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Abstract

Echolocation performance differs widely among individuals. This study examined a possible factor

that may explain this variation, namely, visual working memory, which is a subcomponent of spatial

working memory. Sighted participants performed an object-detection task consisting of initial

testing on 2 separate days (up to 8 days apart) with follow-up testing on a third day (up to

1 month after the second day of testing) while manipulating the target distance from 20 to

50 cm. Participants performed two types of visual spatial working memory tasks, one of which

required them to memorize color–location combinations and the other, an imaginary pathway.

The participants’ performance on the object-detection task generally improved in the first 2 days,

but there were substantial individual differences in detection ability. A positive correlation was

observed between performance on these tasks and visual working memory capacity, except on

the second day, after detection ability had improved. These findings suggest that factors contrib-

uting to echolocation skill are related to nonauditory factors in a sighted group.
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Introduction

Echolocation is a method to localize objects and acquire object features (e.g., distance, size,
shape, and surface of material) based on the reflection of sound. Echolocation ability has been

Corresponding author:

Tomoki Maezawa, Hokkaido University, N10W7, Kita, Sapporo 060-0810, Japan.

Email: porpoise@let.hokudai.ac.jp

i-Perception

2019, Vol. 10(4), 1–16

! The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/2041669519872223

journals.sagepub.com/home/ipe

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution

4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and

distribution of the work without further permission provided the original work is attributed as specified on the

SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0002-9077-3132
mailto:porpoise@let.hokudai.ac.jp
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/2041669519872223
journals.sagepub.com/home/ipe


extensively acknowledged in nonhuman species, such as odontocetes (e.g., Au, Branstetter,
Benoit-Bird, & Kastelein, 2009) and some bats (e.g., Barclay & Brigham, 1994; Neuweiler,
1990). Similarly, humans with normal hearing can use echolocation (Rice & Feinstein, 1965;
Schenkman & Nilsson, 2010). Particularly, the sighted population can echolocate (Teng &
Whitney, 2011) using several types of echo-acoustic sounds, such as oral clicks and artificial
click noises via loud speakers (Thaler & Castillo-Serrano, 2016; Tonelli, Brayda, & Gori,
2016; Tonelli, Campus, & Brayda, 2018), as well as auditory substitution to enhance spatial
awareness for successful navigation (Kolarik, Scarfe, Moore, & Pardhan, 2016).

Echolocation skill can be acquired with suitable training, although most sighted groups
are less sensitive to the cues available for echolocation (Kolarik, Cirstea, Pardhan, & Moore,
2014). Rapid improvements in echolocation performance occur in sighted populations fol-
lowing only a few training sessions (Teng & Whitney, 2011). These findings indicate the need
for repetitive training to acquire echolocation skill. However, large individual differences in
echolocation performance and the degree of improvement during echolocation training may
complicate the establishment of systematic echolocation training protocols (e.g., Ekkel,
van Lier, & Steenbergen, 2017), and some individuals are unable to acquire echolocation
skills (e.g., Worchel, Mauney, & Andrew, 1950). Thus, a better understanding of the
factors contributing to these individual differences is necessary to aid in the training of
echolocation skills.

A plausible explanation for the individual differences is that echolocation performance is
affected by variation in auditory sensitivity of the hearing system because performance is
based on detecting and discriminating auditory echoic cues. A set of studies has supported this
relationship (e.g., Carlson-Smith & Wiener, 1996; Schenkman & Nilsson, 2010). Specifically,
experiences with echoic information, auditory perceptual learning, and task feedback are
associated with echolocation performance (e.g., Teng & Whitney, 2011; Teng, Puri, &
Whitney, 2012). However, the ability to discriminate echoic cues is not the only factor that
explains the individual variability (Rice, 1967) because sighted populations, in particular, do
not rely on echoic cues relative to blind populations. Thus, other factors are involved.

In this study, we argue that working memory capacity plays a role in echolocation per-
formance. Working memory is the temporary storage and workspace to manipulate infor-
mation for ongoing tasks (e.g., Baddeley, 2012; Ricker, AuBuchon, & Cowan, 2010), and
functions in conjunction with a subsidiary slave system of the attentional control system,
known as the central executive (Baddeley, 2000). The relevance of working memory in audi-
tory cognitive processing has been acknowledged (e.g., Moossavi, Mehrkian, Lotfi,
Faghihzadeh, & Sajedi, 2014). In fact, the degree of improvement in echolocation perfor-
mance positively correlates with a test score for the Paced Auditory Serial Addition Task
(PASAT; Gronwall, 1977), reflecting working memory and divided attention (Ekkel et al.,
2017), in conjunction with auditory verbal aspects. The PASAT has been used as a measure
of impairments in the central executive of working memory (e.g., Serino et al., 2007); thus,
the results of Ekkel et al. (2017) support the notion that working memory capacity modulates
echolocation performance in size discrimination. However, it should be noted that the indi-
vidual differences in the ability to use echolocation was beyond the scope of Ekkel et al.’s
study. Rather, their focus was on the differences in improvements in echolocation perfor-
mance due to training. Moreover, even though the central executive component would con-
tribute to the learning of size discrimination (Ekkel et al., 2017), the processing of
echolocation relates to spatial perception; thus, the process should involve the spatial com-
ponent of working memory. Thus, further investigation is required to examine whether
echolocation performance is linked to the capacity of spatial working memory, rather
than central executive functions.
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Visual working memory (Luck & Vogel, 2013; Mance & Vogel, 2013) is a subsidiary

system of working memory, contributing to maintenance of visual information to serve

the needs of ongoing tasks. The concept of the spatial subcomponent of working memory

has played a central role in explaining individual differences in cognitive performance in the

spatial domain (Kyllonen & Christal, 1990). Given that high visual working memory capac-

ity is predictive of higher performance on visual tasks, such as visual search, localization and

detection of changes (e.g., Luria & Vogel, 2011; Unsworth, Fukuda, Awh, & Vogel, 2014),

visual working memory should predict individual differences in cognitive performance

involving spatial processes. Importantly, visual working memory capacity predicts individ-

uals’ filtering efficiency, so that in individuals with high visual working memory capacity,

irrelevant distractor-related information is efficiently excluded from storage in memory, thus

preserving the capacity for purposeful use (Vogel, McCullough, & Machizawa, 2005).
Although the concept of visual working memory has been traditionally related to active

maintenance of visual representations, recent studies on working memory have extended the

concept to spatial processing of images in auditory modality tasks (Loomis, Klatzky,

McHugh, & Giudice, 2012). We hypothesized that visual processing and experience would

contribute to the representation of mental images and aid echolocation in sighted subjects.

In fact, much effort has been expended on characterizing the relationship between echolo-

cation and visual cognitive processing (Tao et al., 2015; Thaler & Foresteire, 2017; Thaler,

Wilson, & Gee, 2014). Thus, we expected that sighted individuals with superior visual work-

ing memory capacity would perform better in auditory spatial tasks, such as target search

and change detection tasks. In other words, individuals with high working memory capacity

should be able to detect a target object from distractor noise due to high-filtering efficiency.
Thus, the aim of this study was to examine the association between echolocation perfor-

mance in sighted individuals and how individual factors of visual working memory capacity

contribute to performance. Specifically, we examined whether visual working memory capac-

ity correlates with object detection performance in echolocation tasks. We also investigated

whether improved detection performance is retained over a month, by asking participants to

perform the same echolocation tasks 3 times over that time periods. Maintaining improved

echolocation ability after training presents a challenge for echolocation learning. In one

study (Zahorik, Bangayan, Sundareswaran, Wang, & Tam, 2006) that did not use an echo-

location task, improved ability in sound localization persisted for at least 4 months. Similar

retention of echolocation improvement was expected in this study.
We designed an object-detection task based on Schenkman and Nilsson (2010), whose

participants determined the presence or absence of a target in front of them using echolo-

cation, while the distance to the target was manipulated. The experiment lasted 120 trials

(approximately 50 minutes) per day across 2 days and the amount of training during the task

was greatly reduced from that used by Schenkman and Nilsson (2010), who used 56 trials per

session across 36 sessions (2.5–3 hours) with feedback on every trial. We also omitted the

feedback. Specifically, our experiment consisted of initial testing on 2 separate days (up to

8 days apart) with a follow-up testing on a third day (up to 1 month apart). Two sighted

participants in our pilot study showed a chance level in detecting a target placed more than

50 cm away; thus, we chose a target distance of 20 to 50 cm. This range was shorter than the

previous study (Schenkman & Nilsson, 2010) that covered from 50 to 500 cm exceeding

the peripersonal space range (Kolarik, Moore, Zahorik, Cirstea, & Pardhan, 2016). After the

echolocation task was completed, we conducted a visual spatial working memory task

(Luck & Vogel, 1997; Tsubomi, Fukuda, Watanabe, & Vogel, 2013) to evaluate the partic-

ipants’ capacity for visual working memory.
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Methods

Participants

In total, 39 sighted students from Hokkaido University (18–25 years; 17 females) participat-

ed in the experiment for monetary compensation or course credit. Three participants were

excluded from the analyses due to failure to follow the instructions. One of the remaining

36 was left-handed. In echolocation task, the 36 participants completed the task on the first

and second days, and 24 of the 36 (19–25 years; six females) participants completed the

follow-up task on the third day. In visual working memory task, in total, the same 24 and

1 participant who did not participate the follow-up echolocation task completed the working

memory task. One of the 25 was excluded from the analyses because of a high percentage of

error responses (61.1%). All participants reported normal or corrected to normal visual

acuity. None of the participants were hearing impaired according to self-report and a hearing

test given before the main experiment. During the pretest, the participants were required to

detect tones (500–8000 Hz, <20 dB HL) randomly played via headphones (MDR-XB450;

Sony Co., Ltd., Tokyo, Japan) in the right and left ears separately. The intensity level of the

playing tones was calibrated by a sound level meter (TM-103; Tenmars Electronics Co., Ltd.,

Taipei, Taiwan) and converted from dB SPL into HL using a conversion factor (ANSI

S3.6-2010). None of the participants had prior experience with the echolocation task. This

study was approved by the Ethics Board of Hokkaido University, and the participants

provided written informed consent prior to the experiment.

Apparatus and Stimuli

Echolocation task. Figure 1 shows the apparatus used for the detection task during the 3

days. The experiment was conducted in a space separated by a curtain (1.6m width� 4.8m

depth� 2.5 m height) in a quiet laboratory. The wall was covered with 2 cm thick Styrofoam

board to reduce noise reflection. The ceiling was covered with plasterboard. The ambient

sound level in the space was approximately 34 dB as measured using a sound level meter.

Target 
prepara�on

Echoloca�on
clicks

Presence or 
Absence

10 s Un�l Response

Time

Press 4
or 6 key

Figure 1. The object-detection task. Participants were seated in a chair and produced echolocation cues
from a loud speaker by pressing a key on a numeric keypad to identify the presence/absence of a target.
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A table (1.1 m width� 2.4 m depth� 0.7 m height) was placed in the middle of the space.
The top surface of the table was covered with carpet fabric placed on a 3 cm thick Styrofoam
board. A loudspeaker (main speaker; SRS-BTX500; Sony Co., Ltd.; 20–20000 Hz), emitting
echolocation cues, was mounted on the shorter edge of the table and was connected to a
PC/AT-compatible computer (OptiPlex 990; Dell Inc., Round Rock, TX, USA) operating
with Linux via a standard audio device (ALC269VB; Realtek Semiconductor Corp.,
Hsinchu, Taiwan). Another loudspeaker (sub speaker; SRS-BTV5; Sony Co., Ltd.;
20–20000 Hz) was mounted on the right side of the longer edge and was connected to an
audio player (iPod Touch; Apple Inc., Cupertino, CA, USA). Two steel bars (2 mm thickness
and 90 cm height) were placed vertically on the shorter side of the table and a black roll
curtain was mounted on the top to block the participants’ vision. The participant was seated
to the rear of the main speaker and the curtain on a height-adjustable chair, facing 3.6 m
away from the front wall of the space and 0.85 m away from the nearest wall. Responses were
collected via a numeric keypad connected to the computer. To send a signal to the partic-
ipant, we used a vibration motor driven by the computer via a microcontroller board
(Arduino Uno R3; BCMI US LLC, Boston, MA, USA).

The target was a flat aluminum plate (3 mm thickness; 40 cm width� 30 cm height) ver-
tically mounted on an L-shaped bookend (1 mm thickness; 13 cm width� 17 cm height).
The position of the target was experimentally manipulated (20, 30, 40, or 50 cm from the
participant’s body).

The sound cues for echolocation were presented through the main speaker as approximately
6-ms-long artificial clicks generated by aMatlab function as a sinusoidal of exponentially decay-
ing 4 kHz by 24-bit resolution and a 96 kHz sampling rate.We chose this function to simulate a
waveform for amouth click because it has been established that a sinusoid amplitudemodulated
by the exponentiallydecayingwell represents humanmouth clicks (Rojas,Hermosilla,Montero,
& Esp�ı, 2009; Thaler & Castillo-Serrano, 2016). One click was played through the main speaker
at 95 dB when the participant pressed the “5” key on the numeric keypad. Each signal
was captured with a microphone (B3 Omnidirectional Lavalier; Countryman Associates,
Menlo Park, CA, USA; 20–20000 Hz) and digitized with 32-bit accuracy at a 96-kHz sampling
rate using a high-speed USB audio interface (OCTA-CAPTURE; Roland, Shizuoka, Japan).
Illustrations of the wave form and power spectrum are shown in Figure 2.

Visual spatial working memory task. We used a standard visual spatial working memory task and
colored squares as stimuli (Luck & Vogel, 1997; Tsubomi et al., 2013). An example of the
stimuli is illustrated in Figure 3. Participants were required to memorize color–location
combinations of the sample stimuli and to indicate whether the color of the cued patch in
the test stimuli followed the sample stimuli separated by a blank display was identical to the
color of the corresponding patch in the sample. The stimuli were displayed on a computer
monitor (G2420HD; BenQ Co., Ltd., Haryana, India; driving at a rate of 60 Hz of refresh,
1920� 1080 pixels), controlled by custom Matlab code using Psychophysics Toolbox exten-
sions (Brainard, 1997; Pelli, 1997). The viewing distance was approximately 57 cm.
Responses were collected via a computer keyboard.

All stimuli and test cues were displayed on a gray background on the monitor. A sample
stimulus array consisted of colorful squares (four levels of memory set sizes: three, four, five, or six
squares, 1� � 1� in width and height of the visual angle). Each square was randomly assigned one
of a set of nine highly discriminable colors (red, pink, orange, yellow, green, yellow-green, blue,
light blue, and white) without replacement and locations from a set of eight possible locations
spaced equally 45� along an invisible circle of a radius of 2.9� in visual angle. A square cue
(1� � 1� in width and height in visual angle) indicated one of the sample stimulus locations, so
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that the vertical halves of the area were filled with two different colors. One of the colors was the

same as the sample at the cued location, and the other was a new color that was not presented in a

sample array. Participants indicated the color they saw in the sample display.

Procedure

Echolocation task. All participants completed the echolocation task over 2 days separated

between 1 and 8 days (M¼ 2.83 day, SD¼ 2.23) and completed the task on the third day

after 30 to 137 days (M¼ 77.3 day, SD¼ 42.2) from the second day. The participants did not

repeat the task 2 or 3 times in the same day.

Figure 2. Waveform of a click produced through the loudspeaker (top half of figure) and the click’s power
spectrum (bottom half of figure) for each target distance (20, 30, 40, or 50 cm) and for the target
absent conditions.
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The experiment was a 3� 4� 2 factorial design with three within-subjects factors of day
(1, 2, or 3), target distance (20, 30, 40, or 50 cm), and target presence (presence or absence).

Each condition was randomly assigned for each trial. A session consisted of 32 practice trials
followed by 120 test trials per day. One participant quit the test at 80 trials due to a technical
error. The trials were completed in approximately 70 minutes per day, including 15-minute

practice trials and one 5-minute break.
All participants were visually impeded by a close-fitting eye mask at the beginning of the

trials. The participants fixed their head position at approximately 10 to 20 cm above the center
of, and 5 to 15 cm behind, the main speaker; thus, their head was not hidden by it. We did not

use a chinrest to avoid discomfort to the participants caused by a long period of physical
restraint. Each participant held the vibration motor by their nondominant hand or placed it on

their thighs. To mask sounds related to the placement of the target, the black roll curtain
obstructed the target from the participant and the subspeaker played 80 dB of pink noise until

the target was placed on the table (or was not placed, in the target-absent trials). After the
target was ready, the participant was prompted by the vibration motor signal and allowed to

produce clicks for 10 seconds by pressing the “5” key on the numeric keypad with their
dominant hand. Another vibration signaled the end of the 10 seconds of the trial, and the
participant pressed the “6” key on the keypad for presence or the “4” key for absence.

The responses and number of clicks were recorded by the computer. We calculated the dis-
criminability index d 0 (Green & Swets, 1974) as the difference between the z-transforms of the

hit and false alarm rate; d 0 ¼ z (hit rate) – z (false alarm rate). The hit and false alarm rates
were converted from 1 to 1 – 1/(2N) and from 0 to 1/(2N) (Macmillan & Creelman, 1991).

Participants received feedback by vibration upon providing a correct answer for target
presence/absence during the practice trials to familiarize themselves with detection task pro-

cedure. However, they received no such feedback during the experimental trials.

Visual spatial working memory task. The visual working memory capacity task was conducted on

the first or third day of the echolocation task depending on each participant’s availability.
Each participant performed a total of 216 trials consisting of 54 trials per condition (three,
four, five, or six of the memory set size). As shown in Figure 2, each trial began with the

presentation of a central fixation cross (0.2� � 0.2�) for 1,000 ms, followed by the sample
stimulus array for 200 ms. After a blank period of 1,000 ms, the test cue remained on the

screen until the participant responded. The participants indicated whether the cued color was

Fixa�on cross Sample Blank Test

1000 ms 200 ms 1000 ms Un�l response

Time

Right or
Le�

Figure 3. Schematic diagram of the visual spatial working memory task. Participants viewed a sample display
for 200 ms followed by a test display. The participants were required to identify a color binding a location of a
prior sample stimulus by providing a right or left response.
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on the right or left by pressing the keys for “i” (for right) or “e” (for left) responses.
We computed the estimating capacity score of visual working memory with the common
formula: K¼S (P – 50)/50, where K is the visual capacity, S is the memory set size, and P is
percentage correct (Cowan, 2001). The formula represents the individual’s ability to hold K
items from a sample array of S items in their working memory.

Results

Detection Performance Across 2 Days

The d 0 values obtained from individual participants (n¼ 36) were averaged separately for
each target distance. Figure 4(a) shows the detection performance of the echolocation task
on the first and second days. To test the improvement in detection performance across the
2 days, we subjected the d 0 scores to a 2 (Day 1 and 2)� 4 (Target distance 20, 30, 40, and

(a) (b)

(c) (d)

Figure 4. (a) Mean d 0 score for Day 1 or 2 as a function of target distance (20, 30, 40, or 50 cm). Error bars
represent SEMs. (b) Box-and-whisker plots showing the median, interquartile, and range with
1.5� interquartile range whiskers for the d 0 score averaged across the 2 test days. (c) Mean number of clicks
for Day 1 or 2 as a function of target distance (20, 30, 40, or 50 cm). Error bars represent SEMs. (d) Plots of
the increase in d 0 score averaged across the 2 test days as a function of d 0 on Day 1. The solid line represents
the regression line of the plot.
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50 cm) repeated-measures analysis of variance (ANOVA). The ANOVA revealed significant

main effect of day, F(1, 35)¼ 9.22, p¼ .005, g2p ¼ .21, and target distance, F(3, 105)¼ 17.27,

p< .001, g2p ¼ .33. Their interaction was not significant, F(3, 105)¼ 0.80, p¼ .494, g2p ¼.02.

Multiple comparisons by Holm’s method revealed that the d 0 score decreased from 20 to

30 cm, t(35)¼ 3.92, p¼ .002, r¼ .55; from 20 to 40 cm, t(35)¼ 6.54, p< .001, r ¼.74; and

from 20 to 50 cm, t(35)¼ 5.49, p< .001, r¼ .68.
The d 0 score averaged across both days fluctuated substantially within participants (box-

plot, Figure 4(b)); the means (SD) were 1.82 (0.87), 1.44 (0.85), 1.20 (0.84), and 1.20 (0.81)

when the target was located at 20, 30, 40, and 50 cm, respectively. These scores were signif-

icantly higher than 0 when the target was placed at 20 cm, t(35)¼ 12.59, p< .001, r¼ .91; at

30 cm, t(35)¼ 10.11, p< .001, r¼ .86; at 40 cm, t(35)¼ 8.62, p< .001, r¼ .82; and at 50 cm,

t(35)¼ 8.87, p< .001, r¼ .83.
We also investigated the ceiling effect for improvement in detection performance.

Participants who performed well on Day 1 improved less than those whose initial perfor-

mance was poorer. The increase in detection performance was calculated by subtracting the

d 0 of Day 1 from the d 0 of Day 2. Figure 4(c) shows a plot of the increase in d 0 score as a

function of d 0 on Day 1. We computed Pearson’s correlation coefficients, and the results

showed a significant negative correlation between the observed increase in performance and

d 0 score on Day 1, r(36)¼�.50, p¼ .002, indicating that high-performing individuals

improved their performance less across the 2 days than did low-performance individuals.
We also assessed the effects of increasing in the number of clicks during the detection task.

The participants’ number of emission sounds per trial are shown in Figure 4(d), as a function

of target distances during the target trials. The mean number of clicks per trial was subjected

to a repeated-measures ANOVA with a 2 (Day 1 and 2)� 4 (Target distance 20, 30, 40, and

50 cm) design. The results revealed a significant effect of target distance, F(3, 105)¼ 2.96,

p¼ .036, g2p ¼.08; while a no significant effect of day, F(1, 35)¼ 0.68, p¼ .414, g2p ¼ .02, and

their interaction, F(3, 105)¼ 1.54, p ¼.210, g2p ¼.04. There was no significant correlation

between the mean number of clicks per trial averaged across the distances and the d 0 score,
r(36) ¼.09, p¼ .607; this indicated that an increase in the number of clicks did not improve or

impair detection performance.

Detection Performance on the Third Day

The d 0 on Day 3 obtained from individual participants were averaged separately for each

target distance. Figure 5 shows the detection performance of the echolocation task on Days 2

and 3 in the 24 samples who completed the follow-up echolocation task on the third day.

To examine maintaining improved detection performance over a month, we subjected the d 0

scores to a repeated-measures ANOVA with a 3 (Day 2 and 3)� 4 (Target distance 20, 30,

40, and 50 cm) design. The ANOVA revealed significant main effect of target distance,

F(3, 69)¼ 16.34, p< .001, g2p ¼ .42; while no significant effect of day, F(1, 23)¼ 0.56,

p¼ .461, g2p ¼ .02, and their interaction, F(6, 69)¼ 1.50, p¼ .222, g2p ¼.06, which indicated

that improved detection performance was retained for at least 1 month.

Visual Working Memory Capacity

We examined the association between visual working memory capacity and object detection

performance by echolocation, separately for each experimental day (Days 1–3). We also

examined whether improved detection performance across 2 days was modulated by working

memory capacity. Plots of detection performance scores as a function of the capacity K are
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shown in Figure 6. The mean performance (K) on the task was 2.38 (95% CI [2.10, 2.65],

SD¼ 0.65). The results revealed a significant positive correlation between the visual working

memory capacity score and the d 0 score on Day 1, r(24)¼ .48, p¼ .017; and on Day 3,

r(23)¼ .49, p¼ .018; there was no significant correlation between visual working memory

capacity score and either the detection performance on Day 2, r(24)¼ .30, p¼ .155, or the

increase in performance, r(24)¼�.20, p¼ .354.

Supplementary Experiment

To examine whether visual working memory capacity modulated detection performance on

echolocation tasks, we further measured each individual’s visual cognitive performance using a

matrix test (Cornoldi, Cortesi, & Preti, 1991), the score of which can be taken as a measure of

spatial working memory capacity. In this test, participants were asked to follow an imaginary

pathway through two-dimensional matrices. Twelve of the 36 original participants performed

the matrix test. In addition, five students who did not perform the initial echolocation task

participated in the same echolocation task for only 1 day as well as in the matrix test. Total of

17 participants (18–26 years; 7 females) completed the matrix test on the second day of the

experiment or the earlier, depending on each participant’s availability. We examined the cor-

relation between the performances on the matrix test and on echolocation task on the first day.
Figure 7 shows a schematic diagram of a trial of the matrix test. All stimuli were displayed

on a black background on an LCD monitor (XL2411T; BenQ; 100 Hz refresh rate,

1,920� 1,080 pixels). Participants were required to memorize a target location displayed in

a cell of an 11� 11 matrix, subtending 24� � 24� in width and height of the visual angle.

Their task was to mentally maneuver the target according to visual directional cues. Each

trial began with the presentation of a central fixation cross (0.2� � 0.2�) for 1,000 ms, followed

by the target stimulus in the matrix for 5,000 ms. The target was a red square, the initial

location of which was randomly selected from the matrix. After a blank screen was shown for

1,000 ms, arrow cues (9� � 9�) were sequentially presented in the center of the screen. The set

size of the series of the cues (4, 6, or 8) and direction (right, left, up, or down) were assigned

Figure 5. Mean d 0 score of the 24 samples for Day 2 or 3 as a function of target distance (20, 30, 40, or
50 cm). Error bars represent SEMs.
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randomly. Each directional cue was presented for 1,000 ms, and the cues were separated by a

blank screen presented for 1,000 ms. After the presentation of a series of directional cues, the

matrix was displayed on its own. Participants indicated the final target destination by clicking

a cell in the matrix. Each participant performed a total of 30 trials consisting of 10 trials of

each set size of the sequence length.
The proportions of correct responses obtained from individual participants were averaged

across the sequence length. The mean correct proportion was 0.82 (95% CI [0.76, 0.88],

SD¼ 0.11). One participant was removed from the analysis as an outlier, indicated by a

Cook’s distance exceeding 0.5. We examined the association between the mean proportion of

correct responses and echolocation performance on the first day (n¼ 16). The plot of the d 0

scores on Day 1 against the mean proportion of correct responses is shown in Figure 8.

We computed Pearson’s correlation coefficients, and the results revealed a significant positive

correlation between the matrix test score and the d 0 score on Day 1, r(16)¼ .50, p¼ .049.

Discussion

We examined the association between echolocation performance in sighted individuals and

individual factors, such as visual working memory capacity. We found that the participants’

visual working memory capacity was positively correlated with detection performance,

(a) (b) (c)

(d) (e)

Figure 6. Behavioral results of the visual working memory task. (a) Mean visual working memory capacity
(K) as a function of memory set size (3, 4, 5, or 6). Error bars represent SEMs. (b–d) Correlations between
visual working memory capacity and d 0 for Day 1, Day 2, or Day 3. It should be noted that several points
overlapped each other. The solid line represents the regression line of the plot. (e) Correlation between
visual working memory and increase in d 0 across the 2 test days.
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Figure 7. Schematic diagram of the matrix test. Participants followed an imaginary pathway through two-
dimensional matrices (11� 11; the example shows a scaled down 5� 5 grid). The participants were required
to identify the final destination of the target.

(a) (b)

Figure 8. Behavioral results of the matrix test. (a) Mean proportion of correct responses as a function of
memory set size (4, 6, or 8). Error bars represent SEMs. (b) Correlation between the proportion of correct
response and echolocation performance (d 0) on Day 1. The solid line represents the regression line of
the plot.
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expect on the second day. Detection performance did not decline over several months.
In other words, we found that the improved detection achieved on the second day was
maintained for at least 30 to 137 days.

Interestingly, detection performance improved over the localization task repeated for 120
trials (approximately 50 minutes) per day without any feedback, although participants did
not perform as well as subjects in a previous study that included feedback on every trial
(Schenkman & Nilsson, 2010). This indicates that sighted participants can improve their
performance following a relatively small amount of repetitive training during the task.
However, we found individual differences in detection performance. Specifically, individuals’
performances on target detection tests fluctuated substantially, reflected by the large stan-
dard deviations and range values of the data.

The present results extend the findings of Ekkel et al. (2017), in that we assessed spatial
working memory capacity; participants required to memorize visual objects being actively
used during visual spatial processing while not involving auditory verbal processing.
Our results show a significant correlation between visual working memory capacity and
detection performance during echolocation, except for performance on the second day,
after performance had improved. The correlation between visual working memory capacity
and performance on the second day was not significant, and the coefficient value decreased
compared to the first day. This lack of a correlation on the second day might be due to the
improvement in performance. Individuals who performed well on the first day of the tests
improved less than those who initially had low scores, and thus the regression line of detec-
tion performance on working memory capacity flattened out on the second day, decreasing
the correlation coefficient value.

Our results were inconsistent with those of by Ekkel et al. (2017), in that we did not find a
significant correlation between working memory capacity and the increase in detection per-
formance across the 2 days. This difference seems reasonable because of the ceiling effect for
enhancement of echolocation ability. Specifically, because there was a positive correlation
between echolocation performance and working memory capacity on the first day, individ-
uals who had large memory capacities were expected to show a smaller increase in detection
performance across the 2 days. In fact, the results indicated a negative (but nonsignificant)
correlation (r¼�.20). Another possible explanation is that the study by Ekkel et al. (2017)
assessed participants’ working memory capacity in the context of the central executive com-
ponent, rather than a spatial subcomponent, whereas this study measured the working
memory capacity as a reflection of spatial aspects. Also, Ekkel et al. assessed performance
using a size discrimination task, whereas this study used a different type of task, involving
object detection (Schenkman & Nilsson, 2010). Additional research is needed to determine
the influence of types of echolocation and working memory tasks on correlations between
working memory capacity and echolocation ability.

In summary, visual working memory capacity predicts object detection performance on
an echolocation task. The present finding adds to the literature in that the correlation
between echolocation ability, rather than the degree of improvement in echolocation due
to training, and visual working memory capacity has never been examined. The involvement
of vision during echolocation processing has been suggested by Thaler et al. (2014), who
indicated that echolocation involves spatial cognitive processing (e.g., mental imagery).
The visual area may not be involved during other auditory control tasks (e.g., change in
the sound location; Thaler & Foresteire, 2017). The present results support these findings
regarding visual involvement in echolocation and the spatial component of working memory
by sighted participants. Furthermore, the findings suggest that visual working memory
capacity is predictive of higher performance of the detection task for sighted participants.
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The question of how much training is necessary to learn echolocation remains unresolved.

To clarify this issue, future studies should manipulate the amount of echolocation task

training to determine a sufficient amount of training as well as to investigate how perfor-

mance improves.
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