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ABSTRACT: The activation barriers ΔG⧧ for kcat/Km for the reactions of whole substrates catalyzed by 6-phosphogluconate
dehydrogenase, glucose 6-phosphate dehydrogenase, and glucose 6-phosphate isomerase are reduced by 11−13 kcal/mol by
interactions between the protein and the substrate phosphodianion. Between 4 and 6 kcal/mol of this dianion binding energy is
expressed at the transition state for phosphite dianion activation of the respective enzyme-catalyzed reactions of truncated substrates
D-xylonate or D-xylose. These and earlier results from studies on β-phosphoglucomutase, triosephosphate isomerase, and glycerol 3-
phosphate dehydrogenase define a cluster of six enzymes that catalyze reactions in glycolysis or of glycolytic intermediates, and
which utilize substrate dianion binding energy for enzyme activation. Dianion-driven conformational changes, which convert flexible
open proteins to tight protein cages for the phosphorylated substrate, have been thoroughly documented for five of these six
enzymes. The clustering of metabolic enzymes which couple phosphodianion-driven conformational changes to enzyme activation
suggests that this catalytic motif has been widely propagated in the proteome.

A 12 kcal/mol intrinsic binding energy (IBE)1 is observed
for the substrate phosphodianion in reactions catalyzed

by triosephosphate isomerase (TIM)2−4 and glycerol 3-
phosphate dehydrogenase (GPDH),5,6 where <50% of the 12
kcal/mol dianion binding energy is expressed at the Michaelis
complex and >50% is specifically expressed at the transition
state for activation of the reaction of a phosphodianion-
truncated substrate by a phosphite dianion.6−8 β-Phospho-
glucomutase (PGM) likewise utilizes the binding energy of the
phosphite dianion to produce a 30 000-fold activation of the
enzyme for transfer of a covalent phosphoryl reaction
intermediate to the anomeric hydroxyl of β-D-xylopyranose.9

Glucose 6-phosphate (G6P) and 6-phosphogluconate
(6PG) feature as substrates in the following reactions from
Scheme 1: aldose−ketose isomerization catalyzed by glucose 6-
phosphate isomerase (PGI),10 hydride transfer catalyzed by
glucose 6-phosphate dehydrogenase (G6PDH),11 and oxida-
tive decarboxylation catalyzed by 6-phosphogluconate dehy-
drogenase (6PGDH).12−14 We report that (i) D-xylose and D-
xylonate are poor substrates for catalysis by PGI and G6PDH
or by 6PGDH, respectively; (ii) the phosphodianion of whole
G6P or 6-phosphogluconate substrates provides ≥11 kcal/mol
stabilization of the respective enzymatic transition states; and
(iii) between 30 and 50% of this total dianion binding energy
is recovered as HPO3

2− activation of the enzyme-catalyzed
reactions of phosphodianion-truncated substrates D-xylose
(PGI and G6PDH) or D-xylonate (6PGDH). The utilization
of dianion binding interactions in catalysis by this tight cluster
of six enzymes (Scheme 1), which function at ancient
metabolic pathways,15,16 provides evidence that large phos-
phodianion and phosphite binding energies are intrinsic to a
catalytic motif that appeared early in evolution and which was
propagated to glycolytic enzymes and enzymes that pivot

intermediates of glycolysis toward the production of pentose
phosphates or lipids (Scheme 1).
The sources for the chemicals and enzymes used in these

studies are reported in the Supporting Information (SI).
Ec6PGDH from Escherichia coli, LmG6PDH from Leuconostoc
mesenteroides, and ScPGI from Saccharomyces cerevisiae were
shown to each give a single major band by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (Figure S1). The
experimental protocols for the following enzyme assays are
described in the SI: Ec6PGDH-, LmG6PDH-, and ScPGI-
catalyzed reactions of physiological substrates; the oxidative
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Scheme 1. Enzymes with Transition States Strongly
Stabilized by Interactions to the Substrate Phosphodianion
or Phosphite Dianiona

aRed: earlier work;6,9 blue, this work.
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decarboxylation of D-xylonate catalyzed by Ec6PGDH; and
LmG6PDH-catalyzed oxidation of D-xylose. The ScPGI-
catalyzed isomerization of D-xylose (Scheme 2) was monitored
by coupling formation of the product D-xylulose to oxidation of
NADH catalyzed by sorbitol dehydrogenase.17

Figure S2A−C shows Michaelis−Menten plots of v/[E]
against [6PG], [G6P], and [F6P], respectively, for the
reactions catalyzed by Ec6PGDH, LmG6PDH, and ScPGI.
These plots give the values of (kcat/Km)SPi for reactions of
whole substrates reported in Table 1, where (kcat/Km)SPi for the

ScPGI-catalyzed reaction of G6P was calculated from kcat/Km =
2.38 × 106 M−1 s−1 for isomerization of F6P to form G6P and
Keq = 3.45 for this isomerization reaction.19 Figure S3A−C
shows plots of v/[E] against [D-xylonate] and [D-xylose] for
reactions catalyzed by Ec6PGDH (D-xylonate), LmG6PDH (D-
xylose), and ScPGI (D-xylose). The slopes of the linear
correlations from Figure S3A,B are equal to (kcat/Km)S for the
reaction of the truncated substrates. Values of (kcat)S = 0.0047
s−1 and (kcat/Km)S = 3.6 × 10−4 M−1 s−1 (Table 1) were
determined from the fit of data from Figure S3C to the
Michaelis−Menten equation. The contribution of dianion
binding interactions to transition-state stabilization, (ΔG⧧)Pi =
RT ln[(kcat/Km)SPi/(kcat/Km)S], are reported in Table 1.1

The Ec6PGDH-, LmG6PDH-, and ScPGI-catalyzed reac-
tions of dianion-truncated substrates are strongly activated by
phosphite dianion. Note that only Ec6PGDH-catalyzed
oxidation of D-xylonate by NADP was monitored. We have
not determined if this enzyme catalyzes the subsequent
decarboxylation reaction. We first fit plots of v/[E] against
[HPO3

2−] to the full rate equation for Scheme 3 (not shown).
However, the uncertainties in the kinetic parameters obtained
from these fits (not shown) range from 25 to 100%, because
the data do not clearly define the value for KXyl for weakly
bound D-xylose or D-xylonate (Kxyl ≫ [Xyl], Scheme 3). We

Scheme 2. Reactions of Whole [(kcat/Km)SPi] and Truncated
[(kcat/Km)S] Substrates, and HPO3

2−-Activated Reactions of
Truncated Substrates (kcat/KXylKHPi) Catalyzed by (A)
Ec6PGDH, (B) LmG6PDH, and (C) ScPGI

Table 1. Kinetic Parameters at pH 7.5 and 25 °C for Enzyme-Catalyzed Reactions of Whole and Phosphodianion Truncated
Substrates (Scheme 2), the Total Phosphodianion Binding Energies, and the Dianion Binding Energy Utilized for Enzyme
Activation

(kcat/Km)SPi (kcat/Km)S ( )k K

K

( / )cat Xyl S HPi

HPi

· (ΔG⧧)Pi (kcal/mol),h,j ΔGHPi
⧧ (kcal/mol),i,j

enzyme (M−1 s−1)e,f (M−1 s−1)e,f (M−2 s−1)f,g [IBE]T [IBE]HPi [IBE]HPi/[IBE]T

ScPGIa (6.9 ± 0.2) × 105 (3.6 ± 0.2) × 10−4 0.52 ± 0.10 12.6 ± 0.1 4.3 ± 0.1 0.34
kcat = 400 s−1

LmG6PDHa (2.0 ± 0.2) × 106 (8.3 ± 0.1) × 10−3 53.0 ± 0.3 11.4 ± 0.1 5.2 ± 0.1 0.46
kcat = 320 s−1

Ec6PGDHb (8.4 ± 0.4) × 105 (9.9 ± 0.2) × 10−3 140 ± 1 10.8 ± 0.1 5.7 ± 0.1 0.53
kcat = 12 s−1

OMPDCc 1.1 × 107 0.026 12000 11.7 ± 0.1 7.7 ± 0.1 0.66
TIMd 2.2 × 108 0.062 2700 13.0 ± 0.1 6.3 ± 0.1 0.48
GPDHd 4.6 × 106 0.050 16000 10.8 ± 0.1 7.5 ± 0.1 0.69

aSPi = G6P; S = D-xylose. bSPi = 6-PG; S = D-xylonate. cSPi = orotidine 5′-monophosphate (OMP); S = 1-(β-D-erythrofuranosyl)orotic acid.6,18
dSPi = dihydroxyacetone phosphate; S = glycolaldehyde.2,6 eKinetic data for the catalyzed reactions of whole or truncated substrate (see SI). fThe
quoted uncertainty is the standard error obtained from the least-squares fit of experimental data to the appropriate kinetic equation. gThird-order
rate constant for the phosphite dianion-activated reaction of truncated substrate (Scheme 3). h(ΔG⧧)Pi = RT ln[(kcat/Km)SPi/(kcat/Km)S].

iSee eq 3.
jThe approximate uncertainties are calculated from the standard errors in the kinetic parameters.

Scheme 3. Activation of the Catalyzed Reactions of D-
Xylonate (Ec6PGDH) or D-Xylose (LmG6PDH and ScPGI)
by HPO3

2−a

aThe cofactor NADP is bound to LmG6PDH and Ec6PGDH and is
reduced to NADPH for the enzyme-catalyzed reactions of D-xylose or
D-xylonate.
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report these data (Figure 1A−C) as plots of (v − v0)/[E]
against [HPO3

2−] for Ec6PGDH-, LmG6PDH-, and ScPGI-

catalyzed reactions at different fixed concentrations of D-
xylonate (1A) or D-xylose (1B and 1C), where (v − v0) is the
difference in the initial velocity for reactions in the presence
and absence of HPO3

2−. The HPO3
2−-activated reactions of

Ec6PGDH and LmG6PDH were carried out at saturating
[NADP] = 1 mM. Data from Figure 1 show that essentially the
same enzyme activation is observed for reactions at 0.5 mM
(open symbols) and 1.0 mM (solid symbols) [NADP]. The
solid lines from Figure 1A−C show the fits of these kinetic data
to eq 1, derived for Scheme 3, with the assumption that KXyl ≫
[Xyl] and using the derived values of (kcat/KHPi)obs (eq 2).

v v k
K K KE
( ) HPO Xyl

HPO
0 cat S HPi 3

2

Xyl HPi Xyl 3
2

−
[ ]

=
[ ][ ]

+ [ ]
·

−

−
(1)

k K
k

K K
( / )

( ) Xyl
cat HPi obs

cat S HPi

Xyl HPi
=

[ ]·

(2)

Figure 2A shows plots of (kcat/KHPi)obs, determined for the
corresponding plots from Figure 1, against [Xyl] for the

reactions catalyzed by Ec6PGDH and LmG6PDH, while
Figure 2B shows a similar plot for reactions catalyzed by
ScPGI. The slopes, (kcat)S•HPi/KXylKHPi (eq 2), for these linear
plots are reported in Table 1. The absence of detectable
curvature for plots from Figure 2 shows that KXylKHPi ≫
KXyl[HPO3

2−] (eq 1), and that there is no significant
accumulation of ternary [E·Xyl·HPO3

2−] complexes. By
contrast, robust binding of phosphorylated substrates is
observed (Km = 10−100 μM, SI) because of the entropic
advantage to reactions of the whole substrates compared with
the corresponding substrate pieces.18,20,21

Table 1 also reports (1) the total transition-state
stabilization from binding interactions with phosphite dianion
(intrinsic binding energy [IBE]HPi), calculated from eq 3

derived for Scheme 4; (2) the fraction ([IBE]HPi/[IBE]T) of
the total intrinsic phosphodianion binding energy [IBE]T that
is expressed at the transition state for the phosphite dianion-
activated reaction of truncated substrate (Scheme 4); and (3)

Figure 1. Effect of increasing [HPO3
2−] on (v − v0)/[E] for (A)

Ec6PGDH-catalyzed reactions of D-xylonate and (B and C)
LmG6PDH- and ScPGI-catalyzed reactions of D-xylose, respectively.
(A) Reactions at the following [D-xylonate]: 4.1, 10, 12.4, 16.5, 20,
and 24 mM. (B and C) Reactions at the following [D-xylose]: 10, 20,
30, 40, and 50 mM. The solid and open symbols for panels A (10 mM
D-xylonate) and B (50 mM D-xylose) show data for reactions at 1.0
and 0.5 mM NADP, respectively.

Figure 2. Effect of increasing [D-xylonate] or [D-xylose] on (kcat/
KHPi)obs for dianion activation of the catalyzed reactions of truncated
substrates (Scheme 3). (A) Ec6PGDH-catalyzed reactions of D-
xylonate (●) and LmG6PDH-catalyzed oxidation of D-xylose by
NADP (■). (B) ScPGI-catalyzed isomerization of D-xylose (●).

G RT K
K k K

k K
ln

( / )

( / )HPi HPi
HPi cat Xyl S

cat Xyl S HPi
Δ = − =⧧ ⧧

· (3)

Scheme 4. Ground-State (KHPi) and Transition-State
(KHPi

⧧ ]) Binding of HPO3
2− to Ec6PGDH, LmG6PDH, and

ScPGI
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the corresponding kinetic parameters determined for isomer-
ization, decarboxylation, and hydride-transfer reactions cata-
lyzed by TIM, orotidine 5′-monophosphate decarboxylase
(OMPDC), and GPDH, respectively.2,5,6,18 ScPGI catalyzes
both ring-opening of cyclic sugar phosphates and subsequent
isomerization of the acyclic sugar,22 while Ec6PGDH catalyzes
the coupled hydride-transfer and decarboxylation reactions of
6PG. We have not determined the transition-state stabilization
for the individual enzymatic reaction steps from interactions
with the substrate phosphodianion or phosphite dianion piece.
We note earlier reports of phosphite dianion activation of both
enzyme-catalyzed hydride transfer5,23,24 and decarboxylation
reaction18 of phosphodianion-truncated substrates.
The data from Table 1 and from an earlier study on catalysis

by PGM9 define a cluster of six metabolic enzymes (Scheme 1)
that show strong activation by HPO3

2− for the catalytic
turnover of substrates, D-xylose, D-xylonate, or glycolaldehyde.
Ec6PGDH, LmG6PDH, and ScPGI show smaller values of kcat/
Km for the catalyzed reactions of both whole and truncated
substrates, compared with the corresponding kinetic parame-
ters for the TIM- and GPDH-catalyzed reactions of
dihydroxyacetone phosphate and glycolaldehyde substrates.
However, similar total intrinsic phosphodianion binding
energies of 11−13 kcal/mol are observed for these five
enzymes and for OMPDC (Table 1). Apparently, 13 kcal/mol,
which corresponds to a >1010-fold rate acceleration, represents
an operational limit for transition-state stabilization from
catalytic protein−dianion interactions. A larger fraction of the
total dianion binding energy, ≤70% compared with ≤50%, is
recovered in the activation of reactions of glycolaldehyde
compared with D-xylonate or D-xylose by HPO3

2−. This
corresponds to a larger specificity in the utilization of
HPO3

2− binding energy for the ground state relative to the
transition state in enzymes that catalyze the reactions of 6-
carbon versus 3-carbon substrates.7,25

We have proposed a model for enzyme activation in which
unliganded catalysts exist in flexible, open, but inactive
conformations, and protein−dianion interactions are utilized
to stabilize a fully active, rigid, and closed enzyme.3,25 This
model is supported by the results from experimental and
computational studies on TIM,20,26,27 OMPDC,28,29 and
GPDH.30,31 It provides a rationalization for dianion activation
of reactions catalyzed by 6PGDH14 and PGI32 because
substrate binding to these enzymes gives rise to sizable
phosphodianion-driven conformational changes. It may hold
for catalysis by G6PDH; however, we are not aware of X-ray
crystal structures for G6PDH which show the bound cofactor
and substrate positioned to undergo hydride transfer.
Evolutionary pressure to optimize energy production from

nutrients has driven TIM to perfection in catalysis of the
isomerization of triosephosphate.33 This catalytic perfection is
presumably reflected in the structure for the iconic TIM
barrel.34 We propose that enzyme catalysis, with utilization of
phosphodianion binding energy to drive an enzyme-activating
conformational change, appeared early in protein evolution
and that this powerful catalytic motif has been replicated in the
evolution of metabolic pathways (Scheme 1) and of enzymes
that serve a host of cellular functions.
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