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Background: Invasion and metastasis of cervical cancer are the main factors affecting
the prognosis of patients with cervical squamous cell carcinoma (CESC). Therefore, it is
of vital importance to find novel biomarkers that are associated with CESC invasion and
metastasis, which will aid in the amelioration of individualized therapeutic methods for
advanced patients.

Methods: The gene expression profiles of 10 metastatic and 116 non-metastatic
samples were downloaded from The Cancer Genome Atlas (TCGA), where differentially
expressed genes (DEGs) were defined. Weighted gene correlation network analysis
(WGCNA) was employed to identify the stemness-related genes (SRGs). Univariate and
multivariate regression analyses were used to identify the most significant prognostic key
genes. Differential expression analysis of transcription factor (TF) and Gene Set Variation
Analysis (GSVA) were utilized to explore the potential upstream regulation of TFs and
downstream signaling pathways, respectively. Co-expression analysis was performed
among significantly enriched TFs, key SRGs, and signaling pathways to construct a
metastasis-specific regulation network in CESC. Connectivity Map (CMap) analysis was
performed to identify bioactive small molecules which might be potential inhibitors for the
network. Additionally, direct regulatory patterns of key genes were validated by ChIP-seq
and ATAC-seq data.

Results: DEGs in yellow module acquired via WGCNA were defined as key genes
which were most significantly related to mRNAsi. A multivariate Cox regression model
was constructed and then utilized to explore the prognostic value of key SRGs by risk
score. Area under curve (AUC) of the receiver operating characteristic (ROC) curve was

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1

March 2021 | Volume 9 | Article 642724


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.642724
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.642724
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.642724&domain=pdf&date_stamp=2021-03-25
https://www.frontiersin.org/articles/10.3389/fcell.2021.642724/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Guo et al.

Metastasis-Specific SRGs in CESC

0.842. There was an obvious co expression pattern between the TF NR5A2 and the
key gene VIM (R = 0.843, p < 0.001), while VIM was also significantly co-expressed
with hallmark epithelial mesenchymal transition (EMT) signaling pathway (R = 0.318,
p < 0.001). Naringenin was selected as the potential bioactive small molecule inhibitor
for metastatic CESC based on CMap analysis.

Conclusions: VIM positively regulated by NR5A2 affected EMT signaling pathways
in metastatic CESC, and naringenin was the inhibitor for the treatment of metastatic
CESC via suppressing cancer stemness. This hypothetical signaling axis and potential
inhibitors provide biomarkers and novel therapeutic targets for metastatic CESC.

Keywords: cervical cancer, cancer stemness, metastasis, prognosis, naringenin, epithelial mesenchymal

transition

INTRODUCTION

Cervical cancer refers to the second most prevalent gynecological
cancer (Barth, 2020), being a major cause of women mortality
(Small et al., 2017). As per the World Health Organization
(WHO), about 530,000 women worldwide develop cervical
cancer, and more than 270,000 women die from it every
year (Lahue et al, 2015). Among all cervical cancers, the
cervical squamous cell carcinoma (CESC) and endocervical
adenocarcinoma (CESC) account for approximately 15%
of female tumor deaths, presenting the second-highest
mortality (Ojesina et al., 2014). Squamous cell carcinomas
are most likely to arise from the ectocervix, accounting for
about 75% of the invasive cervical carcinoma cases, while
tumors arising from the endocervix are most likely to be
adenocarcinomas. Tumor invasion and metastasis are the major
factors affecting the prognosis of patients diagnosed with
cervical cancers (Long, 2007; Kisseljov et al., 2008). Under most
circumstances, patients have already progressed into moderate
and advanced stages when diagnosed. Primary therapeutic
methods for patients with cervical cancers include surgery
or a concurrent chemoradiotherapy regimen that consists
of cisplatin chemotherapy with brachytherapy and external
beam radiotherapy (Small et al, 2017). Satisfactory results
have been achieved with clinical trials including the human
papillomavirus (HPV) vaccines, adoptive T-cell therapy, and
checkpoint inhibitors (Paovonen et al., 2009; Small et al., 2017).
With state of the art treatment, the 3 years local control rate of
early-stage CESC patients is 87-95%. However, once patients
develop local invasion and distant metastasis, the survival rate
of which is significantly reduced, accompanied by increasing
complications and the loss of radiotherapy opportunities.
Hence, it is important to find novel biomarkers that are
associated with CESC invasion and metastasis, which will aid
in the amelioration of individualized therapeutic methods for
advanced patients.

Cancer stemness cells (CSCs) are appealing targets for
cancer therapy due to their self-renewal and multi-lineage
differentiation abilities, which drive tumor growth and
heterogeneity (Ayob and Ramasamy, 2018). CSCs exhibit
more aggressive behaviors than normal cancer cells, thereby
promoting tumor invasion and metastasis (Lopez et al., 2012;

Afify and Seno, 2019). It has been recently reported that the
recurrence and radio/chemotherapy resistance of cervical cancer
are owing to the presence of CSCs (Kim et al., 2012b; Ayob and
Ramasamy, 2018). CSCs lead to genetic heterogeneity in cervical
cancers, thereby reducing the effects of conventional anticancer
therapies and facilitating the process of tumor invasion and
metastasis (Cooke et al., 2011; Ortiz-Sanchez et al., 2016).
In this clinical context, targeting CSCs can contribute to a
better therapeutic outcome for CESC, whereas the research
is not enough on this topic (Sato et al, 2016; Choi et al,
2021). Therefore, this study is innovative in stemness-related
CESC biomarkers and individualized therapeutic methods.
The prognosis of CESC was expected to be improved if the
stemness-related signaling axes were found and affected by
molecular targeted drugs.

Using stemness indices, an algorithm (Flemming, 2015;
Malta et al,, 2018) was designed to evaluate the similarity
between cancer cells and stem cells. At the same time,
mRNAsi is an index computed according to the molecular
profiles of cell types with different degrees of stemness. Higher
mRNAsi score is correlated well with activated biological
processes in CSCs and stronger dedifferentiation capability,
as reflected by clinical stages and histopathological grades.
Hence, mRNAsi aids us in understanding the purity of tumor.
RNA sequencing (RNA-seq) data and clinical information of
CESC samples were acquired from The Cancer Genome Atlas
(TCGA) database (Hutter and Zenklusen, 2018) to calculate
the mRNAsi score.

Weighted gene correlation network analysis (WGCNA)
is a systems biology method to identify gene association
patterns. Based on mRNAsi and WGCNA, genes that had
the strongest CESC-related correlation were screened out.
Then, an independent prognostic model and a stemness-related
gene (SRG) regulatory network for CESC were constructed.
Importantly, transcription factors (TFs) binding information
were crucial for understanding how genes were regulated,
therefore Chromatin immunoprecipitation sequencing (ChIP-
seq) analysis was performed to determine the direct regulatory
pattern between TFs and key genes. Its related mechanisms were
explored using the Assay for Transposase-Accessible Chromatin
with high-throughput sequencing (ATAC-seq) analyses.
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MATERIALS AND METHODS

Data Collection

RNA-seq expression profiles of 126 CESC samples were obtained
from TCGA database'. Gene names were replaced from
Ensemble IDs to gene symbols using the Ensemble database’. We
also extracted demographic information (age, gender, ethnicity,
and so on), survival endpoint (days to death, vital status, and
days to last follow-up), clinical stage, and histological type of
these samples. In addition, samples with incomplete clinical
information were excluded.

Acquisition of the mRNAsi

Based on the normalized gene expression profiles, mRNA
stemness index (mRNAsi) of each sample was computed using
one-class logistic regression machine learning (OCLR) machine-
learning algorithm (Malta et al, 2018). The mRNAsi was
represented using an index between zero to one to indicate that
the higher the mRNAsi, the greater the tumor dedifferentiation
and higher activity of cancer stem cells.

Differentially Expressed Genes

Identification and Functional Annotation
The “edgeR” package was utilized to identify differentially
expressed genes (DEGs) between metastasis and non-metastasis
samples (Robinson et al, 2010). The absolute value of
log2 Fold Change (FC) > 1.0 and False Discovery Rate
(FDR) value < 0.05 were the screening criteria for DEG
selection. Moreover, heat maps and volcano plots of DEGs
were constructed using the limma and heat map packages
(Ritchie et al.,, 2015). In addition, Gene Oncology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) functional
enrichment analyses were performed to explore the signaling
pathways where DEGs were enriched using the “cluster Profiler”
R package with thresholds of p < 0.01 and FDR < 0.05
(Yuetal, 2012).

Quantification of Hallmarks of Cancer
Gene Sets by GSVA

In total, 50 hallmarks of cancer pathways were obtained from the
Molecular Signatures Database (MSigDB) v7.0° (Liberzon et al.,
2015). The absolute quantification of these hallmark pathways
was evaluated via Gene set variation analysis (GSVA) to select
differentially expressed pathways between non-metastatic and
metastatic samples.

WGCNA

Construction of the Co-expression Network

A co-expression network demonstrating the correlations among
DEGs, mRNAsi, and hallmarks of cancers was constructed
with the WGCNA R package (Langfelder and Horvath,
2008). Initially, we removed genes with large deletions and

'https://tcga-data.nci.nih.gov
*http://asia.ensembl.org/index.html
Shttps://www.gsea-msigdb.org/gsea/msigdb/index.jsp

outliers by filtering RNA-seq data. Next, we performed a co-
expression analysis of pair-wise genes using Pearson correlation
coefficients. Subsequently, as described earlier, the weighted
adjacency matrix was constructed based on the power function:
ay = | sij| p (sij = Pearson correlation between gene i
and gene j; amp, = the weighted network adjacency between
gene i and gene j; B > 1). We selected a suitable value
of B to enhance the similarity of the matrix. Moreover, in
order to better investigate gene connectivity in this network,
we converted the adjacency matrix to a topological overlap
matrix (TOM). Eventually, an average linkage hierarchical
clustering with TOM-based heterogeneity was performed to
build module dendrograms.

Screening of Key Genes in Modules

We deliberated the relationship between the modules and
hallmarks of cancer as well as mRNAsi score in which
mRNAsi and hallmarks of cancer were used as clinical
phenotypes for further analysis. Gene significance (GS) was
computed to evaluate the correlation between sample traits
and genes. Likewise, the correlations between modules and
sample traits were defined as module significance (MS) via
computing the average absolute GS of genes from the relevant
modules. Additionally, module eigengenes (MEs) were the
central components of module genes, which were representatives
of the gene expression profiles. To assess the correlation
degree of each gene and ME, Module Membership (MM)
was computed to evaluate the correlativity between gene
expression profiles and MEs. Pearson’s correlation analysis was
performed for evaluation of the correlations among MEs, MM,
and sample traits.

To identify SRGs, mRNAsi was primarily considered as the
phenotype of interest. Pre-determining cutoffs standards were
defined as cor. gene GS > 0.3 and cor. gene MM > 0.3.
Hence, module with a comparatively high MS was suggested
as the key module and was preserved for identification of
SRGs ulteriorly. Additionally, hallmark pathways which were
noteworthily correlated with the key module were considered
as biological processes or putative pathways, mediating SRGs to
function. Hallmark pathways with p value < 0.05 and correlation
coefficient with the key module > 0.05 were statistically
significant. Furthermore, the selected Hallmark pathways were
preserved for further analysis.

Identification of Prognostic Key Genes

and Construction of Prognostic Model

Univariate Cox analysis was conducted to screen significant
key genes, which were incorporated into an initial multivariate
Cox regression model. Further, the Least Absolute Shrinkage
and Selection Operator (LASSO) regression was utilized to filter
the independent variables with great significance and reduce
over-fitting phenomenon (Subramanian et al., 2017). Moreover,
the variables were incorporated into the final multivariate Cox
regression model. In addition, accuracy of this model was
assessed by receiver operator characteristic (ROC) curve. Further,
for each CESC sample, the risk score was computed on the
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gene expression level, and the formula (Uhlen et al, 2015)
is as follows:

Risk score = Pl x genel + P2 X gene2 + f3
x gene3...... + PBnxgene n

Specifically, the order number of relevant gene in the model
was defined as “n) regression coeflicient of a gene was
defined as “B) and gene, indicated expression level of the
nth key gene for each sample, correspondingly.

Moreover, according to the median risk score, samples were
categorized into low and high risk group. Kaplan-Meier curve
was used to test the prognosis value of the multivariate model.
Then, the risk curve and scatter plot were constructed to
reorder these samples. In addition, multivariate Cox analysis was
rectified by demographics and tumor information to evaluate the
prognostic value of the risk score in relation to age, TNM stage,
and clinical stage.

Identification of the Upstream TFs

318 cancer related TFs were retrieved from the Cistrome
database* (Zheng et al, 2019). Further, we conducted co-
expression analysis to identify the upstream TFs which
were significantly correlated with the key genes. TFs with
correlation coefficients greater than 0.50 were extracted for
subsequent analysis.

Identification of the Downstream

Signaling Pathways

As discussed above, GSVA was performed to quantify the 50
hallmarks of cancer gene sets in each sample. In addition,
Gene Set Enrichment Analysis (GSEA) was also employed to
calculate Fragments Per Kilobase per Million (FPKM) from
the raw RNA-seq data with 50 hallmarks of cancer. In order
to identify the hallmarks of cancer that were significantly
correlated with the module we focused on as potential
downstream pathways, differential expression analysis was
utilized. Specifically, significant hallmarks of cancer differently
expressed between metastasis and non-metastasis were extracted
for further analysis, where FDR value < 0.05 was set
as a screening criterion. Moreover, the intersection of the
hallmarks of cancer acquired via significantly differential
expression analysis in GSVA and WGCNA were eventually
defined as the potential downstream signaling pathways for
subsequent analysis.

Regulatory Network of TFs, Key Genes
and Hallmarks of Cancer

Co-expression Pearson correlation analysis was conducted based
on TFs, SRGs, and Hallmark gene sets. And a regulatory network
of the three components mentioned above was constructed using
Cytoscape (3.7.1). Interaction pairs between SRGs and TFs and
hallmark gene sets were controlled for | correlation coefficient|
> 0.40, p value < 0.05 and | correlation coefficient|] > 0.30, p
value < 0.05, respectively.

*http://cistrome.org/

Connectivity Map Analysis

Connectivity Map (build 02) (CMap) was used to explore
small-molecule compounds which may target cancer SRGs. The
CMap® gather up genomic signatures for researchers to identify
potential compounds for tumor therapeutics (Lamb et al., 2006;
Subramanian et al., 2017).

The mechanism of actions (MoA)® of target compounds
were securable in the CMap database, including compounds
(perturbation) information, such as transcriptional responses
of human cells to perturbagens, protein target, and structural
formula. Based on the MoA, compounds which may target TFs,
SRGs, and Hallmark gene sets in this study were extracted for
further validation.

Validation of the Regulatory Mechanism

of Transcription Factors

We performed two algorithms [JASPAR (Khan et al., 2018) and
ENCODE (2011) TF Targets] to re-predict the transcriptional
regulation pattern between key upstream TFs and SRGs to
further undergird our hypothesis. ChIP-seq data in the Cistrome
database’ (Zheng et al., 2019) were used to validate the
transcriptional regulatory relationships of the pair-wise genes
mentioned above.

ATAC-seq Validation

Initially, we downloaded the ATAC-seq data of CESC samples
from the TGCA project of chromatin accessibility landscape
of primary human cancers® and identified the chromatin
accessibility in the location of these biomarker genes (Corces
et al, 2018). Furthermore, we further verified the binding
relationship via comparing with control groups, which was
achieved using the Gviz package and based on the original ATAC-
seq data and ChIP-seq data in Cistrome database (Hahne and
Ivanek, 2016; Li et al., 2019).

External Validation and Gene Sets Over

Representation Analysis
Gene expression profiles of 19 cervical cancer patients with
positive lymph nodes (N+) and 20 patients with negative (NO)
were downloaded from GSE26511 (Gene Expression Omnibus,
GEO)’ (Noordhuis et al., 2011). DEGs between metastasis
and non-metastasis samples were identified using the “edgeR”
package (Robinson et al., 2010). The absolute value of log2 Fold
Change (FC) > 1.0 and False Discovery Rate (FDR) value < 0.05
were the screening criteria for DEG selection. In addition, a
volcano plot of DEGs was constructed using the limma packages
(Ritchie et al., 2015).

Gene sets over-representation analysis (GSORA), a common
technique of enrichment analysis, evaluates the fraction of
interested genes (e.g., DEGs) which belong to tested clusters

Shttps://portals.broadinstitute.org/cmap/

Chttp://clue.io/

“http://cistrome.org/
8https://gdc.cancer.gov/about-data/publications/ ATACseq- AWG
“https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26511
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(e.g., hallmark signaling pathways). In the present study,
49 CESC-related hallmark signaling pathways obtained from
the MSigDB were categorized into nine clusters based on
similar functional characteristics, including cluster CI1 to
8 and H (Liberzon et al, 2015). Further, GSORA was
performed to identify the functional enrichment of DEGs in the
MSigDB gene sets.'”"!

Statistics Analysis

In this study, the R software (Institute for Statistics and
Mathematics, Vienna, Austria;'> version 3.6.1) was applied
for all statistics analysis processes. It was statistically
significant only when two-sided p value < 0.05 (Package:

1Ohttps://github.com/tomastokar/gsoap
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp

2ywww.r-project.org

el071, parallel, preprocessCore, sva, limma, edgeR, ggplot2,
survminer, survival, rms, randomForest, pROC, glmnet,
pheatmap, timeROC, vioplot, corrplot, ConsensusClusterPlus,
forestplot, survivalROC, beeswarm, edgeR, chromVAR,
Biostrings, =~ BSgenome.Hsapiens.UCSC.hg38, = ChIPsecker,
TxDb.Hsapiens.UCSC.hg38 knownGene, clusterProfiler,
org.Hs.eg.db, ggplot2, karyoploteR, GSVA, GSEABase, stringr,
GEOquery, dplyr, ComplexHeatmap, RColorBrewer, tibble,
cowplot, ggcorrplot, xIsx, tidyverse, GEOquery, plyr, and circlize).

RESULTS

DEGs Identification and Functional

Annotation
The analysis procedure of this study was summarized in
Figure 1. Combinative analysis based on gene expression

downloaded

The gene expression profiles of 10 metastatic and 116 non-metastatic samples were

from TCGA

A

y

Identification of differentially expressed ge

Functional Annotation of DEGs

nes (DEGs) and transcription factors (TFs).

A significant module with key stemness-r

and a prediction model based on stemness-related genes was constructed

elated genes was identified by WGCNA

A

hallmark gene set

GSVA, GSEA, and WGCNA were performed to find potential

s related to CESC

A

4

performed among stemness-related genes, TFs, and hallmark signaling pathways

A protein-protein interaction network and the Pearson correlation analysis were

CHIP-seq and ATAC-seq validation of the results

that might inhibit CESC via

CMap database was utilized to find the potential compound

suppressing cancer stemness

FIGURE 1 | The flow chart of the analysis process. TCGA, the Cancer Genome Atlas; MsigDB, Molecular Signatures Database; KEGG, Kyoto Encyclopedia of
Genes and Genomes; WGCNA, Weighted Gene Correlation Network Analysis; GSVA, Gene Set Variation Analysis; GSEA, Gene-Set Enrichment Analysis.
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FIGURE 2 | Combinative analyses based on gene expression stemness indices (A). Heat map for the differentially expressed genes (DEGs) between 10 metastatic
and 116 non-metastatic patients with the cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) (B). Volcano plot for DEGs between 10

metastatic and 116 non-metastatic patients with CESC (C). The functional enrichment analysis for these DEGs in Gene Ontology (GO) terms (D) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways (E).

stemness indices was performed by using the OCLR machine demonstrated by the heat map plot (Figure 2B) and volcano
learning algorithm (Figure 2A). plot (Figure 2C).

Differentially expressed genes s identified between 10 Gene oncology and KEGG analyses were used to annotate
metastasis and 116 non-metastasis CESC samples were the function of DEGs. The results showed the most significant
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GO terms for BP, CC, and MF were pattern specification
process, synaptic membrane, and channel activity (Figure 2D).
In addition, KEGG analysis showed that the functional
similarities mainly enriched in neuroactive ligand-receptor
interaction (Figure 2E).

WGCNA

In order to screen genes that were significantly correlated
with CESC, a DEGs co-expression network was constructed to
select stemness indices-related modules based on the TCGA
datasets using WGCNA. In this study, the soft threshold
B 4 was adopted to achieve the scale-free topology
criterion of the network (Figures 3A,B). We extracted 19
gene modules in different colors with genes which have
similar expression patterns for further analysis (Figure 3C).
To analyze the correlation between the gene modules and
mRNAsi score, MM was defined as the overall gene expression
level of the relevant module to calculate the correlations with
phenotypes. Meanwhile, the correlation between gene expression
and hallmarks of cancer was investigated. Importantly, the
yellow module showed the highest negative correlation with

mRNAsi score with a correlation close to —0.7. Thus, we
considered the yellow module as the key module, from
which key genes were extracted with the selection criteria
of corMM > 0.3 and cor.GS > 0.3 (Figure 3D). Besides,
differential expression analysis was also utilized to screen
differentially expressed stemness-related genes (DESRGs) with
| log2 FC| > 1.0 and FDR value < 0.05 based on the key
genes aforementioned (Figures 4A,B). Eventually, 81 DESRGs
were extracted for subsequent analysis. Meanwhile, 18 hallmarks
of cancer significantly correlated with yellow module were also
identified for further analysis.

Identification of the Prognostic Model

The DESRGs were integrated into a proportional hazards
model to evaluate the prognosis value in CESC patients
(Figure 4C). Furthermore, these genes were incorporated in
a multivariate Cox model, the formula of which was utilized
to compute the risk score for each CESC patient. CESC
samples were divided into low-risk and high-risk groups based
on the median of risk score. Scatter plot and risk curve
illustrated the risk score and vital status among patients with

Sample dendrogram and trait heatmap

1.0
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Module-trait relationships

Y 7777
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FIGURE 3 | Clustering based on the transcriptional level of 50 hallmark gene sets in chordoma samples (A). Hierarchical clustering tree developed by the weighted
correlation coefficients. Each branch represents a co-expression module in different colors (B). Heatmap showing the correlation between modules and hallmark
gene sets. The framed yellow module was the key module which was most relevant to mRNAsi. Gene Significance (GS) and its corresponding p value were
computed and shown in the heatmap (C). Scatter diagram showing the correlation between gene significance for hallmarks of cancer and Module Membership in

yellow module (D).
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FIGURE 4 | Heat map for the differentially expressed stemness-related genes (DESRGs) between 10 metastatic and 116 non-metastatic patients with CESC (A).
Volcano plot for DESRGs between 10 metastatic and 116 non-metastatic patients with CESC (B). The proportional hazards model based on 25 key DEMRGs (C).

CESC (Figures 5A,B). The area under receiver operating
characteristic (ROC) curve was calculated to quantify the
predictive accuracy of the model (Figure 5C), which was of
satisfactory prognostic value (area under curve, AUC = 0.842). In
addition, the Kaplan-Meier survival curve showed the survival
rate in the low-risk group was significantly prolonged than
those in high-risk group, suggesting the great prognostic value
of risk score (Figure 5D). Moreover, in multivariate Cox
regression analysis, the risk score represented an independent

prognostic indicator [HR 1.083, 95% CI (1.041-1.127),

p < 0.001] (Figure 5E).

Identification of Upstream TFs, Key
Genes, and Downstream Signaling

Pathways
Heat map (Figure 6A) and volcano map (Figure 6B)
illustrated the differential expression levels of 50 hallmarks

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8

March 2021 | Volume 9 | Article 642724


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Guo et al.

Metastasis-Specific SRGs in CESC

A B 6000~ E
c ROC curve (AUC = 0.842) D T
o | 1.00
[ee] 0.75
= £
o
§ © | % 0.50
2 ° g
-"ﬁ 2]
3 o L I
g <7
=
0.00
C\" - [ 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204
o Time(months)
g - 5 High risk 58 50 35 17 10 7 4 1 1 [ o [ o [ o ] 0 [
T T ) 0'6 0'8 1|0 ¥ Low risk: 59 47 36 25 19 14 12 10 8 7 6 3 2 1 1 1 1 1
00 02 04 . . : [ 2 24 36 48 60 72 84‘ 96 108 120 132 144 156 168 180 192 204
False positive rate Hinenie)
E
pvalue Hazard ratio
age 0.737 1.007(0.966-1.050) ]
stage 0.919 1.030(0.582-1.822) ——
M 0.598 1.589(0.284-8.910) .
riskScore <0.001 1.083(1.041-1.127) .
0. I25 D.|50 1!0 2!0 470 B!O
Hazard ratio
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respectively. ROC curve (AUC = 0.921) for prognostic DESRGs (C). Overall survival Kaplan—Meier curve for prognostic DEMRGs (p < 0.001) (D). Univariate Cox
regression models indicated the risk score was an independent prognostic factor (E).

of cancer between CESC and normal tissues. Besides, the
differential expression levels of 50 hallmarks of cancer
were further assessed by GSVA and GSEA, respectively
(Figures 6C,D). Meanwhile, EdgeR method was utilized to
identify differential expressed TFs with FDR value < 0.05. Heat
map illustrated 65 differentially expressed TFs extracted
from 318 TFs (Figure 7A). Co-expression analysis was
conducted to identify the upstream TFs which were significantly
correlated with the key genes. TFs and key genes with |
correlation coefficient| > 0.50 and p value < 0.05 were
extracted for subsequent analysis. In total, based on 22
hallmarks of cancer that were significantly co-expressed and
18 hallmarks of cancer that were significantly differently

expressed between metastasis and non-metastasis samples
via GSVA, eight downstream mechanism were extracted
from the intersection (Figure 7B). Moreover, co-expression
analysis was conducted among TFs, DESRGs, and hallmarks
of cancer, the co-expression interaction pairs were utilized to
construct the regulatory network (Figure 7C). Subsequently,
to quantify the interaction coefficients among 22 Hallmark
gene sets, 10 TFs, and 48 DESRGs, co-expression analyses
were conducted at the transcriptional level (Figure 7D).
There was an obvious co expression pattern between the
TF NR5A2 and the key gene VIM (R = 0.843, p < 0.001),
and VIM was significantly co-expressed with hallmark
epithelial mesenchymal transition (EMT) pathway (R = 0.318,
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p < 0.001). Eventually, we put forward a scientific hypothesis:
VIM was positively regulated by NR5A2 and hallmark
EMT was the potential downstream pathway of VIM in
CESC metastasis.

Identification of Bioactive Small

Molecules Inhibitor

Statistically significant results were shown in a complex
heat map demonstrating bioactive small molecules in over
10 types of cancers (Figure 8A). The results revealed that
naringenin (Figure 8B), desipramine (Figure 8C), alvespimycin
(Figure 8D), and econazole (Figure 8E) (p < 0.05) were the
best compounds inhibiting CESC. After comprehensive analysis,
naringenin was selected as bioactive small molecule inhibitor
in CESC development by targeting DESRGs, and genes which
were involved in hallmark EMT gene sets including SNAL2
and MMP2.

ChiIP-seq Validation

Based on ChIP-seq data of NR5A2 in Cistrome database
(homo sapiens), multiple binding peaks were found in
VIM sequences (Figure 9). Therefore, we could determine

the direct transcriptional regulatory relationship between
NR5A2 and VIM.

ATAC-seq Validation

Multiple open chromatin regions in sorted CESC cells were
identified using ATAC-seq analysis (Figure 10). There were
strong ATAC-seq binding peaks in CESC cells at the NR5A2
promoter and at known enhancers in the introns and in introns
of neighboring genes, indicating these regions may function as
enhancers of NR5A2.

A schematic diagram describing the mechanism of VIM,
NR5A2, and hallmark EMT pathway in the metastasis and
invasion of CESC was illustrated in Figure 11.

External Validation and Gene Sets Over

Representation Analysis
NR5A2 (TF), VIM (key stemness-related gene), MMP2
(EMT pathway gene), and MMP9 (EMT pathway gene)
were significantly up-regulated in metastasis CESC samples
(Supplementary Figure 1A).

In the cluster H, DEGs mostly enriched in hallmark
EMT pathway, which was consistent with the previous results
(Supplementary Figure 1B).
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FIGURE 7 | Heat map showing the expression level of 65 differential
expressed transcriptional factors (TFs) between 10 metastatic and 116
non-metastatic patients with CESC (A). Venn plot for hallmarks of cancer via
GSVA. Eight downstream mechanism were extracted from the intersection
(B). Regulatory network of TFs, DESRGs, and hallmark signaling pathways.
Arrows represented TFs. Ellipses represented DESRGs. Rectangles
represented hallmark signaling pathways (C). Heat map for the correlation
analysis (Pearson analysis) of DESRGs, TFs, and hallmark signaling
pathways (D).

DISCUSSION

Cervical cancer ranks the second most common gynecological
malignant tumor and the fourth leading cause of female
cancer death worldwide (Flanagan, 2018). Patients have already
progressed into advanced stages when diagnosed in most cases.

The standard therapeutic regimes for cervical cancer patients are
concurrent chemoradiotherapy plus brachytherapy, whereas the
prognosis is poor (Naga et al., 2018). Hence, potential biomarkers
are urgently required to assess the risk of metastatic cervical
cancer patients, as well as corresponding targeted drugs that can
improve clinical outcomes.

In this study, a total of 126 samples, 318 TFs, and 50
hallmarks of cancer were obtained based on comprehensive
bioinformation. DEGs between 10 metastasis and 116 non-
metastasis samples were identified using edgeR. Further, GO
and KEGG analyses were utilized for function annotation of
DEGs. The yellow module was finally identified as our interest
module via performing WGCNA, which is remarkably correlated
with tumor stemness based on mRNAsi score. 81 key genes
significantly related to cancer stemness were extracted using
differential expression analysis. Additionally, univariate Cox
regression and multivariate Cox regression were applied to assess
the prognostic value of key genes and risk score, respectively.
VIM was speculated as the most significant prognosis gene.
A prognostic model based on aforesaid 81 key genes was
developed and possessed a significantly high reliability (Kaplan-
Meier curve p value < 0.001, AUC = 0.894), which could
effectively predict the survival outcomes of CESC patients,
suggesting a positive interaction between mRNAsi and poor
prognosis. Furthermore, based on significant correlation analysis
between TFs and key genes, the NR5A2 (TF) and VIM (key
gene) pair was considered as significant (R = 0.84305, p < 0.001,
positive). Based on correlation analysis between VIM and 50
hallmarks of cancer, hallmark EMT (R = 0.318073, p < 0.001,
positive) was identified as the most significant downstream
pathway. Ultimately, we postulated VIM was positively regulated
by NR5A2 and the EMT was the potential downstream of VIM
in CESC metastasis. In addition, naringenin was identified as the
most important bioactive small molecule inhibitor suppressing
CESC metastasis via targeting NAL2 and MMP2, which were
involved in hallmark EMT gene sets.

Chromatin immunoprecipitation (ChIP) allows researchers
to assess the recruitment of a specific protein at a given locus
with a high resolution, on average in the cell population. When
combined with high-throughput ChIP-seq data, it can provide
a special and convenient method to analyze at a genome-wide
scale. The regulatory relationship between NR5A2 and VIM was
validated using the ChIP-seq analysis, and it showed a strong
connection between them. ATAC-seq, a method map chromatin
accessibility genome-wide, is an impressively flexible, simple,
and powerful technique. ATAC-seq reads can be utilized for
inferring regions of increased accessibility, as well as for mapping
regions of nucleosome position and TF binding (Buenrostro
etal., 2013). We correlated the maps of chromatin with RNA-seq
data from CESC samples to identify the cis-regulatory elements
which may be implicated in the regulation of VIM induced
by NR5A2.

The orphan nuclear receptor NR5A2, a transcriptional factor,
plays a critical role in steroidogenesis, normal differentiation,
cholesterol transport, and bile-acid homeostasis (Lu et al., 20005
Fayard et al., 2004). Additionally, NR5A2 is implicated in the
maintenance of pluripotency in embryonic stem cells (ESCs)
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(Gu et al, 2005) and reprogramming of somatic cells into
induced pluripotent stem cells (iPSCs) (Heng et al., 2010; Wang
etal., 2011). Recently, accumulating evidence has also shown the
participation of NR5A2 in the pathogenesis of various tumors
including cervical cancers. In this study, NR5A2 was identified
to express differentially between metastatic and non-metastatic
tissues of cervical cancers, and may promote the tumorigenesis
and metastasis by regulating VIM.

The VIM gene is located on chromosome 10p13, encoding
a member belonging to a family of intermediate filaments that
maintain cytoarchitecture and tissue integrity, which influences
the regulation of multiple cellular functions (Fuchs and Weber,
1994). VIM is the primary intermediate filament protein in
mesenchymal cells including fibroblasts (Osborn and Weber,
1984). VIM is implicated in maintaining cell shape and integrity
of the cytoplasm, and stabilizing cytoskeletal interactions. It also
operates as an organizer of other crucial proteins related to cell

attachment, migration, and signaling (Danielsson et al., 2018;
Yu et al., 2018). Particularly, VIM is considered as a biomarker
of epithelial-mesenchymal transition, a cellular reprogramming
process where epithelial cells acquire a mesenchymal phenotype
which causes them to alter shape and to exhibit increased motility
(Thiery, 2002). Thus, VIM methylation may be a novel prognostic
marker for CESC. In this study, VIM was significantly correlated
with mRNAsi based on WGCNA and therefore involved in the
progression of CESC. Whereas, there was still no research on the
direct connection between NR5A2 and VIM, we speculated that
NR5A2 participated in VIM transcription based comprehensive
bioinformation analysis.

Hallmark EMT is generally correlated with tumorigenesis,
malignant progression, invasion, and metastasis, seriously
affecting the life quality of patients. EMT is considered the
first step for infiltration and metastasis of tumor cells. Besides,
EMT is often defined by downregulated expression of epithelial
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biomarkers (such as E-cadherin) and increased expression
of mesenchymal biomarkers (such as N-cadherin and VIM)
(Pastushenko and Blanpain, 2019). Moreover, EMT-associated
TFs, such as ZEB (ZEBI and ZEB2), SNAI (SNAII and SNAI2),
and TWIST (TWISTI and TWIST2) nuclear proteins, can
suppress E-cadherin expression and regulate the EMT process via
different pathways (De Craene and Berx, 2013). Further, a recent
study demonstrates that activation of the phosphatidylinositol
3’ kinase (PI3K)/AKT axis is emerging as a central character of
EMT (Larue and Bellacosa, 2005). EMT is a significant process
implicated in cancer cell invasion and metastasis. Inhibiting
EMT may suppress or even block the invasion and metastasis of
cervical cancer, which may provide a new theoretical basis for the
treatment of CESC.

To our knowledge, stemness is postulated to be a crucial
role in CESC invasion and metastasis. Inhibiting genes
associated with stemness and stimulating cell differentiation
may assist in the selection of treatment strategies for CESC.
Naringenin was considered as the most significant bioactive
small molecule compound inhibiting CESC metastasis via
suppressing expression of DESRGs based on CMap analysis.
SNAI2 and MMP2, genes involved in hallmark EMT, were
potential targets for naringenin. Further, naringenin is able
to inhibit cancer cell migration through the up-regulation of
E-cadherin expression, but down-regulation of the expression

of VIM, SNAIL family zinc finger 1(SNAII), SNAIL family zinc
finger 2(SNAI2) (Han et al, 2018). Moreover, it could also
inhibit the AKT activities and induce the reduction of MMP-
2 and -9 activities (Yang et al., 2008; Liao et al., 2014; Chang
et al,, 2017). The TGF-B signaling pathway serves as a critical
regulator of EMT, which can trigger and regulate physiological
functions of EMT. A recent study reports that naringenin
significantly inhibits the transcription of SMAD3 induced by
TGF-P1 and reduces the probability of TGF-B1 binding to its
receptor TPRII, thereby inhibiting receptor dimerization and
downstream signaling transduction, inhibiting cell migration and
invasion (Lou et al., 2012). Naringenin can also inhibit cell
proliferation and induce cancer cell apoptosis through multiple
mechanisms of estrogen receptor (ER), inducing reactive oxygen
species (ROS) production, mitochondrial depolarization, and
causing cell cycle arrest in GO/G1 phase. Moreover, naringenin
has cytotoxic effect on cancer cell lines of the cervix (Hela, Hela-
TG) (Kanno et al.,, 2005). It can also inhibit the proliferation
of human squamous cell carcinoma and epidermoid carcinoma
(Ahamad et al, 2014; Maggioni et al., 2014) and has anti-
cancer effects on human cervical cancer cells (Kim et al.,
2012a; Zaim et al, 2018). Hence, based on comprehensive
bioinformatics and other studies, naringenin is considered as
a promising drug which provides a novel therapeutic basis for
patients with CESC.
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Several inevitable limitations in this study should be taken into
consideration. Firstly, data acquired from the public datasets were
statistically incomplete. It’s far too difficult to reduce the potential
error and bias via acquiring the same number of cases with
different genders, age groups, and races, which may lead to the
lack of comprehensiveness. Secondly, despite the results validated
by external databases, the sample size was limited. Thirdly,
the scientific hypothesis was mainly based on bioinformatics,
and it was not validated by exploring the underlying molecular
mechanisms. Therefore, ChIP-seq and ATAC-seq validation was
performed to determine the direct transcriptional regulation
pattern between the TFs and SRGs.

CONCLUSION

In conclusion, VIM was regulated by NR5A2, and by effecting
the EMT signaling pathway it was involved in CESC metastasis.
In addition, naringenin was selected as inhibitor for cervical
carcinoma metastasis by targeting the EMT. The hypothetical
signaling axis in this study may provide candidate prognostic
biomarkers and therapeutic targets for metastatic CESC.
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