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a b s t r a c t 

In an outbreak of an emerging disease the epidemiological characteristics of the pathogen may be largely 

unknown. A key determinant of ability to control the outbreak is the relative timing of infectiousness 

and symptom onset. We provide a method for identifying this relationship with high accuracy based on 

data from simulated household-stratified symptom-onset data. Further, this can be achieved with ob- 

servations taken on only a few specific days, chosen optimally, within each household. The information 

provided by this method may inform decision making processes for outbreak response. An accurate and 

computationally-efficient heuristic for determining the optimal surveillance scheme is introduced. This 

heuristic provides a novel approach to optimal design for Bayesian model discrimination. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The timing of infectiousness relative to symptom onset has

een identified as a key factor in ability to control an out-

reak ( Fraser et al., 2004 ). The explanation is intuitive: if symp-

oms appear before infectiousness, then contact tracing and iso-

ation strategies will be effective, whereas for post-infectiousness

ymptom presentation, broader, non-symptom based strategies

ust be adopted. Consequently, identifying the relative timing as

arly as possible in an outbreak is imperative to assessing poten-

ial for control and selecting a measured response. 

Severe acute respiratory syndrome (SARS) is a prime example

f a disease in which symptoms foreshadow significant levels of

nfectiousness ( Anderson et al., 2004 ). This played a critical role

n limiting mortality and morbidity in outbreaks during 2003, via

imple public health measures such as isolation and quarantin-

ng ( Ksiazek et al., 2003; Lee et al., 2003; Fraser et al., 2004; An-

erson et al., 2004; Hsieh et al., 2005; Day et al., 2006 ). Small-

ox is most similar to SARS in this respect, but must be contrasted

ith HIV, where a large proportion of secondary infections occur

efore symptoms ( Fraser et al., 2004 ). For influenza, the relation-

hip is less clear, with symptoms and infectiousness likely coincid-

ng closely, with some transmission possible before symptom on-

et ( Patrozou and Mermel, 2009; Lau et al., 2010 ). For established

iseases, experimental evidence ( Charleston et al., 2011 ) or large-
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cale detailed case information ( International Ebola Response Team

t al., 2016 ) can provide insight into the relative timing of symp-

om onset and infectiousness; however, this relationship will not

e known in an outbreak of an emerging pathogen. Therefore, one

ust turn to early outbreak surveillance data for insights. 

Many jurisdictions organize their emerging disease monitoring

olicies around households. As an example, First Few Hundred

tudies are proposed as a first response surveillance scheme fol-

owing the identification of a novel disease and/or strain as part

f national pandemic plans ( McLean et al., 2010; van Gageldonk-

afeber et al., 2012; AHMPPI, 2014 ). Following the observation

f a first symptomatic individual, their household is enrolled in

n intensive surveillance program, so that day of symptom onset

or subsequent cases within that household are recorded. Studies

f this form were developed for pandemic influenza in 2009 in

oth the United Kingdom ( McLean et al., 2010 ) and the Nether-

ands ( van Gageldonk-Lafeber et al., 2012 ); and have been insti-

uted in response to a lack of methods for determining disease

pidemiology as required for determining a proportionate response

o novel outbreaks. In the Australian Health Management Plan for

andemic Influenza (AHMPPI), First Few Hundred studies are pro-

osed to be implemented following the first case of a novel in-

uenza strain, with households being tracked nationally (but man-

ged at the state/territory level) ( AHMPPI, 2014 ). Methods have re-

ently been developed to characterise transmissibility and severity

f a novel pathogen – other factors influencing ability to control

n outbreak ( Fraser et al., 2004 ) – based on such data ( Black et al.,

017; Walker et al., 2017 ). Currently lacking is a method for accu-

https://doi.org/10.1016/j.jtbi.2019.110079
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
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Fig. 1. (a) Model schematic describing: transitions between states within each 

household continuous-time Markov chain; the five observation models being dis- 

criminated between; and, the way that these household-level data are observed. 

The data observed in each model are the number of observations of the rele- 

vant transition each day, within each household: data from four illustrative sample 

households are shown here. (b) Random forest feature importance for the full 14- 

day design, used to construct the heuristic for smaller designs. Each bar represents 

a feature, so within each day there are (in this case, for households of size 5) 6 

features, corresponding to the proportion of households with each incidence count, 

each day. (c) Resulting random forest accuracy (proportion of test simulations as- 

signed to the correct model) as design size increases, for the true optimal design 

(solid lines) and heuristic solution (crosses with dashed line). In this case, random 

assignment would produce accuracy 0.2. (d) Two-class accuracy of random forest 

model discrimination: this measures the accuracy of discrimination between mod- 

els with symptoms before or coincident with infectiousness, versus models with 

symptoms beginning after infectiousness. In this case, random assignment would 

produce accuracy 0.52 (red dashed line). These results correspond to households of 

size 5, with 10,0 0 0 training samples from each model, each with parameters drawn 

from the distributions displayed in Supplemental Figure S1. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 
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rate determination of relative timing of infectiousness and symp-

tom onset using this data. 

Here we introduce, and demonstrate through a simulation

study, a method for identifying with high accuracy the timing of

infectiousness relative to symptom onset from household-stratified

symptom surveillance data (generated via simulation). Remark-

ably, we show this is achievable with observations taken on only

a few specific days, chosen optimally, within each household.
ur approach to determining the optimal surveillance scheme is

ased on an efficient heuristic. This heuristic provides a general,

omputationally-efficient approach to optimal design for Bayesian

odel discrimination. 

. Bayesian model discrimination for outbreak control 

We model disease dynamics within each household as a

ontinuous-time Markov chain ( Keeling and Ross, 2008 ), that

ounts the number of household members that are susceptible

S), exposed ( E 1 and E 2 ), infectious ( I 1 and I 2 ), or recovered (and

mmune; R). Two compartments for exposed and infectious indi-

iduals allows for a broad range outbreak observation dynamics,

nd allows Erlang-distributed exposed and infectious periods. Un-

er this model, the timing of symptom onset relative to infectious-

ess is mapped to which transition is observed: symptoms appear

ither upon infection, between infection and infectiousness, coin-

ident with infectiousness, between infectiousness and recovery,

r upon recovery. The challenge is to determine which of these

ve (observation) models best describes the household-stratified

ymptom-onset data ( Fig. 1 a). 

There is a relatively rich literature on Bayesian model dis-

rimination ( Chopin et al., 2013; Drovandi and Cutchan, 2016;

lzahrani et al., 2018; Touloupou et al., 2018 ), and optimal de-

ign for such ( Chaloner and Verdinelli, 1995; Ryan et al., 2015 ),

hich are the most appropriate tools and framework to address

his question. A general difficulty with this theory is that practi-

al implementation is at best difficult, and often infeasible. This

as led to methods based on approximate Bayesian computation

ABC), which requires only simulation of realisations from each

odel, and is computationally feasible for a wide range of models.

nfortunately, there exists ‘a fundamental difficulty’ in establish-

ng robust methods based upon summary statistics ( Robert et al.,

011; Robert, 2016 ); however, see the recent work of Dehideniya

t al. ( Dehideniya et al., 2018 ). 

Another approach to model discrimination in an ABC frame-

ork has been proposed by Pudlo et al. ( Pudlo et al., 2015 ). They

reat model discrimination as a classification problem, for which

achine learning methods are ideal, and in particular propose the

se of random forests to perform this task. This approach provides

 highly-efficient, and importantly, robust method for model dis-

rimination. Hainy et al. ( Hainy et al., 2018 ) expand on this ap-

roach as specifically applied to optimal design for model discrim-

nation. 

We apply random-forest based Bayesian model discrimina-

ion, first for accurate, robust characterisation of relative tim-

ng of symptoms and infectiousness, and second, for optimal de-

ign of early outbreak surveillance for accurate model discrim-

nation. Specifically, the aim of the latter is to select an opti-

al surveillance scheme, consisting of a fixed number of obser-

ations, in order to discriminate five different timings of symptom

nset relative to infectiousness, within a household-stratified epi-

emic model. We evaluate, using simulated data, the impact of as-

umptions and summary statistics. Additionally, we propose a new,

omputationally-efficient and highly-accurate heuristic for optimal

esign choice, which in this application determines the optimal

ays upon which to perform surveillance in households. 

. Methods 

.1. Epidemic model 

We demonstrate using an example system of a novel infectious

isease, spreading in a population structured into households. We

ssume that the population is large and mixing between house-

olds is random, such that after a household is initially infected,
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Table 1 

Events, transitions and rates within a household. N is the (fixed) house- 

hold size, β , γ and σ are the rates of infection, gaining infectiousness 

and recovery, respectively. 

Description Transition Rate 

Infection (S, E 1 ) → (S − 1 , E 1 + 1) βS(I 1 + I 2 ) / (N − 1) 

(E 1 , E 2 ) → (E 1 − 1 , E 2 + 1) 2 σ E 1 
Infectiousness (E 2 , I 1 ) → (E 2 − 1 , I 1 + 1) 2 σ E 2 

(I 1 , I 2 ) → (I 1 − 1 , I 2 + 1) 2 γ I 1 
Recovery (I 2 , R ) → (I 2 − 1 , R + 1) 2 γ I 2 
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Assess the accuracy of the process on a left-out test set. 
he remaining transmission within the household is independent

f transmission outside the household ( Ross et al., 2010; Black

t al., 2013 ). Therefore, transmission dynamics within households

an be modelled independently ( Black et al., 2017 ), i.e., with infec-

ion only occurring between individuals within a household, rather

han between households. Note that this is an assumption which

implifies the simulation process, but it could be modified if nec-

ssary. Given this novel etiological agent, we wish to determine if

ymptom onset occurs at the time of infection, between infection

nd infectiousness, coincident with infectiousness, after infectious-

ess, or coincident with recovery (i.e., these are the five candidate

odels we wish to discriminate). The model behaviours are oth-

rwise assumed identical. To be emphatic, the underlying disease

ynamics is identical in all five models, each differing only in when

bservations are made, corresponding to different timings of symp-

om onset ( Fig. 1 a). We focus on selecting between these observa-

ion models as the relative timing of infectiousness and symptom

nset is critical to effective outbreak management: quarantine can

e applied effectively if symptoms occur before (or possibly coin-

ident to) infectiousness. 

We model the epidemic dynamics in households as a

ontinuous-time Markov chain (Figure 1a) ( Keeling and

oss, 2008 ). Individuals transition from susceptible (S) to ex-

osed ( E 1 , and subsequently E 2 ), then to infectious ( I 1 , and

ubsequently I 2 ), and finally to recovered (R), with rates as de-

cribed in Table 1 . The model dynamics are general, but explicitly

esemble the dynamics of a respiratory virus such as influenza,

s potential future pandemic influenza is of substantial concern

lobally. The collection of First Few Hundred data is included in

he Australian Health Management Plan for Pandemic Influenza

 AHMPPI, 2014 ), along with similar pandemic preparedness plans

n other jurisdictions, so demonstrating the ability to discriminate

odels using these data for diseases resembling influenza is highly

elevant. As such, prior parameter choices and the overall duration

f the observation process (i.e., 14 days) also reflect influenza

ynamics. 

We assign a prior distribution to each parameter (Supplemen-

al Figure S1), based on physical quantities to reflect the assumed

rior knowledge of the etiological agent: 

• 1 
σ ∼ Gamma (6 , 1 / 2) , representing a mean exposed duration of

3 days (mode at approximately 2.5 days); 
• 1 

γ ∼ Gamma (6 , 1 / 2) , representing a mean infectious duration

of 3 days (mode at approximately 2.5 days); and, 
• R 0 ∼ 1 + Gamma (2 , 1 / 2) , representing a mean R 0 (the expected

number of secondary cases caused by an infectious individual

in a fully susceptible population) of 2 (mode at approximately

1.5). 

These distributions are sampled per-simulation, i.e., sampled

arameters are kept constant across all households within a given

pidemic. We note that these priors are relatively broad, reflect-

ng uncertainty around disease transmission dynamics, but within

 range resembling the dynamics of a respiratory virus such as
nfluenza. Prior distributions should be chosen to reflect what is

nown about the disease of interest. 

Following the first symptomatic case in a household, the num-

er of symptomatic cases within the household is observed daily

i.e., the unit of time considered is one day). The instant that the

rst individual in a household shows symptoms is time zero. Then,

he number of cases seen before time 1 constitutes the first obser-

ation, between time 1 and 2 the next observation, and so on. This

roceeds for 14 days, with any symptoms occurring after time 14

ot observed. The 14 day duration allows time for the index case

nd subsequent infections to likely progress through the stages of

nfection given the transmission model and parameters chosen, re-

ulting in most household transmission being observed within this

ime. If the disease progressed on a different timescale, the du-

ation and frequency of observation should be varied appropri-

tely, e.g., an infection with slower outbreak dynamics might be

bserved weekly rather than daily. 

When testing the effect of asymptomatic infections on model

iscrimination, we sample an additional parameter, p obs , the prob-

bility that an individual shows symptoms (implemented as an in-

ependent Bernoulli trial for each individual at the time of symp-

om onset). Note that p obs is held constant within each simulation,

.e., it varies by outbreak, but not by infected individual. We ex-

lored two scenarios: (1) p obs ~ Beta(5, 5) (i.e., a mean p obs of

.5), and (2) p obs ~ Beta(7.5, 2.5) (i.e., a mean p obs of 0.75). Figure

1 includes a visualisation of these distributions. We emphasise

hat in the asymptomatic infection scenario, data collection from a

ousehold begins with the first observed symptomatic case in that

ousehold; the index case may be asymptomatic or symptomatic. 

In preliminary studies (not reported) we estimated the ac-

uracy of model discrimination with fixed, known parameters –

he resulting accuracy was higher than with parameters sam-

led from the prior distribution. However, we report only the re-

ults with parameters sampled from a prior distribution here, as

n an ongoing outbreak exact parameter values are likely to be

nknown. 

.2. Random forest model selection 

To attempt to discriminate models, we use the approximate

ayesian random forest approach of Pudlo et al. ( Pudlo et al., 2015 ).

 random forest is a popular machine learning classifier, that oper-

tes by aggregating many classification trees, each constructed on a

andom subset of predictors and a bootstrap sample of the training

ata ( Hastie et al., 2009 ). When making a prediction the classifica-

ion from each tree is determined, with the label predicted by the

ighest number of trees being the prediction of the random for-

st. Implementations of the random forest algorithm are available

n most commonly-used software packages. 

The process of Bayesian model discrimination using random

orests proceeds as follows: 

• Select a number of simulations, N s , and a number of house-

holds, N h . 
• For each model: 

– Sample a set of parameters θ = (R 0 , σ, γ ) from the (prior)

distributions. 

– Simulate N h households given these parameters. 

– Repeat this process N s times. 
• Given the N s simulations from each model, extract the data cor-

responding to the considered design. 
• Construct a random forest that predicts the model label, given

the simulations. 
•
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Infections within each household are simulated using a stan-

dard Doob-Gillespie algorithm for simulating continuous-time

Markov chain dynamics. 

Random forests were constructed using the Python scikit-learn

RandomForestClassifier algorithm ( Pedregosa et al., 2011 ), with 200

trees. Note that we use a completely separate set of test simula-

tions to determine accuracy (of the same size as the training data),

rather than out-of-bag error. Out-of-bag error is an error metric

commonly used with random forests, that is calculated using the

training data, rather than a separate test set. It relies on the struc-

ture of the random forest: in a random forest, only a (randomly

sampled) proportion of training data (i.e., simulations) are used to

construct each tree, so the remaining training data may be used

to test the accuracy of that tree. Aggregating the result across all

trees gives the out-of-bag error. In some cases out-of-bag error is

prone to bias, so to ensure we are correctly assessing accuracy we

instead use a left-out test set. We report accuracy as the propor-

tion of all test samples that are correctly assigned to their gener-

ating model. I.e., we test 10,0 0 0 left-out training simulations from

each model, and count those assigned the correct label. We also

count the number that were assigned correctly to pre-infectious or

coincident with infectious symptoms, versus symptom onset after

infectiousness has begun: we call this the two-class accuracy . This

was tested as it is the most relevant set of models to discriminate

for determining the effectiveness of quarantine for disease control.

All code necessary to produce the simulated data and perform

model discrimination will be made available publicly (upon publi-

cation). 

To operationalise this process during an outbreak, the ob-

served household data (on the days corresponding to the cho-

sen design) would be input into a pre-trained random forest

model, which would result in a predicted model label. That predic-

tion indicates which observation model the outbreak most closely

resembles. 

3.3. Optimal sampling design 

Conducting a First Few Hundred-style study can be extremely

labour intensive. Consequently, we wish to assess the potential

for model discrimination when sampling is only performed on a

subset of days, rather than every day. If we choose to only sam-

ple on D < 14 days, within the first 14 days following the first

symptomatic case in each household, we must necessarily also

choose the optimal days on which to sample. We call the number

of days D being sampled the design size. We choose those days

that produce the highest classification accuracy on a left-out test

set. This design problem is small, with only ( 14 
D ) designs of size D

(or 2 14 = 16 , 384 total designs) to evaluate, so we apply exhaus-

tive search in this case; however a combinatorial optimisation al-

gorithm could be applied and would likely be necessary in a more

complex design problem to search for the optimal design. 

Potentially symptom onset data could be made complete for

this style of study by, for example, asking each household on

which day all individuals with symptoms first presented with them

(rather than just the individuals who presented symptoms on the

sampling days); although some loss in quality of data might be ex-

pected. In other cases it might be necessary to perform a test (e.g.,

virological testing) as part of the sampling program, in which case

choosing optimal designs that are as small as possible can save

substantial resources. Our study provides an example of the model

discrimination and optimal sampling design process, that could be

generalised to reflect the appropriate sampling scheme where nec-

essary. 
.4. Summary statistics 

To more effectively use the household data in training the ran-

om forest, we summarize the raw household data to produce

aily distributions of counts. That is, we count the proportion of

ouseholds that, on day d , observed an incidence of i , and then

se the resultant (design size) × (household size + 1) data vec-

or as the new random forest predictors. For example, with de-

igns of size 5, households of size 5, and 200 households, the raw

ata would consist of 5 × 200 = 1000 predictors, whereas the daily

ummaries would consist of 5 × 6 = 30 predictors. 

.5. Heuristic solution 

Rather than evaluating the full set of possible designs, or ap-

lying an optimisation algorithm, we propose a heuristic for effi-

iently finding high-quality designs of a given size. This heuristic is

o perform random forest model selection on the largest possible

esign, extract the random forest feature importance ( Fig. 1 b), and

se this random forest feature importance to rank design points.

pecifically, days are ranked on their maximum feature importance

i.e., decrease in Gini impurity, see below); the sum of the im-

ortance of features from a day was also tested, but had inferior

erformance. A design of size d uses the highest-ranked d design

oints. The random forest feature importance metric we use is the

ean decrease in Gini impurity ( Raileanu and Stoffel, 2004 ) of a

eature across the trees in the random forest. The Gini impurity at

 node is the probability that a new element at that node would

e assigned an incorrect label, if it was assigned a random label

rom the distribution of training labels at that node. This met-

ic is calculated using the python scikit-learn random forest algo-

ithm ( Pedregosa et al., 2011 ). 

. Results 

Random forest-based Bayesian model discrimination was able

o discriminate relative timing of symptoms and infectious-

ess for simulated household-stratified symptom-onset data. With

00 households of size 5, accuracy was 0.6974 for discriminat-

ng the five observation models (with random parameters, and

0,0 0 0 training simulations per model). When selecting solely be-

ween pre-infectiousness and coincident symptoms versus post-

nfectiousness symptoms, accuracy was 0.9796 (we call this the

wo-class accuracy); suggesting that most model discrimination er-

or was between similar models to which the same management

ecisions might be applied. Accuracy was reduced with fewer

ouseholds: to 0.608 with 100 households, and 0.518 with only

0 households ( Fig. 1 d); these had two-class accuracy of 0.95 and

.894, respectively. These results were robust with respect to vari-

tion in household size (Figure S2), with accuracy ranging from

.648 with 200 households of size 3 to 0.703 with 200 households

f size 7. We report results for households of size 5 for the remain-

er of this section. 

Remarkably, model discrimination remained accurate when

nly a small subset of daily household data were observed, when

he observations were from an optimal design: a design of size 5

ith 200 households was sufficient to produce a classification ac-

uracy of 0.662 and a two-class accuracy of 0.975 ( Figs. 1 d and

 a), only marginally below the accuracy of the full design (Figure

3). Accuracy increased as the design size (i.e., number of days of

urveillance) and the number of households increased. The heuris-

ic produced an effectively indistinguishable level of accuracy com-

ared to the optimal across design sizes, both for overall accuracy

 Fig. 1 c) and two-class accuracy ( Fig. 1 d). The heuristic ensured a

ubstantial reduction in computation time: to produce Fig. 1 c, 39
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Fig. 2. (a) Accuracy of model discrimination in designs of size 5, as the number of households increases, and under partial observation. Note that p obs is not a fixed parameter 

but is sampled from a distribution: The Beta(5,5) distribution has mean 0.5, and the Beta(7.5,2.5) distribution has mean 0.75. Figure S3 shows the equivalent result with a 

design of size 14. (b) Difference between heuristic designs (coloured points) and optimal designs (black boxes) as the design size increases. Note that we do not evaluate 

optimal designs of size 1 or 2, and so there are no optimal designs in these columns. (c) Distribution of training sample observations (under each model and number of 

households) for the most important feature under the heuristic: the proportion of households with 1 case observed on day 2. Each coloured point represents an observation 

in the training sample. These results correspond to households of size 5, with 10,0 0 0 training samples from each model, each with parameters drawn from the distributions 

that appear in Supplemental Figure S1. 
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andom forests were required when using the heuristic, compared

o 49,107 random forests to produce the optimal results. 

The key design points (i.e., sampling days) for optimal designs

ere consistently the second day ( Fig. 2 b), followed by other days

arly in the outbreak (i.e., days 3–6, and day 1). Days 7–14 typi-

ally had little impact on model discrimination accuracy (i.e., op-

imal accuracy and two-class accuracy consistently levelled off as

esign size increased beyond 5; Fig. 1 c/d), and the optimal com-

ination of these days varied due to stochasticity in both training

nd test data. This is consistent with the feature importance used

o develop the heuristic ( Fig. 1 b), i.e., those days that were consis-

ently optimal were those with highest feature importance. When

he most important design point is visualised ( Fig. 2 c) it shows a

ubtle but clear difference between distributions of observations

rom the different models; this provides intuition as to how deci-

ion trees constructed from many predictors of this form can accu-

ately discriminate models. 

To assess the impact of asymptomatic infections on model dis-

rimination, we repeated the analysis, except with each individual

nly being symptomatic (at the point symptoms would otherwise
 s  
ppear) with probability p obs (again, sampled from a prior distribu-

ion). This partial observation made model discrimination substan-

ially more challenging: with designs of size 5 and 200 households

 Fig. 2 a), accuracy was 0.522 and two-class accuracty was 0.863

hen p obs ~ Beta(7.5, 2.5) (i.e., a mean of 0.75), and accuracy was

.400 and two-class accuracy was 0.736 when p obs ~ Beta(5, 5) (i.e.,

 mean of 0.5) (compared to 0.622 and 0.975 with complete obser-

ation). 

. Discussion 

Identifying the relative timing of symptom onset and infec-

iousness in an emerging epidemic is critical to outbreak control.

e have demonstrated, on simulated data, a method for identify-

ng the relative timing based upon household-stratified data avail-

ble early in an outbreak. This method produces reasonable ac-

uracy for discriminating between five observation models, and

ery high accuracy for determining pre- or coincident with infec-

iousness symptom onset versus post-infectiousness symptom on-

et (i.e., two-class accuracy). This can be done without observing
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each household every day. Moreover, we can use random forest

feature importance to inform a heuristic that vastly reduces the

computation necessary to choose high-accuracy designs. 

It is remarkable that it is possible to discriminate models so ac-

curately, given that they share identical epidemic dynamics, and

only differ in observation. The non-parametric nature of the ran-

dom forest is able to use small but clear differences between

models (e.g., Fig. 2 c) to extract sufficient information to discrim-

inate them. Combining the raw household data to form sum-

mary statistics is critical to this: if the raw household data is

used rather than the summary statistics, accuracy is substantially

lower. While it can be difficult to interpret the classifications made

by a random forest-classifier, interrogating key individual predic-

tors (as in Fig. 2 c) provides clarity, and elucidates why feature

importance provides a useful heuristic for choosing optimal de-

signs ( Molnar, 2019 ). 

The accuracy of model discrimination decreases substantially as

the proportion of cases that are asymptomatic increases. This can

be compensated by increasing the number of households ( Fig. 2 a).

The outbreaks in which early control is most critical are likely to

be those in which most individuals are symptomatic, due to symp-

toms being strongly correlated with severity, for example hospital-

isations and deaths. However, there also exists diseases for which

outbreak control is critical, even when the proportion of symp-

tomatic individuals is very low (e.g., poliovirus). 

In some situations it may be necessary to consider more com-

plicated surveillance schemes, in which case it may not be possible

to evaluate the exact optimal design by exhaustive search. How-

ever, the heuristic proposed here should remain effective in more

complicated design spaces, provided they have a similar form, i.e.,

designs of a given size are a subset of designs of larger sizes upon

which the random forest can be trained to extract feature impor-

tance. 

Assumptions impact any model-based study. Most critically, this

model discrimination process assumes that the dynamics of the

simulated epidemic model and observation models reflect the ac-

tual disease and observation dynamics. It is possible to use this

method to select between models that differ in dynamics in addi-

tion to the observation process; however any increase in the num-

ber of models to classify will likely result in increased computa-

tion and potentially decreased accuracy. We have chosen to focus

on the timing of symptom onset and infectiousness in one gen-

eral disease process as an example, resembling influenza in both

transmission dynamics and prior distributions on parameters. Use-

ful future work could be to perform similar experiments on diverse

disease processes, with different lif e histories. It would also be

valuable to assess the robustness of the method for discriminating

timing of symptom onset versus infectiousness when the underly-

ing disease transmission model is misspecified. We note that se-

lection between different transmission models (rather than obser-

vation models) for disease outbreaks has been considered in other

studies, for example, assessing models of transmissibility over time

for Norovirus from household data ( Zelner et al., 2013 ). 

In addition, the simulation study we present is a simplification

of realistic disease dynamics. The model assumes homogeneous

within-household mixing, Erlang-distributed latent and infectious

durations, and constant transmission rates over the infectious pe-

riod. Independence between households is also assumed (i.e., that

once a household is infected, all subsequent infection events are

due to transmission within that household); this is only potentially

valid in the case of a large population of households and the early

stages of an outbreak. Household size is uniform across households

within the simulation; if household size were allowed to vary, data

from each household size would need to be evaluated separately,

and more households may need to be observed to obtain suitable

accuracy. Assessing optimal design for model discrimination given
 range of household sizes would be a valuable direction for future

ork. 

Finally, we treat the interaction between symptom onset and

nfectiousness as a discrete process (i.e., symptom onset coincides

xactly with transitions between states), whereas this process may

e more general in practice. This paper demonstrates an example

f the process of Bayesian model discrimination for outbreak con-

rol, and could be adapted to more complex disease models as de-

ired. 

In the future, the aim is to combine Bayesian model discrimina-

ion and parameter estimation in an online manner. Improving es-

imates of parameters improves the ability to discriminate models,

nd, more certainty regarding the model likely reduces variance in

arameter estimates. This would allow for unified characterisation

f all factors influencing the ability to control an outbreak. 
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