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Abstract

OBJECTIVES: Solitary pulmonary capillary haemangioma (SPCH) is a benign lung tumour that presents as ground-glass nodules on com-
puted tomography (CT) images and mimics lepidic-predominant adenocarcinoma. This study aimed to establish a discriminant model us-
ing a radiomic feature analysis to distinguish SPCH from lepidic-predominant adenocarcinoma.

METHODS: In the adenocarcinoma group, all tumours were of the lepidic-predominant subtype with high purity (>70%). A classification
model was proposed based on a two-level decision tree and 26 radiomic features extracted from each segmented lesion. For comparison,
a baseline model was built with the same 26 features using a support vector machine as the classifier. Both models were assessed by the
leave-one-out cross-validation method.

RESULTS: This study included 13 and 49 patients who underwent complete resection for SPCH and adenocarcinoma, respectively. Two
sets of features were identified for discrimination between the 2 different histology types. The first set included 2 principal components
corresponding to the 2 largest eigenvalues for the root node of the two-level decision tree. The second set comprised 4 selected radiomic
features. The area under the receiver operating characteristic curve, accuracy, sensitivity, specificity were 0.954, 91.9%, 92.3% and 91.8% in
the proposed classification model, and were 0.805, 85.5%, 61.5% and 91.8% in the baseline model, respectively. The proposed classification
model significantly outperformed the baseline model (P < 0.05).

CONCLUSIONS: The proposed model could differentiate the 2 different histology types on CT images, and this may help surgeons to pre-
operatively discriminate SPCH from adenocarcinoma.

Keywords: Computed tomography • Ground-glass nodule • Lung adenocarcinoma • Lung cancer surgery • Solitary pulmonary capillary
haemangioma

ABBREVIATIONS

3D 3-dimensional
AUC Area under the curve
GGN Ground-glass nodule
GLCM Grey-level co-occurrence matrix
LPA Lepidic-predominant adenocarcinoma
ROC Receiver operating characteristic
SPCH Solitary pulmonary capillary haemangioma

INTRODUCTION

Solitary pulmonary capillary haemangioma (SPCH) is a primary
benign lung tumour that exhibits proliferation of capillaries in the
alveolar septa [1]. This uncommon disease was first described in
a report of 8 autopsies in 2000 as ‘pulmonary capillary haeman-
giomatosis-like foci’ [2], and the term SPCH was first used in a re-
port of 2 surgically resected patients in 2006 [3]. Only 17 cases of
surgically resected SPCH have been reported in the English litera-
ture before 2018 [1, 3–6]. Clinically, SPCH usually presents as a
ground-glass nodule (GGN) on chest-computed tomography (CT)
images, which is similar to the presentation of lepidic-
predominant adenocarcinoma (LPA) of the lung [1, 3–7].

Recently, the NELSON trial showed that lung cancer mortality
is significantly lower among high-risk persons who underwent
volume CT screening than among those who did not undergo
screening [8]. Volume CT screening also enabled a significant re-
duction of harms, including positive tests and unnecessary
workup procedures [8]. CT has been accepted as an effective lung
cancer screening tool for high-risk patients [8, 9]. In �20% of the
screened population, the screening detected indeterminate lung
nodules; these patients may need further management [10]. In
those patients, it is not uncommon that surgical resection reveals
such lung nodules to be benign lung tumours, including SPCH.
Recently, more cases of surgically resected SPCH have been
reported [6, 7]. In 2018, Hsieh et al. [6] described a series of 16
surgically resected SPCH patients. All SPCHs were incidentally

detected by CT screening, and all 16 SPCH lesions were initially
unrecognized or misdiagnosed by general pathologists. Their re-
port showed that SPCH may be underrecognized by radiologists
in CT scans due to its similarity to early lung cancer and may also
be underrecognized by general pathologists.

To assist in the identification of SPCH in thoracic CT images,
this study aimed to extract radiomic features that can preopera-
tively distinguish SPCH from LPA. Although numerous radiomic
features have been developed for the differential diagnosis of
lung nodules [11], the differentiation of SPCH from LPA remains a
difficult task because both types of lesions have very similar
GGN-like appearances. Moreover, the limited number of cases
reported for SPCH makes the training dataset intrinsically imbal-
anced. To overcome these difficulties, here, a radiomic analysis
rooted in a divide-and-conquer paradigm is proposed to con-
struct a two-level radiomic feature set as the basis of separating
SPCH from LPA.

MATERIALS AND METHODS

Study population

Twenty-nine consecutive SPCH cases with tumour size >5 mm
were considered in this study. These SPCH cases underwent sur-
gical tumour resection by a single surgical team, using the same
clinical protocols and perioperative orders, at the National
Taiwan University Hospital between January 2013 and December
2017. Out of these 29 cases, 9 cases with other lung nodules in
the same lobe were excluded from this study. Another 7 cases
without preoperative thin-cut CT images were also excluded.
Finally, 13 cases were enrolled in the SPCH group for further
analysis (Fig. 1A). For the patient selection in the LPA group, we
retrospectively evaluated 3327 consecutive patients who under-
went thoracoscopic surgery for lung cancer by the same surgical
team at our institute between January 2013 and December 2018.
The inclusion criteria in the LPA group were as follows: (i) diag-
nosed as lung adenocarcinoma with pathologically confirmed
near-pure (>_70%) lepidic-predominant histological subtypes and
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(ii) existence of preoperative thin-cut CT images. Finally, 49 cases
were enrolled in the LPA group for further analysis (Fig. 1B).

All pathological slides of the enrolled patients were reviewed
according to the 2015 World Health Organization criteria [12].
The diagnosis of SPCH was made when the lesion size was
>5 mm with no evidence of inflammation or adenocarcinoma in
the submitted specimen, but decreased cytokeratin staining and
increased CD31-positive vascular channels in immunohistochem-
ical stainings (Fig. 2). The SPCH diagnosis and the percentage of
the lepidic subtype were confirmed microscopically by an experi-
enced thoracic pathologist (M.-S.H.).

Image acquisition

The assessed CT images were the most recent CT images before
surgery. All CT images in the DICOM format, without preprocess-
ing or normalization, were considered. Chest CT images were
obtained with a 16-, 64-, 128- or 256-detector row CT scanner
from the following manufacturers: GE (LightSpeed 16, LightSpeed

VCT, Revolution CT and Revolution RVO), Siemens (Emotion 16,
Sensation 64 and SOMATON Definition AS+), Philips (iCT 256
and Ingenuity CT) and Canon (Aquilion ONE) Medical Systems.
The CT image parameters were as follows: detector collimation,
0.5–0.625 mm; pitch, 0.813–1.2; gantry speed, 0.35 or 0.5 s per
rotation; 120 kVp; 41–330 mA; slice thickness, 1.0–1.25 mm; and
matrix, 512� 512.

Solitary pulmonary capillary haemangioma–lepidic-
predominant adenocarcinoma classification model

The SPCH–LPA classification model was based on a divide-and-
conquer radiomic analysis. The kernel idea was to untangle the
intervened radiomic distribution of SPCH and LPA by 2 different
sets of radiomic features. The first set partitioned the SPCH/LPA
dataset into 2 subsets, including 1 with high confidence of being
LPA and the other a mixture of SPCH and LPA to be further clas-
sified using a second set of radiomic features. The rationale be-
hind this idea was to decompose the LPA samples into 2

Figure 1: (A and B) Computed tomography (CT) image of solitary pulmonary capillary haemangioma (arrow), which usually presents as (A) a pure ground-glass nod-
ule or (B) part-solid ground-glass nodule similar to the presentation of lepidic-predominant adenocarcinoma of the lung (arrow). (C) Occasionally, solitary pulmonary
capillary haemangioma may present as a pure solid nodule. (D) CT image of lepidic-predominant adenocarcinoma (arrow).
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Figure 2: (A) Solitary pulmonary capillary haemangioma (SPCH) is characterized by the proliferation of capillary-sized vasculature. (B) Lepidic-predominant adeno-
carcinoma has neoplastic pneumocytes with large hyperchromatic nuclei growing along the alveolar walls. (C) Unlike lepidic-predominant adenocarcinoma, SPCH
typically has decreased cytokeratin staining. (D) CD31 immunohistochemical staining highlights the proliferation of capillaries in SPCH [original magnification: (A and
B) �100; (C and D)�400].

Figure 3: The schema of this study. LPA: lepidic-predominant adenocarcinoma; PCA: principal components analysis; SFFS: sequential forward feature selection; SPCH:
solitary pulmonary capillary haemangioma; SVM: support vector machine.
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subgroups, each of which was expected to have a higher homo-
geneity than its parent group. It reduced the originally imbal-
anced and intertwining classification problem into a relatively
balanced problem with a more homogeneous subset of LPA,
opening up an opportunity for better discrimination between
SPCH and LPA.

The schema of this study is depicted in Fig. 3. The SPCH- or
LPA-containing volumes of interest were first extracted from 3-
dimensional (3D) thoracic CT images followed by segmentation
processes demarcating the lesion boundaries. Texture features
were extracted from histograms and the grey-level co-occur-
rence matrix (GLCM) [13] of the lesions with a divide-and-
conquer paradigm. The performance of the proposed SPCH–LPA
classification model was assessed using a leave-one-out cross-
validation method.

Tumour segmentation

The SPCH and LPA lesions were segmented semiautomatically
with a level-set algorithm [14]. To further account for the com-
plex compositions of SPCH and LPA, especially along the lesion
boundaries, the computer-generated lesion boundaries were ex-
amined and, if necessary, modified manually by 2 chest radiolog-
ists (Y.-C.Chen and Y.-C.Chang) to reach consensus segmentation
results. The tumour segmentation is described in detail in the
Supplementary Methods.

Feature extraction

To characterize SPCH and LPA, 2 types of radiomic features were
extracted from the segmented lesions, namely the histogram fea-
tures and the 3D spatial texture features. The histogram features
included skewness, kurtosis, 75th percentile, 97.5th percentile
and uniformity [15]. The 3D spatial texture features were com-
posed of 21 features derived from the GLCM of each lesion. The
histogram features characterized the grey-level distribution of a
lesion, whereas the 3D spatial texture features described the spa-
tial distribution of the grey levels within a lesion. More precisely,
the 21 GLCM-based texture features modelled the grey-level co-
occurrence characteristics of all horizontally adjacent voxels in a
lesion.

Feature selection and classification model building

An SPCH–LPA classification model was developed based on a
two-level decision tree and 26 radiomic features extracted from
each segmented lesion, including 5 and 21 features from the his-
togram and co-occurrence matrix, respectively. The two-level de-
cision tree was constructed based on the training data with a
support vector machine as the classifier in each tree node. For
comparison, a baseline model was built with the same 26 fea-
tures using a support vector machine as the classifier. The details
of the feature selection and classification model building are pro-
vided in the Supplementary Methods.

Performance assessment

To evaluate the performance of the proposed classification
model, a leave-one-out cross-validation approach [16] was used
in this study to estimate the model’s ability in predicting the new

data that were not involved in the model construction. The
details of the performance assessment are described in the
Supplementary Methods.

Statistical analysis

To investigate the differentiation capability of each radiomic fea-
ture, the independent two-sample t-test was conducted for each
of the 26 features. Levene’s test was performed prior to the t-test
to assess the homogeneity of variance of each radiomic feature
with the null hypothesis of equal population variances. The sig-
nificance levels of the independent two-sample t-test and
Levene’s test were both set to 0.05. If the P-value of Levene’s test
was less than the significance level, the null hypothesis was
rejected and both groups, i.e. SPCH and LPA, were considered to
have unequal variances for the tested radiomic feature.
Otherwise, the group variances of SPCH and LPA were consid-
ered as equal. Receiver operating characteristic (ROC) curve anal-
yses were carried out to assess the leave-one-out cross-validation
performances of the proposed SPCH–LPA classification model
and the baseline model using the probability of being an SPCH,
i.e. P.

Ethics statement and data availability statement

The Research Ethics Committee at our institute reviewed and ap-
proved this study (approval no. 202003074RIND; approval date,
14 April 2020), and the requirement for written informed consent
was waived by the Institutional Review Board. All relevant data
are within the manuscript and its Supporting Information files.

RESULTS

Demographic and clinicopathological
characteristics

The characteristics of the 13 SPCH patients and 49 LPA patients
investigated in our study are summarized in Table 1. In the SPCH
group, a predominance of females (53.8%) and non-smokers
(92.3%) was observed. The mean tumour diameter was 10.1 mm.
The CT findings showed pure GGN, part-solid GGN and pure
solid nodule in 4 (30.8%), 8 (61.5%) and 1 (7.7%) patients, respec-
tively. Similar to the SPCH group, female (71.4%) and non-
smoker (89.8%) predominance was also observed in the LPA
group. In this group, most tumours were classified as pure GGN
(71.4%) in CT images. The pathological features revealed non-in-
vasive characteristics in most cases of the LPA group. The lepidic
percentages were higher than 70% in all cases of the LPA group.
Besides, neither micropapillary nor solid subtypes were noted in
the enrolled patients.

Analysis of radiomic features

The radiomic feature analysis involved histogram features and 3D
spatial texture features. The mean values of 7 features including
kurtosis (P = 0.026), uniformity (P < 0.001), autocorrelation
(P < 0.001), correlation (P < 0.001), sum of squares: variance
(P < 0.001), sum average (P < 0.001) and sum variance (P < 0.001)
were significantly different between SPCH and LPA. The detailed
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statistical analyses of the histogram features and the 3D spatial
texture features are listed in Table 2.

Performance of the solitary pulmonary capillary
haemangioma–lepidic-predominant
adenocarcinoma classification model

For the root node of the two-level decision tree, 2 principal
components corresponding to the 2 largest eigenvalues were
extracted from the training data in each fold of the leave-one-
out cross-validation process. The results of this process showed
that the 2 principal components, on average, explained
99.88% ± 0.61% of the total variance of all training data in the
26-dimensional feature space in every fold. For the leaf node,
only 4 texture features were selected, namely correlation, in-
verse difference, uniformity and information measure of corre-
lation 2, which accounted for 61, 37, 14 and 12 times of feature

selection, respectively, amounting to all 124 times of feature se-
lection in the 62 folds of training processes.

The ROC curve of the proposed SPCH–LPA classification
model is illustrated in Fig. 4, which was plotted based on the
SPCH probability of each test datum, i.e. P ¼ P1 � P2. The area
under the curve (AUC) of the ROC curve was 0.954. The classifi-
cation accuracy, sensitivity and specificity values of the proposed
SPCH–LPA classification model were 91.9%, 92.3% and 91.8%, re-
spectively, when a decision threshold of 0.5 was applied to the
SPCH probability P (Supplementary Material, Table S1).

Performance of the baseline model

Three to 6 features were selected by the sequential forward fea-
ture selection algorithm for each of the 62 folds in the leave-
one-out cross-validation process as listed in Supplementary
Material, Table S2, adding up to 285 times of feature selection
in total. The total numbers of selections for each feature are
summarized in Supplementary Material, Table S3. The 6 most
frequently selected features were uniformity, correlation, dis-
similarity, autocorrelation, energy and inverse difference, which
were selected 62, 62, 35, 20, 18 and 17 times, respectively, rep-
resenting 75.1% of feature selection in the 62 folds of training
processes.

Figure 4 also displays the ROC curve of the baseline model
with an AUC of 0.805. The classification accuracy, sensitivity
and specificity values of this baseline model were 85.5%, 61.5%
and 91.8%, respectively, for the decision threshold of 0.5
(Supplementary Material, Table S1).

To compare the differences between the AUC of the proposed
SPCH–LPA classification model and the baseline model, a statisti-
cal method by Hanley and McNeil [17] was employed in this
study to analyse differences between areas under 2 ROC curves.
The AUC of our proposed SPCH–LPA classification model was
significantly different from that of the baseline model (P = 0.025).

DISCUSSION

Advances in CT imaging and the availability of CT screening pro-
grammes for lung cancer detection in asymptomatic high-risk
patients have increased the detection rate of small pulmonary
nodules [9, 10]. There are several guidelines and recommenda-
tions for the management and follow-up of incidentally encoun-
tered lung nodules detected by CT in adult patients [18, 19].
According to these recommendations, some indeterminate lung
nodules are indicated for surgical resection. However, the final
diagnosis of these indeterminate lung nodules includes not only
malignancies but also benign lung tumours [10]. SPCH has been
an uncommon benign lung tumour, with only 17 reported cases
of surgically resected SPCH before 2018 [1, 3–6]. However, 25
more cases have been reported in the last 2 years [6, 7]. The in-
creasing incidence of this benign tumour raises the importance
of its preoperative diagnosis using imaging modalities. However,
SPCH is characterized by GGNs in CT images and mimics LPA ra-
diographically [1, 3–7]. Even experienced thoracic surgeons and
radiologists may regard SPCH as early primary lung cancer.
Therefore, it is important to differentiate SPCH from LPA by
radiomic feature analysis. Our results showed that a radiomic tex-
ture feature-based classification model could differentiate SPCH
from LPA on CT images.

Table 1: Clinicopathological features of the study cohort

SPCH LPA

Number of patients 13 49
Age (years) 54.5 ± 12.6 (38–77) 54.6 ± 11.4 (24–75)
Female 7 (53.8) 35 (71.4)
Non-smoker 12 (92.3) 44 (89.8)
Lung cancer family history 4 (30.8) 13 (26.5)
Abnormal CEA 1 (7.7) 0 (0)
Tumour location

LUL 1 (7.7) 14 (28.6)
LLL 4 (30.8) 8 (16.3)
RUL 4 (30.8) 20 (40.8)
RML 1 (7.7) 3 (6.1)
RLL 3 (23.1) 4 (8.2)

Tumour diameter in CT
image (mm)

10.1 ± 3.8 (6.0–19.0) 11.2 ± 5.9 (5.0–28.9)

Pathological tumour
diameter (mm)

8.1 ± 3.9 (4.0–18.0) 9.1 ± 4.8 (4.0–25.0)

CT findings
Pure GGN 4 (30.8) 35 (71.4)
Part-solid GGN 8 (61.5) 14 (28.6)
Solid 1 (7.7) 0 (0)

Tumour differentiation
Well 43 (87.8)
Moderate 6 (12.2)

Visceral pleural invasion 0 (0)
Lymphovascular invasion 0 (0)
Lepidic percentage

70–80% 8 (16.3)
80–90% 2 (4.1)
90–100% 22 (44.9)
Pure lepidic 16 (32.7)

pT stage
AIS 15 (30.6)
T1mi 14 (28.6)
T1a 17 (34.7)
T1b 3 (6.1)

Lymph node metastasis 0 (0)

Data are presented as the mean ± SD or n (%). TNM staging is based on the
eighth edition of the TNM classification.
CEA: carcinoembryonic antigen; CT: computed tomography; GGN: ground-
glass nodule; LLL: left lower lobe; LPA: lepidic-predominant adenocarci-
noma; LUL: left upper lobe; RLL: right lower lobe; RML: right middle lobe;
RUL: right upper lobe; SPCH: solitary pulmonary capillary haemangioma;
TNM: tumour, node and metastasis.
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Radiomic texture features have been widely used in tissue
characterization for discriminating different types of lesions in
thoracic CT images, such as automatic lung nodule detection
[20–22], differential diagnosis of benign and malignant lung nod-
ules [9, 10] and differentiation of lung cancer subtypes [11].
Several texture features have been suggested for automated de-
tection of pulmonary nodules in CT images, including the mean,
skewness and kurtosis values of intensity histograms [20, 21], local
binary patterns [8, 22] and GLCM-based features [20, 21]. While
radiomic texture features were shown to be effective in distin-
guishing various types of lung nodules, discrimination between
SPCH and LPA was intrinsically difficult due to their common
GGN-like appearance. Moreover, this task was challenging be-
cause the limited number of available SPCH cases evidently
made the study population highly imbalanced.

The difficulty caused by the common GGN-like appearance
could be partially observed in the similar texture features of the
enrolled SPCH and LPA cases. As listed in Table 2, only 7 out of
26 radiomic features showed significant differences between the
mean values of SPCH and LPA for the 62 lesions examined in this
study. What made the differentiation between SPCH and LPA
even more difficult was that the coefficients of variation, i.e.
(standard deviation/mean) � 100, of these 26 features were
mostly very high (>30), suggesting a high heterogeneity among

each of the SPCH and LPA cohorts. As a result, the baseline
model could only achieve an AUC of 0.805 with a combination
of 3–6 features.

To cope with the problems of appearance similarity, cohort
heterogeneity and imbalanced samples, a divide-and-conquer
radiomic analysis approach was proposed in this study. A two-
level SPCH–LPA decision tree was employed with the central
idea of partitioning the LPA samples into 2 subsets. One subset
comprised lesions with high confidence of being an LPA,
whereas the other was expected to contain LPA lesions with
higher discriminability from SPCH lesions for the subset was
more homogeneous than its parent sample set. This idea was
realized at the root node of the employed two-level decision
tree. Specifically, it was accomplished by using the first 2 princi-
pal components of the training data in the 26-dimensional fea-
ture space and optimizing a support vector machine that
maximized the positive predictive value subject to the con-
straint of 100% sensitivity. A lesion that was not picked out at
the root node, i.e. P_1 = 1, was forwarded to the second level of
the decision tree to determine the probability of being an SPCH
lesion.

To avoid overfitting of the classification model, only 2 features
were selected in the leaf node based on the training data in each
fold of the leave-one-out cross-validation process, following the

Table 2: Histogram and 3D spatial texture feature analyses for patients with SPCH and LPA

SPCH LPA P-value

Numbers of patients 13 49
Histogram features

Skewness 1.413 ± 0.773 1.227 ± 0.511 0.302
Kurtosis 4.888 ± 3.70 3.406 ± 1.415 0.026
75th percentile 87.75 ± 33.976 80.505 ± 30.563 0.461
97.5th percentile 128.55 ± 54.810 100.971 ± 35.913 0.106
Uniformity 0.0173 ± 0.005 0.029 ± 0.011 <0.001

Tumour region feature analysis by
GLCM
Autocorrelation 54.450 ± 43.098 215.698 ± 186.057 <0.001
Contrast 5.179 ± 4.420 3.667 ± 3.529 0.198
Correlation 0.501 ± 0.091 0.636 ± 0.121 <0.001
Cluster prominence 973.146 ± 982.489 2051.079 ± 5967.805 0.521
Cluster shade -8.520 ± 60.754 62.069 ± 168.781 0.145
Dissimilarity 1.546 ± 0.742 1.255 ± 0.719 0.202
Energy 0.049 ± 0.026 0.066 ± 0.062 0.141
Entropy 3.512 ± 0.579 3.470 ± 0.955 0.844
Inverse difference 0.554 ± 0.099 0.603 ± 0.136 0.230
Inverse difference moment 0.505 ± 0.121 0.563 ± 0.165 0.242
Maximum probability 0.114 ± 0.044 0.127 ± 0.109 0.518
Sum of squares: variance 57.70 ± 45.249 216.875 ± 186.892 <0.001
Sum average 13.245 ± 5.961 25.005 ± 15.119 <0.001
Sum variance 160.969 ± 142.297 735.150 ± 651.642 <0.001
Sum entropy 2.481 ± 0.347 2.492 ± 0.526 0.930
Difference variance 5.179 ± 4.420 3.667 ± 3.529 0.198
Difference entropy 1.487 ± 0.341 1.306 ± 0.415 0.153
Information measure of correla-
tion 1

-0.170 ± 0.052 -0.197 ± 0.075 0.234

Information measure of correla-
tion 2

0.663 ± 0.099 0.685 ± 0.106 0.507

Inverse difference normalized 0.994 ± 0.003 0.995 ± 0.003 0.202
Inverse difference moment
normalized

0.999 ± 0.00007 0.999 ± 0.00005 0.202

Data are presented as the mean ± SD.
3D: 3-dimensional; GLCM: grey-level co-occurrence matrix; LPA: lepidic-predominant adenocarcinoma; SD: standard deviation; SPCH: solitary pulmonary capil-
lary haemangioma.
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suggestion given by Jain et al. [23]. Noticeably, only 4 texture fea-
tures had been selected in the 62 folds; the 3 most selected fea-
tures were correlation, inverse difference and uniformity, which
amounted to 90.3% of feature selections. Interestingly, these 3
features corresponded to 3 of the 4 characteristic appearance
features which characterized the intensity similarity of horizon-
tally adjacent voxel pairs. More precisely, the intensities of hori-
zontally adjacent voxel pairs of an LPA were inclined to be more
similar to each other than those of an SPCH. The CT image of in-
correctly classified case was provided in Supplementary Material,
Fig. S1. The CT images of the incorrectly classified case show sim-
ilar intensities of adjacent voxel pairs that mimic LPA
(Supplementary Material, Fig. S1).

The divide-and-conquer radiomic analysis embedded in the
two-level SPCH–LPA decision tree demonstrated greatly en-
hanced discernibility of SPCHs from LPAs in comparison to the
baseline classification model. The baseline model represented a
generic machine learning model using a single set of radiomic
features, which was the same set of texture features as used in
the proposed two-level SPCH–LPA classification model. The re-
spective AUC and accuracy values were significantly improved
from 0.805 and 85.5% in the baseline model to 0.954 and 91.9%
in the SPCH–LPA classification model.

This study had several limitations. The first limitation was that
tumour heterogeneity exists in lung adenocarcinoma. We tried
to include LPA cases with the lepidic subtype of >70% to elimi-
nate histological heterogeneities among analysed tumours in
the LPA group and to extract representative radiomic informa-
tion of LPA lesions. Second, relatively small numbers of SPCH
and LPA cases were enrolled in this study, restricting the ability
to account for tumour heterogeneity and texture variation
caused by differences in CT scanner models. Because an SPCH
diagnosis is uncommon, the number of patients with SPCH will
remain limited until more cases are reported. Although the
number of enrolled LPA cases might be increased in various
ways, this approach would be constrained by the limited num-
ber of patients with SPCH due to the persistent data imbalance
problem. However, the patient cohort in this study is the largest

SPCH cohort in the currently existing literature, and our results
are valuable to thoracic surgeons and radiologists worldwide.
The accountability limitation for texture variation might have
been partially weakened by the multiple varieties of CT scanner
models employed in this study, which collated data from 3
makers and 10 models. Lastly, this was a retrospective study
and did not exactly represent the real-world setting. The result
of this study could only be applied to distinguish between
SPCH and LPA, but not to differentiate SPCH from other sub-
types of lung adenocarcinoma. Further validation with a larger
cohort in a multicentre study is necessary.

Our study showed that SPCH could be accurately differenti-
ated from lung cancer on CT images by a radiomic texture
feature-based discriminant model. Our results may help sur-
geons to preoperatively discriminate between patients with
SPCH and LPA, thus avoiding unnecessary surgery for benign
lung tumours.

SUPPLEMENTARY MATERIAL

Supplementary material is available at ICVTS online.
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