. NGC was implemented in Java 1.7 and is avail-
able for non-commercial use at http://purl.org/lsdv/ngc.

NGC

We have developed a tool (NGC) that enables the
complete lossless and lossy compression of alignment
data stored in SAM/BAM files. The NGC compressor
takes an alignment file, a reference sequence and several
configuration parameters as input and outputs a com-
pressed file (Figure 1). On the other hand, the NGC de-
compressor reverses this operation. When the lossless
mode of NGC is used, the resulting file is semantically
equal to the original file in the sense that it contains the
exact same information, although it might not be
byte-equal as (i) the order of optional SAM fields is not
preserved, which results in different byte streams in the
resulting BAM file and (ii) the SAM fields MD (‘mis-
matching positions’) and NM (‘number of mismatches’)
are dropped at compression time and automatically
recalculated at decompression time, which may result in
slightly different values because of ambiguities in the SAM
specification. When one of the multiple lossy modes is
chosen, the quality values in the resulting file additionally
differ (partly) from the original ones.

NGC treats each read in the original file as an n-tuple of
values of differing data type. Read names, for example,
are of type string, alignment coordinates are of type
integer, mapping quality values are of type byte and so
forth. Such an n-tuple consists in principle of the 11 man-
datory and all optional SAM fields [compare with (14)];
however, for algorithmic reasons, there are some devi-
ations, for example, we do not store the CIGAR informa-
tion, but reconstruct it from the other data and store some
additional metadata, such as read lengths (Figure 1).
NGC treats each element in these n-tuples individually,
that is, each data field may undergo independent steps
of value transformations and compression. Individual
fields may even be dropped during the compression
phase (e.g. NGC enables users to prune the read names

Nucleic Acids Research, 2013, Vol. 41, No. 1 e27

from the data to save space. New read names will then be
auto-generated at decompression).

Figure 1 gives an overall picture of our software and
shows the default encoding of the different data streams.
In this paper we describe the four streams that take up
most of the space in compressed data files in more detail:
read base sequence information, per-base quality values,
read positions and read names.

Read base compression

We call our idea for the compression of read bases ‘verti-
cal difference run-length encoding’” (VDRLE). Generally,
run-length encoding (RLE) is a simple encoding scheme
for sequences of characters from some alphabet A (in our
case the IUPAC nucleotide single-letter codes). A
run-length (RL) is basically a pair of a single character
from this alphabet and a positive integer number
indicating the run length of this character in the
sequence, an RLE is then an ordered sequence of such
RLs. For example, a DNA sequence S = ‘AACTTT ' is
encoded by the RLE {(4,2),(C,1),(T;3)}. The general com-
pression idea of RLE is that long stretches of identical
characters can be represented by one single RL that
requires storing only the two RL symbols. Obviously,
this simple encoding strategy is not effective for DNA se-
quences, as most RLs would be short, and a large number
of such pairs would be needed to encode the sequence. The
situation changes, however, when the encoded sequence
contains long stretches of identical characters, as in this
case, much less RL pairs than characters would be
required. Our proposed compression algorithm for read
bases is based on reducing the number of required RLs
that may then be effectively encoded using well-known
coding schemas and compression algorithms, respectively.

The first step of VDRLE is similar to other reference-
based compression approaches: we do not encode a read
sequence S itself but rather its differences to some refer-
ence sequence R. For this, let us formally introduce a new
character ‘E’ to a now extended alphabet A, = A+{ ‘E’}
that represents that a character in S is unchanged in com-
parison to R. Now, we calculate a sequence ‘diff’, using
the function A : A" x A™ — A’ that replaces all charac-
ters in the first sequence that map to the same characters
in the second sequence with this special character. Thus,
S" = A(S,R) is constructed by replacing all characters in S
that map to equal characters in the reference sequence R
with ‘E’ characters (compare with Figure 2, step 1). It is
easy to see that one may expect more and longer runs
of ‘E’ characters in S’ the higher the similarity between
S and R.

Our improvement to existing RLE-based approaches is
to encode such diff-ed read bases in an alignment ‘verti-
cally’ [i.e. position after position or ‘columnwise’, compare
with (19)] instead of ‘horizontally’ (i.e. read after read).
This means that the stream of base characters that is
encoded is not simply a concatenation of read bases but
first lists all base characters that are mapped to position 1,
then the ones mapped to position 2 and so forth (similar to
the SAMTOOLS mpileup command). Figure 2 summar-
izes our approach. The figure shows how A(S,R) is

http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://purl.org/lsdv/ngc

e27

Nucleic Acids Research, 2013, Vol. 41, No. 1

PAGE4 oF 12

Ret:{ TTCTTCCTATTCTGCTAGACAGATGAA
Reads: / TTCTTCGTA
CTTCGTATCC

CCTATTCT

GACAGAAG
GATGAA

" orF

Ref.{ TTCTTCCTATTCTGCTAGACAGATGAA
Reads: / EEEEEEGEE
1 EEEEGEEECE
EEEEEEEE

EEEEEEAE
EEEEEE

-

v RLE <
HORIZONTAL MODE

VERTICAL MODE

Ref: C TTCTTCCTATTCTGCTAGACAGATGAA

Ra<f*TTcTTCCTATTCTGCTAGACAGATGAA

Reads: / 123456789

Reads: . 123579x..

JXXLLXX T ... XX 4684k xf QREERt X.
S - - coco - - o o o X...X .X.
Reseq/chr20 Reseq/hm Reseq Reseq Reseq Exome-seq RNA-seq ChiP-seq
(human) (human) (A. thaliana) (E. coli) (E. coli, PE) (human) (E. coli) (mouse)
Horiz. DRLE counts| 43,532,619 900,546 13,341,776 4,303,863 191,384,090 3,386,907 56,295,485 8,127,608
Vert. DRLE counts| 28,855,452 824,683 8,912,294 3,587,923 48,162,138 2,123,039 1,348,494 6,364,152
Ratio [%] 0.66 0.92 0.67 0.83 0.25 0.63 0.02 0.78

Figure 2. Vertical and horizontal difference RLE. The figure shows the difference for a simple alignment (top of figure). In step 1, all bases that
match the reference are replaced by the ‘E’ character. In step 2, the resulting read bases are run-length encoded. The left box shows a ‘horizontal’
way to do this: the bases of each read (sorted by alignment position) are enumerated (we show the indices of the first nine bases in the figure), and a
new RL is started whenever a base differing from the previous one is encountered (we have marked such positions boldface). The lower-right box
shows our vertical approach: the read bases are enumerated column-after-column. Again, the start positions of RLs are marked boldface. Vertical
encoding saves two RLs in this toy-example, the table below the figure shows the counts for horizontal and vertical difference run-length encoding
(DRLE) in our test data sets. Figure 3 shows an excerpt of one of these data sets.

calculated in the first step by replacing all bases in the
individual reads that match the respective reference
bases. Our algorithm then generates a stream of base char-
acters by traversing such a diff-ed alignment columnwise
and encodes this stream by RLE. A new RL is generated
whenever a different base than the last encoded one is
encountered. For actually storing these RLs, we simply
map all characters in our alphabet to byte values and
write them, followed by one byte representing the RL
length, to a standard byte stream. This stream is finally
compressed using a general-purpose compression algo-
rithm (users may choose between bzip2, gzip, lzma and
no block compression).

Note that the described VDRLE method exploits
common features between reads mapped to the same
genomic region to decrease the number of required code
words to be encoded. It exploits the fact that short-read
mapping software tries to minimize differences between
reference sequence and mapped reads, which often results
in the same bases differing from the reference sequence
being stacked above each other rather than next to each

other, regardless whether these bases are real variants from
the reference sequence or just sequencing artefacts.

Quality value compression

As others have reported before, we also found per-base
quality values (g-values) hard to compress because of their
quasi-random distributions, the high entropy of these data
that results in rather high (undesirable) data compression
ratios (7,11,12,20). Although we have tried several
approaches to improve lossless g-value compression,
including an adaptive arithmetic coding approach (21)
that builds a statistical model per read position, we did
not reach significantly better compression rates over all
data sets in comparison with the general-purpose bzip2
algorithm (data not shown). We, therefore, currently do
not apply any value transformation [not even
diff-encoding or GapTranslating as advocated in (20)] in
our lossless mode, but we encode the raw data using bzip2
with parameter settings that result in its best compression
(i.e. using the -9° switch). With our data sets, bzip2
achieved compression rates of 1.8-3.7 bits/q-value,

PAGE 50F 12

which compares well with other reported numbers
[compare with (11,20)].

This rather bad compressibility of g-values is, however,
the current main challenge for our compression method,
which becomes clear when considering their large fractions
(82-97%) of the overall file sizes of losslessly compressed
data sets as shown in Table 1. It was, however, proposed
by several authors in the recent past that it might be
feasible to store g-values in a so-called lossy manner,
that is, to discard some information in favour of better
compression ratios (11,10,20).

Lossy ¢-value compression

A central step in most lossy data compression methods is
quantization. Quantization of g-values maps the set of
possible Phred quality values [e.g. 0-93 in Sanger format
(23)] to a smaller set of values, usually by binning.
Although this does not reduce the number of code
words that have to be encoded, it greatly enhances the
effect of subsequent probabilistic or dictionary-based
compression methods, as there are much smaller ranges
of possible code words. However, this loss of information
also affects the results of downstream applications that
make use of g-values, such as software for the removal
of polymerase chain reaction (PCR) duplicates, for
variant calling or for genotype prediction. It is a

Nucleic Acids Research, 2013, Vol. 41, No. 1 e27

common goal of lossy compression approaches to find a
good trade-off in this regard. There are many possible
g-value quantization schemas that differ in complexity
and in their influence on compression ratios and down-
stream effects. NGC uses a simple binning strategy that
maps all g-values that lie within an interval to some single
value within this interval (e.g. its upper or lower border).
Such possibly non-uniform quantization intervals should
be disjoint and should cover the whole range of input
values. Note that extreme cases of this approach are to
use a single interval that spreads the whole input value
range and, thus, assigns a single value to all g-values or
to use as many intervals as there are possible g-values,
which basically results in no quantization at all.

Our quantization method does not treat all g-values in
an alignment equally. It rather distinguishes between
g-values of bases that (i) match or mismatch the reference
sequences and (ii) reside in single- or multiallelic alignment
columns (i.e. columns that contain one multiple different
base characters in the read sequences). The resulting
four possible g-value categories (annotated in Figure 3)
are as follows:

e QI: g-values of bases that match the reference and
occur in columns where all bases match.

e Q2: g-values of bases that match the reference and
occur in multiallelic columns.

Q3 Q1
«ClERagas! B n n
3L
ZCAAACGCTCTGTTTGTAAAGTCTGTAAG TGGATATTCTGACATCTTGTGGCCTTCGTTGGAAACGG
o i = N I
@@ \ i
T = Nl
- A &1 al ii
c &l
15! I G
A ¢ i
: - : : AA
AG R ii
Ll il
L] Iml
A c o
A sl
A ¢] a
A E A c i lal
A T I
— L
Reseq/chr20 Reseq/hm Reseq Reseq Reseq Exome-seq RNA-seq ChiP-seq
(human) (human) (A. thaliana) (E. coli) (E. coli, PE) (human) (E. coli) (mouse)
Q1 counts | 3:873,164,564 61,831,496 303,452,695 491,077,181 42,556,735 256,925,783 31,453,173 472,315,173
Q2 counts| 807,325,823 119,513 109,224,800 204,412,364 4,388,981,896 65,240,735 188,284,057 21,246,748
Q3 counts 22,271,926 155,855 5,702,544 2,158,208 102,563,275 1,641,199 29,657,344 2,348,243
Q4 counts 1,582,569 324,201 1,089,650 6,578 294 113,933 3,625 1,769,643

Figure 3. Excerpt of an alignment to illustrate our VDRLE approach for read base compression. The figure is a modified screenshot of region
chr1:121484997-121485088 in the Reseq/hm (human) data set made with IGV 2.0.17 (22). It shows (from bottom to top): the reads with only the
bases that differ the mapping reference shown, INDELs are drawn as I-characters or horizontal lines [1], the mapping reference [2], variants called by
SAMTOOLS [3] and GATK [4], respectively. Our read sequence compression creates RLs by traversing this alignment columnwise (see text). The
present alignment could be encoded with 75 horizontal, but only 55 vertical, RLs. Note that in NGC, however, the reads would be sorted strictly by
coordinates; thus, the results would be slightly different. The marked bases/g-values are: Ql—bases that match the reference in columns that contain
no alternate allele; Q2/Q3—Dbases that match/mismatch the reference in multiallelic columns; Q4—bases that mismatch the reference in columns that
contain only one kind of alternate allele. The table below the figure lists the counts of the respective g-values in our evaluation data sets. It is notable
that in two data sets, the number of Q2 values exceeds the number of Q1 values significantly (printed boldface), which is ascribable to the respective
experimental settings.

PAGE 6 OF 12

e27 Nucleic Acids Research, 2013, Vol. 41, No. 1

sfetIeA Areyuowo[ddng o0s ‘4qoT i Jes eiep sty Suissardwod 10j ozis deoy WNWIXEU Ay} dSLAIOUT 01 PBY OM

Q038 yum passardwoo/-ap Afradord aq 10u pnod s3as BIBP ASAY L,

7S pue [S sojqe], Arejuoworddng ur papiaord o1e sopowr ASSO[[[B 10J sIoquunu 9In[osqy (3%} 993S) uoneINSYUOI ASSO[S, WLID

puE apowl Hw s,H)ON 10J sown pue soner uoissardwods saredwods 9[qe) a1 Jo UOIAS Woljoq Y] uoIssardwos/uorssardwosap ay) uunp parrasard a1om jey) s3e) paurejuod sy NV [[S19s
®IBP 2SI} Ul PIPN[OUI JOU dIIM SAWRU Pedy “(S[eLARA Arejudw(ddng ay) ur udAI3 Ik SOpowW SNOLIBA JY) 10 sidjowered aurpuewod) uoissaidwod Asso| pue ss9[sso] 10J QO3 pue weId ‘HON
Jo sowrn uoissardwodap/uoissarduiod pue (9zis passardwooun Aq papraIp passarduwiod -971) soner uoissardwod ay) saredwod pue $19s BJRP UONPBN[BAD INO FUIQLIISIP BIBP dwWos sapraoid d[qe) ay L

9/¢ T/l A vE/91 9/¢ s/t 1/1 95/LT £sso-wer)
11/ce LET/PT 76 Leley 9/t¢ 9/1¢T L/8 1L/%6 i DON
(urwr) (Assor) sowry dwooop/-dwo))
600 €00 S0°0 70 €00 01°0 80°0 SE0 £sso-wer)
90°0 200 €0°0 80°0 200 LO0 LO0 6C°0 W DON
soner uoIssarduwos Asso|
91/6 Ly s/e QOL1/S€1 0T/11 €1/8 v v £qon
8/¢ €/1 €/1 05/02 6/ 9/¢ 1/1 $9/9¢ we)
v1/8¢ TL/LY /Tl §5/68 01/1¢ 8/9¢C L/8 $6/0S1 ODN
(urwr) (ssorssof) sowry dwooap/-dwo))
99°0 €8°0 SLO 4S80 SLO Lo v £qoD
70 65°0 $9°0 8L°0 50 L¥0 S¥0 69°0 wer)
0r'0 $S°0 750 LSO 0S°0 70 €0 09°0 DON
soner uorssarduwos ssa[sso
98°0 L60 $6°0 680 L60 88°0 780 €5°0 (ssa[sso] DDN) azIs 9[Y [BI0) JO %, onjea-b
70 1L0 ¥9°0 99°0 #9°0 6v'0 SE0 170 (INVE) 971s 9]y [€10) JO o, onea-b
81°0 SLES 01°0 9T'8L6 LEOST I1s°¢ 200 6118 93e10A0D)
9¢ 9¢ 001 101 9¢ 9¢ 8Tl 101 (1BUS] PEAI OFEIGAY
01 X 86'% 01 X 61T O XFT°€ O X ¥+ 01 X 86'9 QI X 61 01 X$T9 OIXITS 1unood anjea-b/aseq
L€9 LLT 661 SY6T §S9 ¥0S € 898¢ (dN) °z1s WV
PP T8 €1 8TLLT69 LIT6ETE 1688€6 11 L8TG6LE 6L 6 1S9 11 10T L8% 690 €99 0S spear poaddey
(esnouw) (705 71) (wewny) (ad o>) (o2 o) (vupipyy ") (uewny) (uewny)
bas-qiyDH bas-vN ¥ bos-owoxyg basoy basoy basay wy/basay 0zIyo/basay

108 BJRp UONEN[BAT °T dqBL

http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1

PAGE 7 0oF 12

e Q3: g-values of bases that mismatch the reference and
occur in multiallelic columns.

e Q4: g-values of bases that mismatch the reference and
occur in columns where only this allele occurs.

Our general idea is that g-values of distinct categories have
also differing impacts on downstream analyses. For this
reason, our approach allows the application of different
quantization schemas to g¢-values of differing categories.
We propose, for example, to use more fine-grained sets of
quantization intervals for ¢g-values of substituted bases (Q3,
Q4) rather than for the ones that match the mapping ref-
erence, as the latter ones have much less impact on the
results of downstream applications as described later in
the text. Our tool further provides the possibility to ‘lock’
an arbitrary number of columns in the alignment, so that
the original ¢g-values will be retained in these positions. This
is useful, for example, in re-sequencing experiments where
users already know the positions of some (expected) vari-
ations beforehand. The counts of the four g-value
categories in our evaluation data sets are shown in the
table in Figure 3. These numbers reveal that Q1 and Q2
values of the categories are naturally much more frequent
than Q3 and Q4 values, which makes them the primary
targets of our quantization strategies.

NGC supports two modes for storing quantized
g-values. The first mode considers g-values in a horizontal
way and stores them to a simple byte stream. The second
mode traverses g-values vertically and stores them RLE
(comparable with the described VDRLE approach,
however, without the ‘diff-ing’ step). This latter mode
is more efficient when the majority of ¢-values are
quantized, which leads to long stretches of equal
g-values. Note that the resulting byte streams are subse-
quently compressed by some general-purpose
block-compression method in both cases.

The final compression ratio of our lossy compression
approach consequently depends on the present ¢-value

Table 2. Evaluation modes

Nucleic Acids Research, 2013, Vol. 41, No. 1 e27

distribution, the chosen interval-sets for the four g-value
categories, the partitioning of ¢-values into these
categories, an optional list of ‘locked’ alignment columns
and the chosen block compression mode.

Evaluation

To find reasonable trade-offs between quantization
strategies, resulting compression ratios and possible
downstream effects, we conducted a comprehensive ex-
periment. In this experiment, we compressed the data
sets listed in Table 1 using different combinations of
g-value quantization intervals. Then we decompressed
the data and used a pipeline of state-of-the-art tools to
call variants (SNPs, INDELS, etc.) and their predicted
genotypes in the obtained BAM files. This pipeline con-
tained steps for INDEL realignment, PCR duplicate
removal and various variant filtering steps (for details,
see Supplementary Materials). We further used two
wide-spread variant calling tools, namely GATK (18)
and SAMTOOLS (13) for variant and genotype predic-
tion. The resulting variant sets were then compared with
the ones found in the respective unquantized data sets that
served as our ‘gold standard’. We counted the number of
recovered (true positive), lost (false negative) and add-
itional (false positive) variants and the number of
variants that differed in their predicted genotype. We
further measured the compression ratio of the particular
approach, which is defined as the ratio between com-
pressed and uncompressed file size. Additionally, we
compared our tool with cram (http://www.ebi.ac.uk/ena/
about/cram_toolkit) and goby (http://campagnelab.org/
software/goby/), two tools that also compress SAM/
BAM files. Goby (we used its latest version v2.1)
supports only lossless compression. Cram is based on
the method described in (10) but was further developed,
in the meantime, and we used its latest available version
(v0.85) in our evaluation, treating it as an alternative lossy

Evaluation mode Ql Q2 Q3 Q4 RLE?

Low MAPQ filter

Known variants? Average % of recovered variants

Lossless No

ml Std Yes

m2 Std Std Yes

m3 30 Std Yes

m4 30 30 Yes
Cram-lossy 30 307

m5 30 30 Std Yes 20
Recovery Std Std Yes

Drop all 30 30 30 30 Yes

100.0
99.7
98.9
98.7
96.1
96.1
95.8
Yes 99.7
92.7

The columns ‘Q1-Q4’ list which quantization strategy was used for which kind of g-values. An entry ‘Std’ refers to the proposed standard binning
scheme that is explained in the text. The value ‘30’ means that the respective ¢g-values were dropped and assigned the constant value 30. The column
‘RLE? shows whether RLE was used for g-value compression; the ‘Low MAPQ filter’ column shows whether g-values of reads with a mapping
quality lower than the given value were dropped and the ‘Known variants’ column shows whether a set of known variants (the ones called in the
lossless data set) was used to lock g-values in the respective columns. The last column lists the achieved overall percentage of recovered variants.
Note that this measure neglects the false positive rates of the respective methods and refers to the recovery precision and sensitivity measures in
Figure 4 and to the Supplementary Tables S3-S5 for details in this regard. The ‘Cram-lossy’ mode in row 6 refers to the lossy configuration of cram
we evaluated against. All other modes were realized by configuring our NGC tool. Note that the configuration of the recovery mode in row 8 was
derived from the m2 mode.

“Note that cram-lossy preserves qualities of Q2 bases if there are two or more reads that differ from the reference at a particular column, which is a
slightly different behaviour than in NGC’s m4 mode where all Q2 g-values are quantized.

http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://www.ebi.ac.uk/ena/about/cram_toolkit
http://www.ebi.ac.uk/ena/about/cram_toolkit
http://campagnelab.org/software/goby/
http://campagnelab.org/software/goby/
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1

e27 Nucleic Acids Research, 2013, Vol. 41, No. 1

compression method. Cram enables users to preserve
g-values of various categories selectively. It allows, for
example, preserving only g-values of substituted bases or
of insertion regions.

This leads to a number of quantization strategies that
were evaluated by us as summarized in Table 2. We ba-
sically configured our tool to either quantize g-values by
simply assigning a single value to them (maximum com-
pression) or to use a simple ‘standard’ binning scheme:

g, q<2
;L _ 2, ¢qg<10
¢ = @) =0 45 g <29

30, otherwise

This schema was derived by studying the descriptions of
various SNP calling software that incorporate per-base
quality values in their calculations. Note, however, that
multiple other schemas might be useful and that an exten-
sive study of this regard is beyond the scope of this work.
For a direct comparison, we configured a mode (m4, sce
Table 2) that quantizes g-values as similar as possible to a
lossy configuration of cram (parameters given in
Supplementary Materials), called ‘cram-lossy’ in the re-
mainder of this article. We further configured a mode ‘re-
covery’, where NGC was provided the VCF file obtained
by calling variants with GATK in the unquantized data
sets. NGC then ‘locks’ the respective columns and pre-
serves its original g-values, and we were curious whether
this could significantly improve variant recovery. We add-
itionally configured one mode (m5) that maximized com-
pression by using the most restrictive quantization scheme
and additionally dropping all ¢g-values of reads with a low
mapping quality.

Other streams

For read positions (stream POS, Figure 1), we store the
differences to the previous position Golomb/Rice-encoded
as also proposed by other authors [compare with (9)]. We
estimate the Golomb-parameter by first calculating the
mean difference between two neighbouring read alignment
positions by sampling and then applying the method dis-
cussed in (24). It is noticeable that Golomb-codes may
result in long code words when encoding numbers that
are much larger than this parameter because of the
unary coding scheme used for encoding the quotient.
Such large ‘gaps’ between reads occur, for example,
between adjacent covered regions in exome sequencing
data. Long unary prefixes are, however, effectively com-
pressed by the subsequent block compression methods
(e.g. bzip2).

Read names (stream QNAME, Figure 1) are usually
systematic names that contain information, such as instru-
ment and flowcell identifiers, run numbers or x/y coord-
inates. For these names, we have developed a simple
encoder that looks for the longest common, stable prefix
of the last n reads; this prefix is then encoded only once
and for all read names, only the variable rest is stored until
a new prefix is found. Our simple method requires ~3-5
bytes per read name (see Supplementary Table S2);

PAGE 8 oF 12

however, this could be further optimized [compare with
(12) for an alternative approach]. We believe, however, the
information stored in these strings is rarely used after the
mapping phase, and consequently our tool enables users
to drop them. Decompressed files will then contain auto-
matically generated read names. When not dropped, read
names take up 8-19% of the file size in the losslessly com-
pressed evaluation data sets that increases up to 30-85%
when using lossy compression.

RESULTS

To verify that it results in less RLs when traversing an
alignment ‘vertically’ rather than ‘horizontally’, we have
counted the RLs in our evaluation data (see Figure 2). We
found considerably less code words when compared with a
‘horizontal’ approach (up to 50X less). Further, we com-
pressed all data sets with NGC and calculated how many
bits per encoded read base were used by its VDRLE
method. The results varied between 0.12 and 0.03 bits/
base (Supplementary Table S2), and we believe that
there is some potential left when optimizing the RLE
encoder. As the read stream accounts for only ~1-2%
of our total compressed file size; however, we focused on
a different stream that accounts for ~35-71% in the
original BAM files and for ~82-97% in our losslessly
compressed files: the per-base quality values.

Data compression, decompression and variant recovery

We evaluated how well the different g-value quantization
modes listed in Table 2 perform at preserving the variants
called in the nonquantized data sets with our pipelines.
For this, we compressed the data using the respective
quantization schemas, decompressed them and called
their variants in comparison with their mapping reference
sequence. The resulting variant sets were then compared
with the ones called in the respective unquantized data
sets. The results of our evaluation are summarized in
Figure 4 that contrasts the achieved compression ratios
with the precision and the sensitivity of the chosen quant-
ization strategy. It can be seen that our tool provides
lossless compression ratios between ~0.3-0.6, which cor-
responds to space savings of 40-70%. We compared these
measures with the lossless compression ratios of cram and
goby, absolute numbers and a comparison are given in
Table 1.

The compression ratios of the lossy modes depend
mainly on the used quantization schemas for QI1-Q4
values. A comparison of m4 and cram-lossy reveals that
we provide a more efficient lossy compression than the
cram tool (Table 1) when we configure both tools to ba-
sically quantize the same g-values (although it has to be
noted that cram-lossy preserves qualities of Q2 bases if
there are two or more reads that differ from the reference
at a particular column, which is a slightly different behav-
iour than in NGC’s m4 mode where all Q2 g-values are
quantized). The precision and sensitivity analysis also
reveals to what extent g-value quantization has to be
paid in terms of false positives and negative calls.
Precision (aka positive predictive value) measures the

http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1

PAGE9 oF 12
Compression ratios (NGC/cram-lossy)
0.7-
0.6-
0.5+
0.4-
0.3-
0.2-
0.1-
0.0-
| 1 I | 1 1 | I 1
lossless m1 m2 m3 m4 cram-l m5 recov dropall
Genotype preservation ratio [%] (average)

1.00- =

-=- ChiP-seq(mouse)

-6~ Exome-seq(human)
0.99- -7~ Reseq(a.thaliana)

—=— Reseq(e.coli)
—*— Reseq(e.coli,PE)
Reseg/chr20(human)
—+— Reseg/hapmap(human)

0.98- —o- RNA-seq(e.coli)

1
cram-l m5

1 | 1 1 1 | 1
lossless m1 m2 m3 m4 recov dropall

Nucleic Acids Research, 2013, Vol. 41, No. 1 e27

Variant recovery sensitivity [%] (average)
1.00-

0.98-
0.96 -
0.94 -
0.92-

0.90-

0.88 -

[!
cram-| m5

1 1 I I 1
lossless m1 m2 m3 m4 recov dropall

Variant recovery precision [%] (average)
1.00-
0.98 -
0.96 -
0.94-
0.92-
0.90-
0.88-
0.86-
0.84-

0.82- (| | | |
lossless m m2 m3 mé

I 1 b 1
cram-l m5 recov dropall

Figure 4. Evaluation data. The upper-left figure compares the compression ratios of the different modes for the used evaluation data sets (cram-1
refers to the used cram-lossy mode). The absolute byte sizes and the compression ratios of the decompressed BAM files can be found in the
Supplementary Table S2. Note that the Reseq/chr20 (human) BAM files are less compressible, as they contain large sections of optional BAM tags
(compare with Supplementary Materials). The figures on the right side show the variant recovery precision and sensitivity averaged over the data we
obtained by applying two different variant-calling tools (GATK and SAMTOOLS). We omitted the data for the ‘drop all’ mode in these two figures
for readability, as the corresponding values would require a much larger scale. The lower-left figure shows how many of the re-found variants (i.e. the
true positives) did not change their predicted genotype classification, either from homozygous to heterozygous or vice versa. All absolute data values
and the used command-line parameters are given in the Supplementary Materials. Please note the differing scales of the y-axes in the four figures.

ratio between true positives and positive calls, sensitivity
(aka recall rate or true positive rate) measures the ratio
between true positives and the sum of true positive and
false negatives (see Supplementary Materials). One
extreme is the ‘drop all’ mode that simply replaces all
g-values by a fixed value (data given in Supplementary
Tables S3-S5). This mode primarily leads not only to a
large number of false positive variant calls but also to
much higher false positive rates than all other modes
and consequently to low precision/sensitivity measures.
Our proposed mode ml (quantizing only QI values)
results in high and stable (over all data sets) precision
and sensitivity rates while considerably lowering the
achieved compression ratios in comparison with lossless
compression. The outliners for the m1 compression ratios
can be explained when considering that the number of
Q2 bases exceeds the number of QI bases for the
RNA-seq (E. coli) and the Reseq (E. coli, PE) data sets
(compare with Figure 2). This means that there are few
columns that completely match the reference sequence,
which is unfavourable for RLE that was used for this
mode.

Better compression with slightly higher counts of false
positives/negatives is achieved with m2, which uses our
proposed quantization scheme fy.,; for Q1 and Q2
bases. M4 basically quantizes the same g¢-values as
cram-lossy but results in better compression, m3 lies

between m2 and m4 in most measures. M5 provides
maximum compression, which is, however, near the
ratios achieved by m4. The recovery mode was configured
equal to m2 but here we additionally passed the set of
variants called from the respective lossless data set as
parameter and did not quantize g-values at these pos-
itions. This resulted in only slightly worse compression
but could increase precision and sensitivity for most
data sets. For some, however, precision slightly dropped
[e.g. Reseq (E. coli)].

Finally, we were interested in how well the individual
quantization modes ‘preserved’ the predicted genotype of
called variants. For this, we used GATK’s method to
classify each found variant as homozygous, heterozygous
or unknown. Then we counted how many of the variants
that were redetected after compression/decompression
with the respective quantization method (i.e. the true posi-
tives) changed their classification from homozygous to
heterozygous or vice versa. In Figure 4, we plotted the
percentage of these ‘preserved’ variants in the true posi-
tives. Not surprisingly, methods with the lowest compres-
sion ratios lead not only to more false positives and
negatives but also to more variants with wrongly predicted
genotypes, which might be an issue for use cases where
these data is considered (e.g. when searching for
loss-of-heterozygosity regions). It can also be observed
that the recovery mode performed well in preserving

http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1

e27 Nucleic Acids Research, 2013, Vol. 41, No. 1

these classifications, and it outperforms its nearest com-
parable mode (m2).

Computing times

We compared the compression and decompression times
of NGC with cram and goby and list the times in Table 1.
NGC is considerably slower than cram in both categories,
although the differences are smaller when considering de-
compression. We attribute this mainly to the following
two reasons: first, the VDRLE approach is much more
time consuming when compared with traversing an
ordered alignment read-by-read. Second, we have not
yet optimized our tool in this regard, as we consider it
as an archiving solution where computing times may not
be the primary issue when they stay within practically
useful limits. Although efficiently computing the com-
pressed data may not be an issue, it is certainly helpful
if the decompression of data is fast, and here, NGC is not
substantially worse than cram and even faster than goby
except for the RNA-Seq (E. coli) data set. The lossy com-
pression/decompression modes of NGC and cram are
commonly faster when compared with the respective
lossless modes [Table 1, again, RNA-Seq (E. coli) being
a considerable exception where the decompression times
nearly doubled for NGC]. For some data sets, NGC’s
lossy modes compressed twice as fast and decompressed
66% faster (absolute times are given in the Supplementary
Tables S1 and S2).

DISCUSSION

Continuously dropping costs per sequenced genome and
technology advances, such as longer read lengths and
shorter sequencing durations, will result in enormous
amounts of data directly associated with HTS experi-
ments. This issue cannot be ignored by referring to the
also dropping costs per byte of secondary/tertiary
storage as (i) the rate at which sequencing data is
produced already overtook the rate of storage production
(2,3); (i1) it is not only the data storage but also their
increasing transmission, for example, between nodes in a
cluster-/cloud-computing environment, between storage
servers/long-term archives in a research facility or
between research centres through the Internet, which
imposes a challenge; (iii) data transmission leads in
many cases also to data redundancies (e.g. cached parts,
data copies) that further enlarge this ‘sequence data heap’.
All this will constitute a major bottleneck for HTS experi-
ments in the future that can partly be widened when
reducing file sizes by data compression.

Our proposed solution for the compression of SAM/
BAM files contributes two major improvements to the
state of the art. First, we propose a way to exploit
common features of reads mapped to the same position
to reduce the required number of code words. Second, we
propose a model for the controlled lossy compression of
per-base quality values that enables a comprehensive con-
figuration of the trade-off between low compression ratios
and high variant recovery rates.

PAaGe 10 oF 12

Lossless compression with NGC may save between
one-third and two-thirds of the disc space required for
such alignment files, depending on characteristics of the
input data. With lossy compression, however, we reach
space savings up to 98%. In this article, we contribute a
novel method for the compression of read bases in
mapped alignments that encodes read bases losslessly
using 0.12-0.03 bits/base. We achieve this by representing
read bases in a vertical (per-column) way as also done by
previous data formats, such as CALF (25) or the Ensembl
Multi Format (EMF). However, different from those, we
exploit common features between reads mapped to the
same genomic position to reduce the number of required
code words.

We further contribute a novel approach for the lossy
compression of per-base quality values. These quality
values account for up to 97% of the used disc space in
our losslessly compressed files, which can be reduced to
2-33% with our proposed lossy modes. Note that our idea
of VDRLE could also be used to compress whole sets of
alignments that were mapped to the same genome (e.g.
stemming from multiple resequencing experiments or
from metagenomics analyses), and we plan to elaborate
on this in future research. One possible improvement of
our VDRLE approach is to further enhance the clustering
of equal bases in (deep) alignment columns by applying a
Burrows—Wheeler transform to them, compare with (26).

Lossy compression means a controlled loss of informa-
tion that usually affects downstream data handling
methods. Kozanitis et al. (11) have already shown that
their model of lossy g-value representation shows only
little impact on SNP calling with CASAVA, and
somewhat comparable, yet in a more elaborated manner,
we evaluated various g-value quantization strategies to
find optimal trade-offs between compression rates and
variant recovery. Different from this study, we used a
more complex variant calling pipeline for evaluation that
included INDEL realignment, duplicate removal and two
widely adopted variant calling tools, namely GATK and
SAMTOOLS. The idea of our proposed lossy modes is to
preserve maximum precision in those parts of the data
that are of high relevance to downstream applications.
Variant-calling or genotype prediction software, for
example, considers an alignment and its ¢-values also pos-
itionwise and will benefit from the maintained q-value
characteristics in such columns. Note, however, that
variant recovery in our evaluation depends not only on
the actual variant calling tool but also on upstream
processes that are influenced by g-values, such as the
PCR duplicate removal.

Our evaluation showed that NGC outperforms the
comparable cram and goby approaches with respect to
lossless and lossy compression. Note that the BAM files
resulting from decompression of our lossy compressed
alignments are also considerably (up to 5X) smaller than
the originals. This is because quality quantization will
result also in improved compression of BAMs gzip
blocks. These BAM files are, however, still considerably
larger than the corresponding NGC files (see
Supplementary Table S2).

http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1

PaGe 11 0F 12

The configurability of our tool further allows for lossy
g-value quantization approaches that outperform
cram-lossy with respect to higher variant recovery and
higher genotype preservation rates (e.g. ml or m?2).
Furthermore, cram currently suffers from not being able
to reconstruct original read names (as of August 2012, the
latest version of cram (v0.9) is also able to compress read
names), whereas our tool can reconstruct BAM align-
ments completely, including the original file headers and
all optional tags, and is independent of additional data,
such as BAM index files. The current version of cram is,
however, considerably faster than our tool when we
compress data. Further, our data format does not allow
efficient random access to portions of its data, as proper
index structures are currently missing. As our tool was
designed for archiving of BAM files, we do not consider
this as a major obstacle for its application; we do,
however, plan to improve NGC in this regard. Our
g-value quantization methods also outperform the value
transformation proposals in (20), who report compression
rates of ~1 bit/q-value for a data set we also used in our
evaluation. Other related work to NGC is the cSRA
format that stores compressed-by-reference alignments in
the Sequence Read Archive (3), SAMZIP (12), a tool that
is specialized to compress whole SAM/BAM files but does
not allow lossy compression and SlimGene (11) that
compresses reads in the Illumina Export format.

Unmapped reads

As other reference based encoding methods, our proposed
approach for sequence data compression cannot be
applied to unmapped reads. We, therefore, currently
store those in an own file block encoded in the original
BAM format. We do, however, quantize their g-values in
lossy compression modes (for this purposes, an own
quantization scheme can be defined, i.e. an additional
fiftth g-value category was added). Fritz et al. (10)
proposed the assembly of contiguous sequences in such
unmapped reads to which these could then be mapped;
however, their method resulted in additional mapping of
only ~15% of those reads and consequently achieves only
limited improvement of compression ratios.

CONCLUSIONS

The current development in the area of HTS data com-
pression might, to some extent, be comparable with the
situation of multimedia research shortly before audio,
video and image capturing devices became available to
the mass market; the application of the whole arsenal of
available data compression algorithms led to the develop-
ment of novel, specialized, lossless and lossy (e.g. JPEG or
MP3) compression algorithms that ultimately enabled
further progress in the development of capturing devices.
It is our belief that efficient HTS data compression algo-
rithms will play a comparable role in the field of nucleic
acid sequencing. In this article, we presented one such
solution for reducing the enormous data heap that is
associated with today’s HTS experiments.

Nucleic Acids Research, 2013, Vol. 41, No. 1 €27

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1-5 and Supplementary Materials.

ACKNOWLEDGEMENTS

The authors wish to thank Heng Li and one anonymous
reviewer for their valuable comments and suggestions that
helped to improve the manuscript.

FUNDING

Wiener Wissenschafts-, Forschungs- und Technologie-
fonds (WWTF) in part. Funding for open access charge:
CIBIV household budget.

Conflict of interest statement. None declared.

REFERENCES

1. Pinho,A., Pratas,D. and Garcia,S. (2011) GReEn: a tool for
efficient compression of genome resequencing data. Nucleic Acids
Res., 40, e27.

2. Kahn,S. (2011) On the future of genomic data. Science, 331,
728-729.

3. Kodama,Y., Shumway,M. and Leinonen,R., International
Nucleotide Sequence Database Collaboration (2012), The
sequence read archive: explosive growth of sequencing data.
Nucleic Acids Res., 40, D54-D56.

4. Cao,M., Dix,T.I., Allison,L. and Mears,C. (2007) 4 Simple
Statistical Algorithm for Biological Sequence Compression, Data
Compression Conference (DCC ’07), pp. 43-52.

5. Wang,C. and Zhang,D. (2011) A novel compression tool for
efficient storage of genome resequencing data. Nucleic Acids Res.,
39, e45.

6. Tembe,W., Lowey,J. and Suh,E. (2010) G-SQZ: compact
encoding of genomic sequence and quality data. Bioinformatics,
26, 2192-2194.

7. Deorowicz,S. and Grabowski,S. (2011) Compression of genomic
sequences in FASTQ format. Bioinformatics, 27, 860-862.

8. Bhola,V., Bopardikar,A., Narayanan,R., Lee,K. and Ahn,T.
(2011) No-Reference Compression of Genomic Data Stored in
FASTQ Format. Proceedings of the 2011 IEEE International
Conference on Bioinformatics and Biomedicine. IEEE Computer
Society, Los Alamitos, CA, USA, pp. 147-150.

9. Daily,K., Rigor,P., Christley,S., Xie,X. and Baldi,P. (2010) Data
structures and compression algorithms for high-throughput
sequencing technologies. BMC Bioinformatics, 11, 514.

10. Fritz,M., Leinonen,R., Cochrane,G. and Birney,E. (2011) Efficient
storage of high throughput DNA sequencing data using
reference-based compression. Genome Res., 21, 734-740.

11. Kozanitis,C., Saunders,C., Kruglyak,S., Bafna,V. and Varghese,G.
(2011) Compressing genomic sequence fragments using SlimGene.
J. Comput. Biol., 18, 401-413.

12. Sakib,M.N., Tang,J., Zheng,J. and Huang,C.T. (2011) Improving
transmission efficiency of large sequence alignment/map (SAM)
files. PLoS One, 6, ¢28251.

13. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N.,
Marth,G., Abecasis,G. and Durbin,R. (2009) The sequence
alignment/map format and SAMtools. Bioinformatics, 25,
2078-2079.

14. SAM: SAM Format Specification (v1.4-r985) http://samtools.
sourceforge.net/SAM1.pdf. (10 June 2012, date last accessed).

15. Brandon,M., Wallace,D. and Baldi,P. (2009) Data structures and
compression algorithms for genomic sequence data.
Bioinformatics, 25, 1731-1738.

16. Christley,S., Lu,Y., Li,C. and Xie,X. (2009) Human genomes as
email attachments. Bioinformatics, 25, 274-275.

17. Li,H. and Durbin,R. (2010) Fast and accurate long-read
alignment with Burrows-Wheeler transform. Bioinformatics, 26,
589-595.

http://nar.oxfordjournals.org/cgi/content/full/gks939/DC1
http://samtools.sourceforge.net/SAM1.pdf
http://samtools.sourceforge.net/SAM1.pdf

e27 Nucleic Acids Research, 2013, Vol. 41, No. 1

18.

19.

20.

21.

22.

McKenna,A., Hanna,M., Banks,E., Sivachenko,A., Cibulskis, K.,
Kernytsky,A., Garimella,K., Altshuler,D., Gabriel,S., Daly,M.

et al. (2010) The genome analysis toolkit: a MapReduce
framework for analyzing next-generation DNA sequencing data.
Genome Res., 20, 1297-1303.

Giancarlo,R., Scaturro,D. and Utro,F. (2009) Textual data
compression in computational biology: a synopsis. Bioinformatics,
25, 1575-1586.

Wan,R., Anh,V. and Asai,K. (2012) Transformations for the
compression of FASTQ quality scores of next generation
sequencing data. Bioinformatics, 28, 628-635.

Witten,I., Neal,R. and Cleary,J. (1987) Arithmetic coding for data
compression. Commun. ACM, 30, 520-540.

Thorvaldsdottir,H., Robinson,J. and Mesirov,J. (2012) Integrative
Genomics Viewer (IGV): high-performance genomics data

23.

24.

25.

26.

PAGE 12 0F 12

visualization and exploration. Brief. Bioinform., April 19
(d0i:10.1093/bib/bbs017; epub ahead of print).

Cock,P., Fields,C., Goto,N., Heuer,M. and Rice,P. (2010) The
Sanger FASTQ file format for sequences with quality scores, and
the Solexa/Illumina FASTQ variants. Nucleic Acids Res., 38,
1767-1771.

Kiely,A. (2004) Selecting the golomb parameter in rice coding. IPN
Progress Report. Jet Propulsion Laboratory.

Green,P. (2008) CALF (Compact ALignment Format), Version
0.081113. University of Washington, http://www.phrap.
org/phredphrap/calf.pdf. (23rd July 2012, date last accessed).
Cox,A., Bauer,M., Jakobi,T. and Rosone,G. (2012)

Large-scale compression of genomic sequence databases

with the Burrows-Wheeler transform. Bioinformatics, 28,
1415-1419.

XPath error Undefined namespace prefix
XPath error Undefined namespace prefix

