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Abstract: We investigated the selective detection of target volatile organic compounds (VOCs) which
are age-related body odors (namely, 2-nonenal, pelargonic acid, and diacetyl) and a fungal odor
(namely, acetic acid) in the presence of interference VOCs from car interiors (namely, n-decane,
and butyl acetate). We used eight semiconductive gas sensors as a sensor array; analyzing their
signals using machine learning; principal-component analysis (PCA), and linear-discriminant analysis
(LDA) as dimensionality-reduction methods; k-nearest-neighbor (kNN) classification to evaluate the
accuracy of target-gas determination; and random forest and ReliefF feature selections to choose
appropriate sensors from our sensor array. PCA and LDA scores from the sensor responses to
each target gas with contaminant gases were generally within the area of each target gas; hence;
discrimination between each target gas was nearly achieved. Random forest and ReliefF efficiently
reduced the required number of sensors, and kNN verified the quality of target-gas discrimination by
each sensor set.

Keywords: semiconductive-type gas sensor; age-related body odor; fungi odor; indoor-air
contamination; machine learning; principal-component analysis (PCA); linear discriminant
analysis (LDA)

1. Introduction

Every day, people access transportation in enclosed spaces such as cars, railways, and airplanes to
commute to work or school and to travel. To ensure that these enclosed spaces form a comfortable
environment, it is necessary to integrate measurement technology that allows for the objective evaluation
of factors that lead to users’ pleasure or discomfort during transportation with analytical technology
to instantaneously draw conclusions from the measurement results and apply appropriate feedback.
When it becomes possible to quantify human sensation and automatically provide feedback, we can
improve travel comfort, and therefore quality of life. For example, age-related body odors, the main
components of which are trans-2-nonenal [1–4], pelargonic acid [5], and diacetyl [4,6], have distinctive
smells. It may be difficult for the person emitting the smells to notice them, and other people in the area
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may be hesitant to inform someone about the unpleasantness of their odor and be forced to endure it.
Some people worry excessively whether they smell unpleasant. In addition, although air conditioning
is a tool for maintaining the comfort of an enclosed space, it is likely to generate fungi, such as
Cladosporium, which diffuse unpleasant smells such as acids [7]; not only do fungi give off unpleasant
odors, they may also affect health [8,9]. The problem in developing odor-sensing technologies is that
enclosed spaces also diffuse other volatile organic compounds (VOCs) diffusing from the interior,
such as n-decane and butyl acetate, which interfere with the detection of unpleasant smells.

In this study, we measured simulated unpleasant fungus and age-related body odors using a
sensor array in the presence of simulated contaminant VOCs from an automobile interior. Acetic acid,
trans-2-nonenal, pelargonic acid, and diacetyl were used as simulated odors, and butyl acetate and
n-decane were used as simulated contaminants because they were main components of odors and
contaminants. Using these components, we investigated the possibility of discriminating fungus and
age-related body odors in automobile interiors. Since each odor is composed of various components,
it is desirable to study using mixed gases as each simulated odor. Therefore, we subsequently clarify
the components of each odor with analyzing instruments, such as GC/MS. In this study, we used
general semiconductor gas sensors [10,11], including commercially available sensors, as well as Pt-,
Pd-, and Au-loaded SnO2, and bulk-response Ce1−xZrxO2 sensors [12–14] as the sensor array. Pristine
SnO2 possesses high sensitivity to oxyhydrocarbons [15]. Moreover, loading Pt, Pd, and Au to
SnO2 can improve its sensitivity to aliphatic, halogenated, and aromatic hydrocarbons [16], so these
sensors are suitable for detecting various VOCs. Ce1−xZrxO2 possesses a high oxygen-diffusion
coefficient to provide lattice oxygen for oxidizing VOCs, ensuring that the sensor is nearly unaffected
by humidity. Therefore, adding Pt-, Pd-, and Au-loaded SnO2 and Ce1−xZrxO2 to the sensor array
can improve the array’s discrimination ability. [17]. Moreover, we investigated the application of
various basic machine-learning methods to the sensor array for improving the discriminant ability.
Previous research investigated sensor arrays using multiple gas sensors to be analyzed with various
statistical methods, i.e., machine learning [18–28]. We also explored discriminating between several
VOCs in a contaminant gas using a semiconductor sensor array with principal-component analysis
(PCA) [17,29]. In manufacturing a measurement system, it is desirable to minimize the number of
parts in the system. Moreover, when sensors with low discrimination ability are incorporated into a
sensor array, inappropriate information is included, decreasing the discrimination accuracy of machine
learning. Therefore, this study also examines the selection of appropriate sensors from the array to
improve machine-learning accuracy.

2. Materials and Methods

2.1. Gas Sensors

We used four commercially available semiconductor metal oxide sensors (TGS 2600, 2602, 2610,
and 2620; Figaro Engineering Inc., Minoh, Japan); two semiconductor 1 wt % Pt, 1 wt % Pd, and 1 wt %
Au-loaded SnO2 sensors (#31b and #33b); and two semiconductor Zr-doped CeO2 sensors (nos. 9 and
71). The Pt-, Pd-, and Au-loaded SnO2 sensors, and the Zr-doped CeO2 sensors were prepared as in
previous reports [14,30], and as summarized in another previous report [17]. Details of the sensors are
summarized in Table 1.
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Table 1. Details of four TGS sensors; two Pt, Pd, Au/SnO2; and two Zr-doped CeO2 sensors used in
this study. VOCs, volatile organic compounds.

Sensor Name Detected Compounds and Sensor Details

TGS 2600 H2 and alcohol (manufactured by Figaro)
TGS 2602 Alcohol, ammonia, VOC, and H2S (manufactured by Figaro)
TGS 2610 Liquefied petroleum gas (manufactured by Figaro)
TGS 2620 Alcohol and solvent vapors (manufactured by Figaro)

#31b VOCs (Pt, Pd, Au/SnO2; film thickness: 4.6 µm)
#33b VOCs (Pt, Pd, Au/SnO2; film thickness: 2.8 µm)
No. 9 Oxygen and VOCs (CeZr10; film thickness: 9 µm)

No. 71 Oxygen and VOCs (CeZr10/Al2O3/Pt-CeZr10; film thickness: 9/4/9 µm)

2.2. Preparation of Target and Contaminant VOCs

The molecular structures of the target VOCs (trans-2-nonenal, pelargonic acid (nonanoic acid),
diacetyl (2,3-butandione), and acetic acid) and contaminant VOCs (butyl acetate and n-decane) are
shown in Figure 1; trans-2-nonenal, pelargonic acid, and diacetyl are the main components of simulated
age-related body odors [1,6]. Fungi in air-conditioning systems diffuse acids [7]. In this study, acetic
acid was set as a target VOC on the basis of a result of our original analyzing study. Butyl acetate and
n-decane are the main olfactory components from car interiors, also as analyzed by our original study.
In this paper, trans-2-nonenal, pelargonic acid, diacetyl, acetic acid, butyl acetate, and n-decane are
denoted as 2N, PA, DA, AA, B, and D, respectively.

Figure 1. Structural formulas of target and contaminant gases. (a) trans-2-nonenal (2N); (b) pelargonic
acid (nonanoic acid; PA), (c) diacetyl (2,3-butandione; DA), (d) acetic acid (AA), (e) butyl acetate (B),
and (f) n-decane (D).

All target and contaminant gases were generated from their solvents by a Gastec Permeator
PD-1B gas generator (Gastec, Ayase, Japan). The gas generator can be used with exclusive diffusion
vessels, i.e., D-tubes, as shown in Figure 2. Liquids of the VOC sources were poured into the
D-tubes, and a maximum of four D-tubes were placed into the diffusion chamber of the gas generator.
The concentration of VOCs could be controlled by changing the kind of D-tube, chamber temperature,
and the flow rate of the carrier gas. In this study, sources of all VOCs were placed into the same
gas generator to generate mixed gases, so that the temperature and flow rate were kept at 35 ◦C
and 200 mL/min, and the concentration was controlled by the kind of D-tube. Table 2 shows the
combinations of D-tubes and their diffusing concentrations for the target and contaminant gases.
Our analyses aimed to sense a single target gas with 0, 1, or 2 contaminant gases and two target gases
with 0 or 1 contaminant gases. Table 3 shows the plot shape and size in PCA and linear discriminant
analysis (LDA) scores (Figures 5, 7, 9 and 10) from each sensing analysis.
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Table 2. Combinations of D-tubes employed in this study.

VOCs Concentration Selection of D-tubes for Designated Concentration

Target gas

2N
0.20 ppm D-04 × 1

0.081 ppm D-03 × 1
0.021 ppm D-01 × 1

PA
0.15 ppm D-05 × 3
0.10 ppm D-05 × 2

DA
5.4 ppm D-01 × 1
1.6 ppm D-001 × 1

0.95 ppm D-001* × 1

AA
2.2 ppm D-01 × 1

0.76 ppm D-001 × 1

Contaminant gas B 2.7 ppm D-02 × 1
D 1.0 ppm D-04 × 1

* A needle was inserted into a D-tube to decrease the diffusion amount.

Table 3. Plot shape and size of principal-component-analysis (PCA) and linear-discriminant-analysis
(LDA) scores (Figures 5, 7, 9 and 10).

Target Gas
(Class) Concentration

Plot Color, Shape, and Size

Including Contaminant Gases

None B (2.7 ppm) D (1.0 ppm) B (2.7 ppm)
+D (1.0 ppm)

2N
0.20 ppm • (large) + (large) × (large) * (large)
0.081 ppm • (medium) + (medium) × (medium) * (medium)
0.021 ppm • (small) + (small) × (small) * (small)

PA
0.15 ppm • (large) + (large) × (large) * (large)
0.10 ppm • (small) + (small) × (small) * (small)

DA
5.4 ppm • (large) + (large) × (large) * (large)
1.6 ppm • (medium) + (medium) × (medium) * (medium)

0.95 ppm • (small) + (small) × (small) * (small)

AA
2.2 ppm • (large) + (large) × (large) * (large)

0.76 ppm • (small) + (small) × (small) * (small)

2N + PA 0.20 ppm (2N)
0.10 ppm (PA) • (medium) + (medium) × (medium) − −

2N + DA 0.20 ppm (2N)
0.95 ppm (DA) • (medium) + (medium) × (medium) − −

2N + AA 0.20 ppm (2N)
0.76 ppm (AA) • (medium) + (medium) × (medium) − −

PA + DA 0.10 ppm (PA)
0.95 ppm (DA) • (medium) + (medium) × (medium) − −

PA + AA 0.10 ppm (PA)
0.76 ppm (AA) • (medium) + (medium) × (medium) − −

DA + AA 0.95 ppm (DA)
0.76 ppm (AA) • (medium) + (medium) × (medium) − −
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Figure 2. D-tubes for gas generator: (a) D-001, (b) D-01, (c) D-02, (d) D-03, (e) D-04, (f) D-05.

2.3. Gas-Sensor Analysis

Sensor responses were measured using a flow apparatus as shown in Figure 3. To generate target
and contaminant gases, 200 mL/min of nitrogen was introduced into the gas generator. To generate
humid air, 200 mL/min of nitrogen and 100 mL/min of oxygen were introduced into a water bubbler.
Additional dry nitrogen was added to adjust the total flow rate to 500 mL/min. Under these conditions,
the N2/O2 ratio was maintained at 4, and relative humidity (RH) was 60%. The concentrations of target
and contaminant gases are indicated in Table 3. Sensor response r is defined in Equation (1) as

r =
Ra

Rg
, (1)

where Ra is the electric resistance of sensor in humid pure air or in contaminants and Rg is the resistance
in the target gases.

Figure 3. Schematic of flow apparatus for measuring sensor responses.

2.4. Data Analysis

Discrimination of each target VOC was carried out using PCA and LDA [31], both of which are
dimensionality-reduction methods. PCA and LDA find the axis that maximizes data variance and the
separation between multiple classes, respectively. In this study, each class would be a different target
gas. LDA is a supervised-learning method, whereas PCA is an unsupervised-learning method.



Sensors 2020, 20, 2687 6 of 16

2.4.1. PCA

PCA can be performed by solving the generalized eigenvalue problem in Equation (2):

Avj = λ jvj, (2)

where A is a matrix of correlation coefficients (Equation (3)):

A =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn

, (3)

cab is a correlation coefficient between sensors a and b (c11 = c22 = . . . = cnn = 1), n is the maximal
dimension number (i.e., number of sensors), vj (v1, v2, . . . , vn) are eigenvectors, and λj (λ1, λ2, . . . , λn)
are eigenvalues (λ1 > λ2 > . . . > λn). Eigenvector vj is a matrix of n rows and 1 column (Equation (4)):

vj =


v1 j
v2 j
...

vnj

. (4)

Normalized scores obtained from sensor responses were converted into the PCA scores by the
eigenvectors (Equation (5)):

x′ = xv, (5)

where x′ is a matrix of PCA scores, x is a matrix of normalized scores (Equation (6)):

x =



x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

...
...

. . .
...

xN1 xN2 · · · xNn


, (6)

and v is a matrix of eigenvectors (Equation (7)):

v =


v11 v12 · · · v1n
v21 v22 · · · v2n

...
...

. . .
...

vn1 vn2 · · · vnn

. (7)

Normalized scores xit were calculated according to Equation (8):

xit =
(rit − rt)

σt
, (8)

where t is the sensor index (with a maximum of n), i is the sensor-response-analysis index (with a
maximum of N), rit is the sensor-response value of sensor t (1, 2, . . . , n) on analysis i (1, 2, . . . , N), rt is
the average sensor response of sensor t, and σt is the standard deviation of sensor t. In this study,
PCA was carried out using Origin 2017 software (Origin Lab Corporation, Northampton, MA, USA).
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2.4.2. LDA

LDA can also be performed by solving the generalized eigenvalue problem in Equation (2).
However, in this case, matrix A is a product of an inverse of a within-class covariance matrix and an
interclass covariance matrix (Equation (9)):

A = S−1
W SB, (9)

where SW is a within-class covariance matrix (Equation (10); T indicates a transposed matrix):

SW =
1
N

C∑
k=1

Nk∑
i=1

(xi −mk)(xi −mk)
T, (10)

SB is an interclass covariance matrix (Equation (11)):

SB =
1
N

C∑
k=1

Nk(mk −m)(mk −m)T, (11)

xi is a matrix of normalized scores (Equation (12)):

xi =


xi1
xi2
...

xin

, (12)

m is a mean vector (Equation (13)):

m =
1
N

N∑
i=1

xi, (13)

mk is a class mean vector of class k (Equation (14)):

mk =
1

Nk

Nk∑
i=1

xi, (14)

where C is the number of classes, and Nk is the number of the sensor responses in class k. LDA scores
were also obtained using Equation (5); however, x′ was a matrix of LDA scores. In this study, LDA was
carried out on MATLAB R2018a (The MathWorks, Natick, MA, USA).

2.4.3. Random Forests and ReliefF

To select appropriate sensors from the total of eight sensors in an array, random forest [32–34] and
ReliefF [35–37] were carried out to obtain sensor weights against all data. A random forest repeatedly
calculates the weight of each sensor using a randomly obtained part of the sensor responses and takes
the average of the sensor weights. ReliefF selects one reference point from all the response values of
each sensor and finds the number of data points of the same class (gas) and different classes of the
k data points closest to the reference point, repeating this operation on all data to calculate weights.
In this study, ReliefF was carried out with k values ranging from 1 to 10, but almost the same result
was obtained. These results were used to examine which sensor of the eight sensors contributed most
to the discrimination of the target gas, and to examine whether sensors can be thinned out. In this
study, random forest and ReliefF were also carried out on MATLAB R2018a.
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2.4.4. k Nearest Neighbors (kNN)

The kNN algorithm was originally used as a method of data classification; it decides on classes by
a majority vote of k data points with a short Euclidean distance to the unknown point [31]. In this study,
PCA and LDA scores were regarded as unknown data, and kNN was performed to ascertain whether
the class judged by the majority vote matched the score’s original class. This operation was carried out
continuously until all scores could be regarded as reference scores. Such ratios were obtained for each
class (2N, DA, PA, and AA). Scores from two target gases were defined as belonging to two classes
each. In this study, k was set to 3, which produced the highest match ratios. The weighted averages of
2N, DA, PA, and AA were defined as the target for gas discrimination. The weighted averages of ratios
were evaluated from scores without contamination gases (not included), scores with contamination
gases (included), and all scores (all). From the ratios, we evaluated the effectiveness of sensor thinning.
In this study, kNN was carried out using MATLAB R2018a.

3. Results and Discussion

3.1. Sensor Responses and Discrimination of Target Gases

Sensor responses S of eight sensors to the target gases were collected. Figure 4 shows the
dynamic resistance response of all sensors to 5.4 ppm of diacetyl with and without contaminant
gases, using 2.7 ppm of butyl acetate and 1.0 ppm of n-decane as an example. All eight sensors
were n-type semiconductor gas sensors that decreased in resistance in response to VOCs. The first
large resistance decrease at 20–40 min was a response to 5.4 ppm of diacetyl without contaminant
gases. All sensors showed distinct sensor responses to diacetyl, especially TGS2602, #31b, #33b,
and No. 9. At 40 min, diacetyl flow was stopped, and contaminant-gas flows were started, so that
resistances of all sensors increased, but not to their original values. Resistance recovery was more
affected by butyl acetate than n-decane because butyl acetate has an ester group and n-decane does not
have oxygen atoms. Semiconductive gas sensors show similar resistive sensor responses to VOCs,
having the same functional groups, and higher responses to oxyhydrocarbons, i.e., esters and alcohols,
than aliphatic hydrocarbons [15]. The second large resistance decrease, at 100–150 min, indicated
responses to 5.4 ppm of diacetyl with contaminant gases. Sensor resistance in 5.4 ppm of diacetyl (Rg)
with contaminant gases was slightly lower than that in 5.4 ppm of only diacetyl. However, since the
decrease in resistance just before diacetyl flow began (Ra) by contaminant gases was larger than the
decrease in Rg, so sensor-response values Ra/Rg decreased compared to the Ra/Rg without contaminant
gases. Therefore, decreasing resistance responses to the mixed gas were not a simple addition of the
resistance decreases for each gas. As a result, the sensor-response values were always affected by the
contaminant gases.

Figure 5 shows the PCA scores and eigenvectors using the eight sensors. The cumulative variance
of the first and second principal components (PCs) in Figure 5 was greater than 80%. To retain
the originality of the data [38], the first two PCs are normally sufficient. We can see these PCA
scores divided into three trends: first, PCA scores from 2N and gas combinations, including 2N
(2N + AA, 2N + PA, and 2N + DA), were distributed in the first and second quadrant, and tended to
monotonically increase; second, PCA scores from DA and gas combinations, including DA (PA + DA
and AA + DA), were distributed in the third and fourth quadrant and tended to monotonically decrease;
PCA scores from acids (AA, PA, and PA + AA) were also distributed in the third and fourth quadrant,
and on the negative side of those from DA. The angle of the eigenvectors from #31b and #33b was
similar to that of the area of 2N and gas combinations including 2N. The angle of the eigenvectors
from TGS2600, 2620, 2610, No. 9, and No. 71 was also similar to that of the area of DA and acids.
The eigenvectors from TGS2602 were between these eigenvectors.



Sensors 2020, 20, 2687 9 of 16

Figure 4. Dynamic resistance response of eight sensors to 5.4 ppm of diacetyl (DA) and 5.4 ppm of
diacetyl with contaminant gases: (a) 2.7 ppm of butyl acetate (B) and (b) 1.0 ppm of n-decane (D).
Graphs indicate flow periods of DA, B, and D.

Figure 5. PCA scores and eigenvectors from eight sensors for one and two target gases (see Table 3 for
types of plots).

The plots of PCA scores in PC1 and PC2 tended to move radially outward from around the
co-ordinates (–2, –0.5) as the target-gas concentration increased. Diacetyl was used at a higher
concentration (over 1 ppm) than the expected concentration in body odor. Since diacetyl has
higher volatility than the other target gases, it is difficult to prepare low-concentration diacetyl
gases under the same experiment conditions for the other target gases. However, PCA scores of
low-concentration diacetyl gases can be expected to exist closer to the co-ordinates (–2, –0.5) than those
of high-concentration diacetyl. When contaminations existed, the PCA scores moved in the direction of
(–2, –0.5) compared to the target gas at the same concentration without contamination, and results were
almost the same as when the target gas was at a low concentration without contamination because
sensor response Ra/Rg decreased in the presence of contaminants, as shown in Figure 4. However,
since PCA scores in the presence of contaminants are generally within the area of each target gas,
discrimination between the target gases was almost achieved.

Figure 6 shows the average normalized scores of all sensors to one and two target gases without
contaminant gases. Normalized scores of #31b and #33b for 2N (Figure 6a) were larger than the
other normalized scores. Furthermore, normalized scores for 2N + DA and 2N + AA were very large
(Figure 6b). That is, PCA scores from 2N depended on #31b and #33b (Figure 5); #31b and #33b also
contributed to the division of areas containing DA and acids. TGS2600, 2610, 2620, No. 9, and No. 71
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showed high normalized scores for DA (Figure 6a) and double target gases including DA (Figure 6b),
as well as intermediate normalized scores from AA and 2N (Figure 6a). Therefore, PCA scores from
DA and acids depended on these sensors, and these sensors affected the area of 2N that was tilted
from the eigenvectors of #31b and #33b (Figure 5). Since PA has very low saturated vapor pressure,
we were unable to evaluate it at concentrations higher than 0.15 ppm. However, the pattern of PA
was similar to the pattern in which average normalized scores of 0.76 ppm AA are generally small.
Therefore, considering that semiconductor gas sensors show almost equivalent responses to the same
group of gas species [15], we expected that the high-concentration PA would show PCA scores that
were roughly equivalent to those of AA.

Figure 6. Average normalized scores of eight sensors to (a) one and (b) two target gases without
contaminant gases.

Figure 7 shows the LDA scores using eight sensors. In this study, LDA scores were classified by
target-gas species without considering target-gas concentrations and contamination, so LDA scores
tended to aggregate with the target-gas species. Variation in the plots due to changing concentration
and the presence or absence of contaminant gas was also observed, but the direction of movement was
not as clear as in PCA. The plots of each class in LDA seemed to be gathered compared to those of PCA.
The area of each target gas in PCA is long and slender, so erroneous judgments seemed to be higher
when using kNN. However, in the kNN evaluation shown in Table 4, there was hardly any difference
in the match ratio between PCA and LDA. That is, although the shape of the area of each class differed,
there was almost no difference in the condition of the number of plots in the vicinity. Regarding the
influence of contaminant gas, as it surrounded the plots of each class in Figures 5 and 7, it could be
judged as roughly the same class by visual observation. In kNN, the match ratios in the presence of
contaminant gases were lower than those in its absence, but the observed difference was not large.

Table 4. Weighted average of match ratios from PCA and LDA from eight sensors.

Match Ratio (%)

Contaminations

Not included Included All

PCA from 8 sensors (Figure 5) 79 74 77
LDA from 8 sensors (Figure 7) 84 72 79
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Figure 7. LDA scores from eight sensors for one and two target gases (see Table 3 for types of plots).

3.2. Selecting Appropriate Sensors for PCA and LDA

To select appropriate subsets of sensors, all sensor combinations had to be implemented with
PCA and LDA. However, considering all combinations requires considerable calculation cost. In this
study, random forest and ReliefF, as filter methods, were carried out to ascertain the weight of each
sensor on the machine-learning results, indicating the effective feature quantities for classification
and discrimination.

Figure 8 shows the weight given to the results of each sensor obtained by the random forest and
ReliefF. Although results differed depending on the calculation method, the weights of TGS 2602, #31b,
and #33b were large for both methods; the random forest also gave a high weight to No. 71. In both
calculation methods, weights given to TGS 2600 and TGS 2620 were very small.

Figure 8. Weights given to results of each sensor obtained by (a) random forest and (b) ReliefF.

On the basis of random-forest and ReliefF results, a four-sensor set, namely, TGS2602, #31b,
#33b, and No. 71, and a three-sensor set, namely, TGS2602, 2610, and #33b, were selected. Moreover,
a five-sensor set with TGS2600, 2610, 2620, No. 9, and No. 71 that was not selected by ReliefF was also
selected for comparison. PCA and LDA were carried out on the three combinations.

Figure 9 shows PCA scores from the four-, three-, and five-sensor sets. Figure 9a shows the PCA
scores of the four sensors selected by the random forest. Despite the reversal of signs of the PC2
as compared with Figure 5, the separability of the PCA scores of each single gas and combination
target seemed to be approximately equal. Since the overlap between the areas of 2N and 2N + DA
was eliminated, their separability improved. Figure 9b shows the PCA scores from the three-sensor
set selected by ReliefF. In this set, the area of the PCA score of AA became extremely narrow and it
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was difficult to judge its concentration. The three sensors selected by ReliefF did not include No. 71.
By contrast, the four-sensor set selected by the random forest did, and the direction of the variation of
the PCA score of AA was almost parallel to the eigenvector of No. 71. ReliefF excluded sensors that
contain important information.

Figure 9. PCA scores and eigenvectors from (a) four sensors selected by random forest, (b) three
sensors selected by ReliefF, and (c) five sensors not selected by ReliefF.

Figure 9c shows the PCA scores from the five-sensor set containing the sensors excluded by
ReliefF. Compared to the results with eight sensors (Figure 5), the area of 2N decreased, and the area
of DA and AA expanded, increasing their overlap with other areas. Moreover, scores from all target
gases with contamination tended to be dense in the gray area in Figure 9c. That is, the scores were an
arrangement in which the presence or absence of contamination was emphasized. Here, the amount of
information regarding the separation of the target gases was reduced by excluding the three sensors
judged to be useful by ReliefF for separating each target gas. Moreover, the cumulative variance of
PC2 was very low (5.1%), meaning that there was almost no information in PC2, and the information
possessed by the five sensors was similar. The five-sensor set is not preferable for discrimination.

Figure 10 shows LDA scores from the four-, three-, and five-sensor sets. From the four- and
three-sensor sets (Figure 10a,b), no notable differences appeared, though minor variation occurred in
each class area, especially the area of AA decreased in the three three-sensor set. In the five-sensor
set (Figure 10c), discrimination deteriorated due to the increase in the area of DA and increasing
compactness in other areas.
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Figure 10. LDA scores from (a) four sensors selected by random forest, (b) three sensors selected by
ReliefF, and (c) six sensors: TGS2602, TGS2610, #31b, #33b, No. 9, and No. 71.

Table 5 shows the match ratios from PCA and LDA from the four-, three-, and five-sensor sets.
The kNN values verified that the estimated discrimination by visual observation of PCA and LDA
plots was almost correct. The match ratio from the four-sensor set using PCA was improved over
that from the eight-sensor set (Table 4). The match ratio from the three-sensor set using PCA slightly
deteriorated compared to that from all eight sensors. In the five-sensor set, the match ratio at all scores
decreased, especially because the match ratio in cases including contamination greatly decreased.
Although the match-ratio differences of LDA were smaller than those of PCA, match-ratio trends were
almost the same as those of PCA. LDA is a supervised-learning method that finds axes that maximize
the separation between multiple classes, so LDA scores tend to gather each class as compared to PCA.

Table 5. Weighted averages of PCA and LDA match ratios from four-, three-, and five-sensor sets.

Match Ratio (%)

Contamination

Not included Included All

PCA from 4 sensors (Figure 9a) 86 76 82
PCA from 3 sensors (Figure 9b) 78 72 75
PCA from 5 sensors (Figure 9c) 73 30 55

LDA from 4 sensors (Figure 10a) 81 74 78
LDA from 3 sensors (Figure 10b) 81 72 77
LDA from 5 sensors (Figure 10c) 68 54 62
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On the basis of this result, it was possible to select sensors while preserving the discriminability of
the target-gas type by preselecting weighted sensors via feature selection. Although this study did not
discuss random-forest and ReliefF performance, it was important to select the optimal feature-selection
method from the machine-learning result in order to select the optimal sensors.

4. Conclusions

Sensing analysis of target VOC gases with and without contamination was performed using
an eight-sensor array, as well as four- (selected by random forest), three- (selected by ReliefF),
and five-sensor (not selected by ReliefF) subsets of the array. PCA and LDA were nearly able to divide
each class of target gases: the plots of the PCA scores tended to move radially outward from around the
co-ordinates (–2, –0.5) as target-gas concentration increased, whereas LDA plots tended to aggregate
with each target gas. Their scores to each target gas with contaminant gases were generally within the
area of each target gas, so discrimination between each target gas was almost achieved. The match
ratio from the four-sensor set using PCA improved as compared to that of the full sensor array, and the
match ratio from the three-sensor set was almost as good, despite using only three sensors. The match
ratio from the five-sensor set decreased because it used sensors determined by ReliefF to not contain
much important information. Although differences in LDA match ratios were smaller than those of
PCA, those of LDA showed the same trend as those of PCA. From this result, it is possible to reduce
the required number of sensors while preserving the ability to discriminate between target-gas types
by preselecting weighted sensors obtained using feature-selection techniques.
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